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B Bulk Arrivals/Departures

Multiple data items enter/leave
the window at once. E.g.,
catching up after an outage.
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Theorem [This Paper]:

e bulkEvict in amortized O(log m) time iling

o bulkIngsert in amortized O(m log —) time
m

FiBi ¢ query in worst-case O(1)

T where 11 = window size, m = the bulk size and d = out-of-order distance = #
of data items in the window that overlap with the bulk

Make FIBA natively support bulk operations v

} bulkInsert(B) - Add a bulk of ordered data to the window

> bulkEvict(t) - Remove all items with timestamps <t

’ Keep query (whole window + range) the same



This work builds on FIBA

Finger B-Tree Aggregator
[T.-Hirzel-Schneider, VLDB’19]
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B Timestamp-ordered B-Tree keeping data in internal + leaf nodes
B Left and right fingers for faster searching

B Position-aware partial aggregates
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Implementation Consideration

bulkEvict(t) is about to remove m data items...
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Concern: When bulkEvict removes m data items, it

needs to discard O(m) nodes but can’t afford to
eagerly free them
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Solution: Only eagerly free those on boundary
(same as the search cost) and store their children
in a deferred free list for future (re use/dlsposal
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Experimental Analysis

a How does native bulkEvict alter the latency profile?

a How does native bulkInsert alter the latency profile?

Does it matter on real-world data with wildly-
fluctuating window sizes and out-of-order levels?

Co#\iﬂgi C++, g++ 9.4.0 using -O3
05 Ubuntu Linux 20.04.5, Kernel 5.4.0

Machine Intel Xeon 4310 @ 2.1Ghz (exp. run single-threaded)



Window size n = 4M, bulk size m = 1,024
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Window size n = 4M, bulk size m = 1,024, still using geomean

FIFO (in-order)
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How does native bulkInsert alter the latency profile?

Window size n = 4M, bulk size m = 1,024, still using geomean
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Does it matter on real-world data with wildly-
fluctuating window sizes and out-of-order levels?

Window Size @ 1 day
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BUulk FIBA: lake-Away Points

* Efficient bulk eviction/insertion (asymptotically better)
* Retain FIBA's efficient tuple-at-a time + queries

* Plenty more in the paper: proof(s), Flink experiments,
other benchmarks, n = 1Billion, etc.

 Code is public on GitHub:
https://github.com/IBM/sliding-window-aggregators
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