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Abstract. Web applications are increasingly built to target both desktop and mo-
bile users. As a result, modern Web development infrastructure must be able to
process large numbers of events (e.g., for location-based features) and support
analytics over those events, with applications ranging from banking (e.g., fraud
detection) to retail (e.g., just-in-time personalized promotions). We describe a
system specifically designed for those applications, allowing high-throughput
event processing along with analytics. Our main contribution is the design and
implementation of an in-memory JSON store that can handle both events and
analytics workloads. The store relies on the JSON model in order to serve data
through a common Web API. Thanks to the flexibility of the JSON model, the
store can integrate data from systems of record (e.g., customer profiles) with
data transmitted between the server and a large number of clients (e.g., location-
based events or transactions). The proposed store is built over a distributed, trans-
actional, in-memory object cache for performance. Our experiments show that
our implementation handles high throughput and low latency without sacrificing
scalability.
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1 Introduction

In-memory computing reverses traditional data processing by embedding the compute
where data is stored, instead of moving the data to where the compute happens. Analysts
predict the market for in-memory computing to grow 35% between now and 2015 [18].
This is in part because in-memory computing can radically change the time-frame for
completing some data analysis tasks. In addition, it allows for systems to combine on-
the-fly processing of events with analytics, which are increasingly important for busi-
ness applications. We describe a system designed around a distributed in-memory data
store that supports such applications. Our work is part of a broader project, Insight to
Action (I2A), whose goal is to support high-throughput transaction processing along
with decision capabilities based on large-scale distributed analytics.

Event streaming systems have been a subject of intense research and development
in the last 10 years. Existing distributed event streaming systems include both research
prototypes [1,5] and commercial products [12,20]. Those systems usually operate with
a limited amount of state, and allow users to combine operators that process one or
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more input events before passing a new event to the next operator. The I2A architecture
is organized around an agent model in which each agent can process a fraction of the
incoming events. One key difference compared to prior event-based systems is the pres-
ence of a distributed in-memory data store that can be accessed by those agents. The
store is used both to allow agents to hold on to some state (e.g., information about a
specific customer or product useful when processing a specific event), as well as to en-
able analytics that can inform decisions on those events (e.g., by computing the average
order amount for customers in the same area).

This paper focuses on [12A’s distributed store, which is one of the main novel parts
of the overall system. The store handles both event storage as well as data obtained
from systems of record (e.g., relational backends). Another novelty is the store’s ability
to handle flexible data through the JSON format. This is particularly important in this
context as information is usually obtained from existing and usually heterogeneous data
sources. Furthermore, it allows to easily blend events with stored data.

This paper makes the following technical contributions:

— It describes a system that supports combined workloads for events and analytics
over an in-memory distributed JSON store.

— It illustrates the benefits of the JSON data model to unify representations on the
client, on the wire, and in the store, and to support better flexibility in the system.

— It describes the architecture for the distributed JSON store, which leverages the
MongoDB API [14] on top of an in-memory distributed object cache (WXS [22]).

— It reports experimental results on throughput, latency, and scalability.

2 Insight to Action

This section provides background on the Insight to Action (I2A) system on top of which
the contributions of this paper rest.

Processing events with analytics. The —
. . . . Client Event Event |f Store
starting point for this paper is the I2A event . agent || shard
system, which is currently under devel-
opment at IBM. I2A combines event
processing with analytics over a dis- Event | Store
. . . agent || shard
tributed store. The idea behind the
name is that analytics discover insights
and event processing performs actions.
Both analyt}cs .and ev§nt processing use Anaiyics | Query Event [ Siorg |
the same distributed in-memory store. query engine agent || shard
Combining both events and analytics
in a single system fosters ease of use
(no need to configure multiple systems)
and performance (no need to move data  Fig. 1. Architecture for processing events and ana-
back and forth). Iytics over a distributed in-memory store

Insight to Action
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rule NormalTakeOff {

1

2 when {

3 toe: TakeOffEvent(sched+20 >= now) ;

4 flight: toe.flight();

5 } then {

6 update flight.departed = true;

7 update flight.on_time = true;

