
© 2014 IBM Corporation

Event Processing over a Distributed JSON Store
- Design and Performance -

Miki Enoki, Jerome Simeon
Hiroshi Horii, Martin Hirzel

IBM Research

© 2014 IBM Corporation2

Business Event Processing

� Event-driven architecture to coordinate human activities along with automated tasks

Event

Event

Event

Accept

Decline

Stop

Business Rule Business Decision

Event

Event

Event

if total
> 100

Yes

No

Normal

Warning

・
・
・

Business Event Processing System

Statement of logic
that is used for a
business decision

© 2014 IBM Corporation3

Our Contributions

�Describe a system that supports combined workloads for

events and analytics over an in-memory distributed JSON

store

� Introduce the architecture for the distributed JSON store,

which leverages the MongoDB API, and show experimental

results on throughput, latency, and scalability

© 2014 IBM Corporation4

Insight to Action

Insight to Action(I2A) combines event processing
with analytics over a distributed store
� I2A is under development at IBM

� Combining both events and analytics in a single system fosters
– ease of use (no need to configure multiple systems)

– performance (no need to move data back and forth)

Event Processing

Analytics

Distributed Store
– Each machine is storing

entities, as well as an event

agent

– Both event processing and

analytics use the same

distributed event store

Machine 1

Machine 2

Machine N

Client

event
Event

router

Query

engine

Analytics

query

Store

shard

Store

shard

Stores

hard

Event

agent

Event

agent

Event

agent

© 2014 IBM Corporation5

Event Processing in I2A

� Event Processing
–Each arriving client event contains a key

associating it with an entity

–The system uses the key in the event to

route it to the machine where the

corresponding entity is stored

–The event agent acts upon the event by

reading and writing entities in the store and

emitting derived events

Event Processing

Analytics

© 2014 IBM Corporation6

Analytics in I2A

� Analytics
–Analytics can be either user-initiated, or

scheduled to repeat periodically

–The query engine coordinates the distributed

analytics, and combines the results (i.e.,

insight)

–The results are then either reported back to

the user, or saved in the store for use by

future events (i.e., action)

Event Processing

Analytics

© 2014 IBM Corporation7

Example Scenario : Airline Industry – Event Processing

� If it receives take off events that were scheduled at most 20minutes before, “NormalTakeOff” is

applied. Otherwise, “LateTakeOff” is applied

Event

book
cancel

ready

take off
late

Entity

passenger

crew

flight

Business Rule

� Event agent handles incoming events and

applies business rules to them

� If rule condition is matched, the agent can

update the entity and/or emit new events

© 2014 IBM Corporation8

Example Scenario : Airline Industry - Analytics

� If a particular flight is frequently

delayed, the system can trigger a

review, or it can be taken into account

when re-booking passengers

� If the system receives an event about

a passenger missing their flight, the

agent handling this event can consult

available summary status information

to look for alternative flights

� The system reports those alternatives

back to the passenger, who can then

re-book, leading to another event

Computes the number
of late departures for every flight number

Business Rule for Analytics

Example1

Example2

© 2014 IBM Corporation9

JSON support for Insight to Action

� One important aspect of our work is the built-in support for JSON as a data model

throughout the system

JSON : JavaScript Object Notation (JSON) is consisting of attribute–value pairs

and used for its easy integration with the client through JavaScript

Benefit for I2A

� Extend the data with

new information

� Familiar with mobile

devices

� Integrate with external

services
– e.g. weather news

Insight to Action

Incoming

event
Event

router

Query

engineAnalytics

query

Distributed in-

memory store

Event

agent

Mongo API

Flight Take Off

(JSON)
Flight Take Off

(JSON)

Flight Take Off

(JSON)

Flight Take Off

(BSON)

Flight Count

(JSON)

© 2014 IBM Corporation10

Integrated JSON store : JSON store for I2A

� MongoDB is one of the standard stores for JSON documents
– Open-source document-oriented database for JSON

– Use BSON (Binary JSON) to store JSON documents

– Scales horizontally based on auto-sharding across multiple machines

– Supports only atomic transactions on individual rows

Our challenge is..

