Out-of-Order Sliding-Window Aggregation with Efficient Bulk Evictions and Insertions

Kanat Tangwongsan

Mahidol University International College (MUIC)

Martin Hirzel

IBM Research

Scott Schneider Meta

a *stream* = a (potentially infinite) sequence of data

a *stream* = a (potentially infinite) sequence of data

a **stream** = a (potentially infinite) sequence of data

a *stream* = a (potentially infinite) sequence of data

Sliding-Window Aggregation

Combine data items in timeorder using a binary operator. E.g., maxCount, min, Bloom filter, mergeable sketches. Only expect associativity, not commutativity nor inverses.

a *stream* = a (potentially infinite) sequence of data

Sliding-Window Aggregation

Combine data items in timeorder using a binary operator. E.g., maxCount, min, Bloom filter, mergeable sketches. Only expect associativity, not commutativity nor inverses.

Out-of-order Streams

Data items are timestamped. The newest arrivals may be older than the most recent previous arrivals. E.g., clock skews across IoT devices.

a *stream* = a (potentially infinite) sequence of data

Sliding-Window Aggregation

Combine data items in timeorder using a binary operator. E.g., maxCount, min, Bloom filter, mergeable sketches. Only expect associativity, not commutativity nor inverses.

Bulk Arrivals/Departures

Multiple data items enter/leave the window at once. E.g., catching up after an outage.

Out-of-order Streams

Data items are timestamped. The newest arrivals may be older than the most recent previous arrivals. E.g., clock skews across IoT devices. Selected

Prior and Related Work

	Sliding-Window Aggregation	Out-of-order Support	Bulk Handling
AMTA [Villalba-Berral-Carrera, TPDS'19]	Amortized O(1)	×	Only bulk eviction, taking O(log <i>n</i>)
DABA Lite [THirzel-Schneider, VLDBJ'21]	Worst-case O(1)	X	×
FiBA [THirzel-Schneider, VLDB'19]	Amortized O(log d)	\checkmark	×
Data Structure Papers [Brown-Tarjan'79, Kaplan-Tarjan'95, Hinze-Paterson'06]	X	×	Various settings

Other work and techniques: Scotty, CPiX, ChronicleDB, Hammer Slide, LightSaber, FlatFIT

This Paper: Efficient Bulk Evictions and Insertions

	Sliding-Window Aggregation	Out-of-order Support	Bulk Handling
FiBA [THirzel-Schneider, VLDB'19]	Amortized O(log <i>d</i>)		

This Paper: Efficient Bulk Evictions and Insertions

bulkInsert(B) - Add a bulk of ordered data to the window

bulkEvict(t) - Remove all items with timestamps $\leq t$

Keep query (whole window + range) the same

This Paper: Efficient Bulk Evictions and Insertions

Theorem [This Paper]:

- bulkEvict in amortized $O(\log m)$ time
- bulkInsert in amortized $O(m \log \frac{d}{m})$ time
- **FiB** (T.-Hir where n = window size, m = the bulk size and d = out-of-order distance = # of data items in the window that overlap with the bulk

Make FiBA natively support bulk operations

bulkInsert(B) - Add a bulk of ordered data to the window

bulkEvict(t) - Remove all items with timestamps $\leq t$

Keep query (whole window + range) the same

This work builds on FiBA

Finger B-Tree Aggregator

[T.-Hirzel-Schneider, VLDB'19]

Timestamp-ordered B-Tree keeping data in internal + leaf nodes

Left and right fingers for faster searching

Position-aware partial aggregates

To support bulkEvict(t)...

To support bulkEvict(t)...

1. Boundary search from a finger as if looking for *t*

Goal: List every node on the discard-keep boundary and its right neighbor

To support bulkEvict(t)...

1. Boundary search from a finger as if looking for *t*

Goal: List every node on the discard-keep boundary and its right neighbor

2. A pass up along the boundary towards the root

Goal: Disconnect nodes to discard and repair the affected nodes towards the root

To support bulkEvict(t)...

1. Boundary search from a finger as if looking for *t*

Goal: List every node on the discard-keep boundary and its right neighbor

2. A pass up along the boundary towards the root

Goal: Disconnect nodes to discard and repair the affected nodes towards the root

3. A pass down to clean up nodes on the updated spine(s)

Goal: Fix the spine(s) and repair spine aggregates

To support bulkInsert(B)...

To support bulkInsert(B)...

 Search for insertion sites, starting with the oldest entry in the batch Goal: Identify the nodes where the batch entries will go to, without starting the search from scratch for every search.

To support bulkInsert(B)...

 Search for insertion sites, starting with the oldest entry in the batch Goal: Identify the nodes where the batch entries will go to, without starting the search from scratch for every search.

To support bulkInsert(B)...

- Search for insertion sites, starting with the oldest entry in the batch Goal: Identify the nodes where the batch entries will go to, without starting the search from scratch for every search.
- Level-by-level pass up to add in new entries and split overflowing nodes
 Goal: No more overflowing nodes and all new entries incorporated

To support bulkInsert(B)...

- Search for insertion sites, starting with the oldest entry in the batch Goal: Identify the nodes where the batch entries will go to, without starting the search from scratch for every search.
- Level-by-level pass up to add in new entries and split overflowing nodes
 Goal: No more overflowing nodes and all new entries incorporated

3. A pass down to clean up nodes on the updated spine(s) Goal: Fix the spine(s) and repair spine aggregates

bulkEvict(t) is about to remove *m* data items...

Solution: Only eagerly free those on boundary (same as the search cost) and store their children in a *deferred free list* for future (re)use/disposal

Experimental Analysis

1

How does *native* **bulkEvict** alter the latency profile?

How does *native* **bulkInsert** alter the latency profile?

Does it matter on real-world data with wildlyfluctuating window sizes and out-of-order levels?

Lang/ Compiler	C++, g++ 9.4.0 using -O3
OS	Ubuntu Linux 20.04.5, Kernel 5.4.0

Machine Intel Xeon 4310 @ 2.1Ghz (exp. run single-threaded)

Bulk FiBA: Take-Away Points

- Efficient bulk eviction/insertion (asymptotically better)
- Retain FiBA's efficient tuple-at-a time + queries
- Plenty more in the paper: proof(s), Flink experiments, other benchmarks, n = 1Billion, etc.
- Code is public on GitHub: https://github.com/IBM/sliding-window-aggregators

the paper