8 } 21 rule RAvg {

9 3} 22 when {

10 rule LateTakeOff { 23 late_count: aggregate {
11 when { 24 f: Flight(on_time = false);
12 toe: TakeOffEvent(sched+20 < now); 25 fn: f.fl_no();

13 flight: toe.flight(); 26 }

14 } then { 27 groupby { fn }

15 update flight.departed = true; 28 do { count { f }; }
16 update flight.on_time = false; 29 } then {

17 emit new FlightDelayEvent( 30 insert new FlightStat(
18 flight.fl_no()); 31 fn, late_count);

19 } 32 }

20 } 33}
Fig. 2. Sample rules for I2A event processing Fig. 3. Sample rule for I2A analytics

The top part of Fig. 1 illustrates event processing in I2A. Each arriving client event
contains a key associating it with an entity. Each machine runs a store shard storing
entities, as well as an event agent. The system uses the key in the event to route it to the
machine where the corresponding entity is stored. The event agent acts upon the event
by reading and writing entities in the local store shard, and by emitting zero or more
output events (not shown in the figure).

The bottom part of Fig. 1 illustrates analytics in I2A. Analytics can be either user-
initiated, or scheduled to repeat periodically. In the latter case, the time period between
analytics recomputation is on the order of minutes, in contrast to the expected latency
for event processing, which is in the sub-second range. That is because an analytics
query typically scans all entities on all machines, unlike an event, which only accesses
a few entities on a single machine. A query engine coordinates the distributed analytics,
and combines the results (i.e., insight). The results are then either reported back to the
user, or saved in the store for use by future events (i.e., action). While this section
deliberately does not specify the data formats used, Section 3 will argue that JSON is a
good choice.

Scenario. To illustrate I2A, we consider a simple example inspired by a real scenario
from the airline industry. For each flight, the system receives events, such as when
passengers book or cancel, when the crew is ready, when the flight takes off, etc. For
each of those events, an agent updates the flight entity in its local store shard. Agents
are written using JRules [21]. Due to space limitations, we only show simple rules that
illustrate the main features: how to process events, and how to run analytics.

The rules in Fig. 2 implement the agent handling events for a flight taking off. JRules
uses a condition-action model similar to that of production systems [10]. The condition
is inside the when clause of the rule, and the action in the tnen clause. The first example
applies to take-off events that were scheduled at most 20 minutes before their actual
time (sched+20 >= now), While the second applies when the take-off was at least 20 min-
utes late. In both cases, the action part of the rule updates the flight information with the
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corresponding status, storing it in the shard so that other rules may access it. The second
rule also emits a new ri1ightpelayEvent that can be used by other rules, for instance, to
notify passengers or handle connecting flights.

Periodic analytics jobs can be run over all the data in the store, e.g., to compute sum-
mary information about all flights. For instance, the rule in Fig. 3 computes the number
of late departures for every flight number. The rule can access all flight information in
the store and compute aggregation using the aggregate expression, which here groups
information by flight number, for flights that have been marked as delayed. This sum-
mary information is then replicated back out to each of the shards, making it available
for future event processing. For instance, if a particular flight is frequently delayed, the
can trigger a review, or it can be taken into account when re-booking passengers. As
a more complex example, assume that the system receives an event about a passenger
missing their flight. The agent handling this event can consult available summary status
information to look for alternative flights. The system reports those alternatives back to
the passenger, who can then re-book, leading to another event.

While this particular example focuses on the airlines industry, [2A is obviously not
restricted to this domain. There are many use cases in different industries where insights
from distributed analytics can drive actions in low-latency event processing.

3 Leveraging JSON

One important aspect of our work is the built-in support for JSON as a data model
throughout the system, and how it allows to more easily integrate new information as it
becomes available.

JSON End-to-End. The JavaScript Object Notation (JSON) has gained broad accep-
tance as a format for data exchange, often replacing XML due to its relative simplic-
ity and compactness. Originally used for its easy integration with the client through
JavaScript, it is now increasingly also used in both the back-end, e.g., through JSON
databases [14], and the middleware, e.g., through Node.js [15].