How to reuse MongoDB’s API without losing the tight integration with

event agents?

WebSphere eXtreme Scale (WXS)
Distributed in-memory store with MongoDB API

� In-memory Key/Value store

� Supports transactions

� Scalable with sharding

© 2014 IBM Corporation11

Integrated JSON store : JSON store for I2A

� The event agent communicates with the listener using the MongoDB driver and

sends the query as serialized BSON data to the listener

� The listener is a server application on WXS that intercepts the MongoWire

Protocol messages

� In the WXS shards, each query agent processes a query and then returns the

requested data. The results are collected by the WXS plug-in, and serialized for

transmission to the event agent

MongoDB driver

Listener

WXS plug-in

TCP

TCP

WXS shard

Event agent

© 2014 IBM Corporation12

Performance Optimization : Embedded JSON store

� We developed the embedded store shown in (b) Embedded by eliminating the TCP

communications from (a) External
– Even without eliminating the TCP communications, performance is improved when the

event agent accesses only the WXS shards on its own machine

– This assumption is true thanks to the fundamental design of I2A: since the I2A

architecture includes an event router, we do not need to fall back on WXS for routing to

the proper shard

MongoDB driver

Listener

WXS plug-in

TCP

Direct

MongoDB driver

Method call

WXS shard

(a) External (b) Embedded

Event agent Event agent

WXS plug-in

Method call

WXS shard

MongoDB driver

Listener

WXS plug-in

TCP

WXS shard

Event agent

Direct

MongoDB driver

Method call

Event agent

WXS plug-in

Method call

WXS shard

TCP
TCP

Machine1 Machine2
Machine1 Machine2

TCP

© 2014 IBM Corporation13

Experimental Evaluation

We evaluated the effectiveness of our embedded JSON store

� YCSB (Yahoo! Cloud Serving Benchmark) benchmark for emulation of event

processing workload
�Framework and common set of workloads for evaluating the performance of different "key-value"

and "cloud" serving stores

�Predefined drivers : MongoDB, Cassandra, HBase, Voldemode, etc.

– Read/update ratio: 50/50, 95/5, 100/0

� Configuration
– # of records = 100,000 ; # of operations = 5,000,000 ; Data size: 1 KB records (10 fields,

100 bytes each, plus key)

� Measurement
– Throughput

– Latency

– Scalability

© 2014 IBM Corporation14

Throughput and Latency

� The throughput of the embedded store was better for all read/update ratios
– The result for the read-only scenario was about 4.8 times higher than the (a)External

� The embedded store reduced the average latency by 87%.
– The 95-percentile embedded latency was also much smaller than the external latency

� This indicates that eliminating the TCP/IP communication is highly effective for I2A.

Server (BladeCenter HS22, 2 CPU of Xeon X5670 (2.93GHz, L1=32KB, L2=256KB,

L3=12MB, 6 cores,), DDR3 32GB, OS : RHEL6.3)

WXS v8.6.0.1, MongoDB v2.4.1,

© 2014 IBM Corporation15

Scalability

� In all of the workloads, the throughputs scaled well as the number of nodes

increased

� This demonstrates the good scalability property of our proposed distributed JSON

store for I2A

Read/UpdateResult of our embedded store

© 2014 IBM Corporation16

Conclusion and Future Work

� I2A with a JSON store enables simple, flexible, and scalable stateful

event processing
– The Insight to Action (I2A) system embeds event processing into a distributed

in memory JSON store

– We presented our architecture for reusing MongoDB APIs showed

performance evaluation

� We are still actively developing I2A
– Investigating several improvements, notably efficient execution strategies for

aggregations

– How to improve freshness for the analytics without interfering with transaction

performance

© 2014 IBM Corporation17

Thank you for you attention!

© 2014 IBM Corporation18

Back up

© 2014 IBM Corporation19

Listener WXS Plug-in QueryAgentQueryAgent
Query agent

NetworkNetwork

Each query agent
processes a query

Collect results

Returns a collected result

Convert query

Event
agent

Event
agent

Deserialize

BSON

Serialize

BSON

Deserialize

BSON

Serialize

BSON