Fig. 4 shows where the Mon-
goDB API is integrated inside the

I2A architecture. Both the event
agent and the query engine can
access data in the store through
that JSON-centric API. From an
application’s perspective, the sys-
tem can be seen as a JSON-centric
development platform, which can
load JSON data into the store, pro-
cess incoming JSON events (e.g.,
through a REST API), execute
rules on those events, and respond
with JSON events. Fig. 4 also
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Flight Take Olf—l
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Flight Count
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Fig. 4. JSON support and usage inside 12A
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shows the life-cycle of the JSON data from an incoming event (flight take-off), which
is then routed to the appropriate event agent, stored, and possibly queried back.

Because both external data and internal representation use JSON, we can pass most
of the data through the system without expensive conversions common in similar ar-
chitectures (to Java POJOs, to records in a relational store, etc.). Such conversions are
particularly costly in distributed systems, which often need to (de)serialize objects for
communication. Our architecture avoids most of that cost.

Flexibility. Another benefit of JSON is its flexibility, building on previous approaches
for semi-structured data and Web data exchange formats such as XML. Because it does
not require the user to declare the content of the documents or messages ahead of time,
JSON supports data with some level of heterogeneity (e.g., missing or extra fields),
and to extend the data with new information as it becomes available without having to
recompile or deploy the application, or without having to reload the data.

In our example, the following JSON documents may correspond respectively to the
delayed departure event and to the entities for the airports of departure and arrival. Some
of those events and entities may include distinct information, for instance, the US air-
ports include the state. If an event has extra fields not needed by a rule, the rule fires as
normal. If an event lacks fields required by a rule, the rule simply does not fire.

event { fl no: ”1132”, from: "JFK”, to: "CDG”, departed: "21:43 GMT”, on time: false }
event { fl no: ”1132”, from: "JFK”, to: "CDG”, landed: "04:56 GMT”, on time: false }
airport { code: "JFK”, country: "USA”, state: "NY”, city: "New York” }

airport { code: "CDG”, country: "France”, city: "Paris” }

Besides entities required for the applications, such as airport data in our example, the
store records events as they are being processed, providing historical records that can
be useful for analytical purposes. As the application evolves, there is often a need to
integrate more information. In our example application, we can imagine that we might
want to include weather information, or twitter data that may be used for notification.
External services often provide data in an XML or JSON format, which can be easily
integrated into the I2A architecture, and stored directly in the I2A distributed reposi-
tory. For instance, the following JSON document may be provided by a location-based
service providing weather alerts.

alert { weather: "Snow”, location: "New York”, until: ”19:00 GMT” }

That information can then be used to augment events being returned by the system.
For instance, the delayed departure event could be enriched with information indicating
that the reason for the delay is weather-related, with the corresponding alert information
transmitted back to the user.

4 Integrated Distributed JSON Store

This section introduces the architecture of the distributed JSON store for I2A.
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4.1 MongoDB

MongoDB is an open-source document-oriented database for JSON [14]. Internally it
uses BSON (Binary JSON), a binary-encoded serialization of JSON documents. De-
velopers interact with MongoDB by using a language driver (supported languages in-
clude Java, C/C++, Ruby, and NodeJS). Clients communicate with the database server
through a standard TCP/IP socket. MongoDB supports only atomic transactions on indi-
vidual rows, and it scales horizontally based on auto-sharding across multiple machines.

4.2 Integration with Insight to Action

JSON Store for I2A. Though MongoDB sup-
ports a distributed JSON store, it does not have
the full transactional semantics that I2A requires
: : . driver MongoDB driver
for consistent event processing. Our challenge is
how to reuse MongoDB’s API without losing the
transactionality and scalability advantages. There-
fore, instead of using MongoDB directly, we used
WebSphere eXtreme Scale (WXS [22]) as a dis-
tributed in-memory store with the MongoDB API,
as shown in Fig. 5 (a), which depicts more de- WXS shard WXS shard
tails of each of the machines shown in Fig. 1.
WXS is an elastic, scalable, in-memory key/value
data store. It dynamically caches, shards, repli- Fig.5. From external to embedded in-
cates, and manages the application data and busi- teractions using the MongoDB inter-
ness processing across multiple servers. face over the WXS store

Fig. 6 shows a sequence diagram for a read query by an event agent. A query is
described using a JSON format such as {"name”: "Miki Enoki”, "department”: "S77” }.
The query selects the JSON documents that contain "Miki Enoki” as the name and "S77”
as the department. The event agent communicates with the listener using the MongoDB
driver for TCP and sends the query as serialized BSON data to the listener. The listener
is a server application on WXS that intercepts the MongoWire Protocol messages. The
query is deserialized as BSON data by the listener and then converted into a query for
the WXS Object Query API to read the response data from the WXS shards by using
the WXS plug-in. In the WXS shards, each query agent processes a query and then
returns the requested data via TCP. The results are collected by the WXS plug-in, and
serialized for transmission to the event agent.

WXS supports sharding for a distributed store, which allows running multiple WXS
shards within multiple machines in an I2A instance for scaling out with sharded data.
With a distributed store, each query of the event agent has to be routed to the corre-
sponding WXS shard to access the appropriate data.

(a) External (b) Embedded

Embedded JSON Store. In I2A, since high-performance data processing is impor-
tant for both event processing and analytics, we developed the embedded store shown
in Fig. 5 (b) by eliminating the TCP communications from Fig. 5 (a). Even without
eliminating the TCP communications, performance is improved when the event agent
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accesses only the WXS shards on its own machine. This assumption is true thanks to
the fundamental design of I2A: since the I2A architecture includes an event router, we
do not need to fall back on WXS for routing to the proper shard. In addition to in-
suring the communications are local, additional performance improvement comes from
eliminating the TCP connections between the clients and the listener, and between the
listener and the WXS store. Without the TCP connections, we can avoid the data serial-
ization, which was needed to convert the BSON objects into byte array objects and vice
versa. We wrote a direct MongoDB driver (class DirectDB) as a replacement for class
com.mongodb.DB. The original class com.mongodb.DB sends query request to the
Listener via TCP. Our replacement class DirectDB, in contrast, directly hands query
requests to the WXS plug-in via a method call. WXS is also written in Java, so we can
run all of the components in one JVM by using method calls in each machine in the
cluster, as shown in Fig. 5 (b). Similarly, the event agent can handle low-latency read
and write events by using method calls.

S Experimental Evaluation

This section explores the throughput, latency, and scale-out of our JSON store for [2A.

Evaluation Methodology. We evaluated the effectiveness of our embedded JSON store
with YCSB (Yahoo! Cloud Serving Benchmark) [8]. YCSB is a framework and com-
mon set of workloads for evaluating the performance of various key-value stores. [12A
routes events to WXS shards storing the corresponding entity based on an entity key
in the event. Therefore, we use YCSB to emulate an event processing workload. Some
parameters are configurable by the user, such as the number of records, number of
operations, or the read/update ratio. We fixed the number of records and operations to
100,000 and 5,000,000, respectively, and experimented with varying read/update ratios.
As described in Section 4, events are processed through the MongoDB API in the JISON
store, so we used the MongoDB driver included in YCSB for the benchmark client. The
key and value are document ID and its JSON document respectively. For the embedded
JSON store, we used our Direct MongoDB driver to directly access WXS with an in-
ternal method call. The environment was as follows: a 2-CPU Xeon X5670 (2.93GHz,
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L1=32KB, L2=256KB, L3=12MB, 6 cores) with 32 GB of RAM and Red Hat Linux
5.5. We installed WXS version 8.6.0.2 as the JSON store.

Throughput and Latency. We compared
the throughput and latency of the embed-
ded JSON store (Fig. 5 (b)) to the original 80000 B &) Embedded
(Fig. 5 (a)) with a single shard. The num- 10000 |
ber of client threads was changed from 1
to 200. The highest throughput is shown
in the Fig. 7. We experimented with three
read/update ratios 50/50, 95/5, and 100/0,
which correspond to the YCSB official 20000 B
workloads a, b, and c, respectively. [2A 10000 B
handles the events for event processing and ' . ‘ ‘
analytics. The event agent updates the enti- 50/50 95/5 100/0
ties in the JSON store corresponding to the Read / Update ratio
incoming events, and then reads the related
entities or the analytics results. For the an-
alytics, the events in the store are read periodically. Therefore, the data access pattern
of I12A is read intensive. As seen in Fig. 7, the throughput of the embedded store was
better for all read/update ratios. In particular, the result for the read-only scenario was
about 4.8 times higher than the original.
Fig. 8 shows latency results for read ac-
cesses. The embedded store reduced the

60,000 —

50,000 —

40,000 —

30,000 —

Throughput (events/sec)

Fig. 7. Throughput

External Embedded

average latency by 87%. The 95-percentile A\{er'age 640 s 48 pis
embedded latency was also much smaller ~ Minimum 302 ps 32 ps
than the external latency. This indicates ~Maximum 66,639 us 40,731 s
that eliminating the TCP/IP communica- 95-percentile 623 ps 66 s
tion is highly effective for I2A. Fig. 8. Read latency
Scalability. Next, we evaluated the scal- 350,000

ability of our embedded store in a dis- = 300,000

tributed environment. We measured the %250’000 100/0

maximum throughput while changing the 7§ ,0, 500 95/5

number of machines (nodes) for each 21 50:000 50750

workload. As described in Section 4, each £ 4, 500

event agent accesses only a local WXS 8 ;400

shard in the same node, so each benchmark = 0

client runs in its own WXS node. Fig. 9 1 2 Nodes ° 4

shows the results. In all of the workloads,
the throughputs scaled well as the number
of nodes increased. The throughputs with four nodes with read/update ratios of 50/50,
95/5, and 100/0 are respectively 3.9, 3.6, and 4.1 times higher than that with one node.
This demonstrates the good scalability property of our proposed distributed JSON store
for I2A. Since we do not need to fall back on WXS for routing to a data shard in our
proposed store, it made a contribution for scalability.

Fig. 9. Scale-out results for distributed store
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6 Related Work

Stream processing systems, such as StreamBase [20], or InfoSphere Streams [12], sup-
port high-speed aggregation, enrichment, filtering, and transformation of streams of
events. They analyze data in motion, as we do, but in addition, we can also analyze
data at rest in a distributed store. Complex event processing (CEP) uses patterns over
sequences of simple events to detect complex events. Distributed CEP engines include
Cayuga [5], and CEP engines can also be distributed by embedding them in general
streaming systems [11].

Several projects from the database area are closely related to our work. Ceri and
Widom use production rules in a distributed database [6]. JAM uses Java agents to run
batch analytics over a distributed database [19]. Kantere et al. discuss using triggers
in databases that are not just distributed, but even (unlike our work) federated [13].
None of these works consider JSON support, or directly address the issue of performing
analytics of data in motion alongside batch analytics of data at rest.

I2A is based on production rule languages, similar to [10,21], but allows integra-
tion with a distributed store. A related area is business process management systems
(BPMSs), which use an event-driven architecture to coordinate human activities along
with automated tasks. In contrast to distributed BPMSs [4], we also address the inte-
gration with a store and with batch analytics. From a database perspective, Datalog is
the most commonly used rules language. It is storage centric and can be distributed [2].
To the best of our knowledge no work around Datalog addresses the integration of
events with batch analytics, or includes support for JSON. A notable exception is ISON
rules [16]; however, that work embeds rules in a browser rather than a distributed store.

The Percolator [17] runs distributed observers (similar to database triggers) over
BigTable [7] (a distributed store). However, it does not directly address low-latency
event processing; furthermore, it does not use JSON. Distributed stores that support
JSON include MongoDB [14] and CouchDB [3]. Our work goes one step further by also
offering rule-based event processing. Finally, our work is orthogonal to the question of
query languages for JSON (e.g., JSONiq[9]) which could be easily integrated in our
approach.

7 Conclusion

The Insight to Action (I2A) system embeds event processing into a distributed in-
memory store. This enables event processing on large amounts of data without pay-
ing the penalty of going to disk or multiplexing all computation on a single machine.
This paper is about the store component of I2A, specifically, about using JSON for this
store. The advantages of JSON for the I2A store are that it helps simplify the system by
using the same data model in all layers, and that it increases flexibility when schemas
change. The challenge was how to reuse familiar APIs without losing the scalability
advantages. We present our architecture for solving these challenges, along with per-
formance results. Overall, I2A with a JSON store enables simple, flexible, and scalable
stateful event processing. We are still actively developing I2A, and investigating sev-
eral improvements, notably efficient execution strategies for aggregations, and how to
improve freshness for the analytics without interfering with transaction performance.
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