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Sliding-Window Aggregation
Combine data items in time-
order using a binary operator. 
E.g., maxCount, min, Bloom filter, 
mergeable sketches. Only expect 
associativity, not commutativity 
nor inverses. 

Out-of-order Streams
Data items are timestamped. 
The newest arrivals may be 
older than the most recent 
previous arrivals. E.g., clock 
skews across IoT devices.

Bulk Arrivals/Departures
Multiple data items enter/leave 
the window at once. E.g., 
catching up after an outage.
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Sliding-Window 
Aggregation

Out-of-order 
Support Bulk Handling

Selected

AMTA
[Villalba-Berral-Carrera, TPDS’19]

✓ Only bulk eviction,  
taking O(log n)❌Amortized O(1)

DABA Lite
[T.-Hirzel-Schneider, VLDBJ’21]

FiBA
[T.-Hirzel-Schneider, VLDB’19]

Data Structure Papers
[Brown-Tarjan’79, Kaplan-Tarjan’95, 

Hinze-Paterson’06]

✓
Worst-case O(1) ❌ ❌

✓
Amortized O(log d)

✓ ❌

❌ ❌ ✓
Various settings

Other work and techniques: Scotty, CPiX, ChronicleDB, Hammer Slide, LightSaber, FlatFIT



This Paper:

4

FiBA
[T.-Hirzel-Schneider, VLDB’19]

✓
Amortized O(log d)

✓ ❌

Sliding-Window 
Aggregation

Out-of-order 
Support Bulk Handling

Efficient Bulk Evictions and Insertions



This Paper:

4

FiBA
[T.-Hirzel-Schneider, VLDB’19]

✓
Amortized O(log d)

✓ ❌

Sliding-Window 
Aggregation

Out-of-order 
Support Bulk Handling

Efficient Bulk Evictions and Insertions

Make FiBA natively support bulk operations

Keep query (whole window + range) the same

bulkInsert(B) - Add a bulk of ordered data to the window

bulkEvict(t) - Remove all items with timestamps ≤ t

✓



This Paper:

4

FiBA
[T.-Hirzel-Schneider, VLDB’19]

✓
Amortized O(log d)

✓ ❌

Sliding-Window 
Aggregation

Out-of-order 
Support Bulk Handling

Efficient Bulk Evictions and Insertions

Make FiBA natively support bulk operations

Keep query (whole window + range) the same

bulkInsert(B) - Add a bulk of ordered data to the window

bulkEvict(t) - Remove all items with timestamps ≤ t

✓

Theorem [This Paper]: 

• bulkEvict in amortized  time


• bulkInsert in amortized  time


• query in worst-case 

where  = window size,  = the bulk size and  =  out-of-order distance = # 
of data items in the window that overlap with the bulk

O(log m)
O(m log

d
m

)

O(1)
n m d
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[T.-Hirzel-Schneider, VLDB’19]
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Solution: Only eagerly free those on boundary 
(same as the search cost) and store their children 
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How does native bulkEvict alter the latency profile?

How does native bulkInsert alter the latency profile?

Does it matter on real-world data with wildly-
fluctuating window sizes and out-of-order levels?

1

2

3

Lang/
Compiler

C++, g++ 9.4.0 using -O3

OS Ubuntu Linux 20.04.5, Kernel 5.4.0

Machine Intel Xeon 4310 @ 2.1Ghz (exp. run single-threaded)
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How does native bulkInsert alter the latency profile?2
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Does it matter on real-world data with wildly-
fluctuating window sizes and out-of-order levels?3
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Figure 15: Histograms of (left) citi bike instantaneous window sizes =, (middle) eviction bulk sizes< for a time-based window
of 1 day, and (right) the out-of-order distance 3 , i.e., the number of records skipped over by insertions.
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Figure 16: Throughput, citi bike, varying window size =, bulk size< and ooo distance 3 from real data.

7.4 Real Data
The previous experiments carefully controlled the variables =,<,
and 3 to explore tradeo�s and validate the theoretical results. It
is also important to see how the algorithms perform on real data.
Speci�cally, real applications tend to use time-based windows (caus-
ing both = and < to �uctuate), and real data tends to be out-of-
order (with varying 3). In other words, all three variables vary
within a single run. Figure 15 shows this for the NYC Citi Bike
dataset [1] (Aug–Dec 2018). The �gure shows a histogram of win-
dow sizes= (left) and a histogram of bulk sizes< (middle), assuming
a time-based sliding window of 1 day. Depending on whether that
1 day currently contains more or fewer stream data items, = ranges
broadly, as one would expect for real data whose event frequencies
are uneven. Similarly, depending on the timestamp of the newest
inserted window entry, it can cause a varying number < of the
oldest entries to be evicted. Most single insertions cause only a
single eviction, but there are a non-negligible number of bulk evicts
of hundreds or thousands of entries. The �gure also shows a his-
togram of out-of-order distances 3 (right). While the vast majority
of insertions have a small out-of-order distance 3 , there are also
hundreds of insertions with 3 in the tens of thousands.

Figure 16 shows the throughput results for the Citi Bike dataset
on a run that involves bulk evicts with varying< and single inserts
with varying 3 . Since amta, twostacks_lite, and daba require in-
order data, we cannot use them here. In theory, we expect the bulk
operations to give b_fiba an advantage over nb_fiba. In practice,
we �nd that this is indeed the case for real-world data.

7.5 Java and Apache Flink
To experiment with our algorithm in the context of an end-to-end
system, we reimplemented it in Java inside Apache Flink 1.17 [9].
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Figure 17: Throughput, Flink, bulk evict only, window size
= = 8,192, varying bulk size<, in-order data 3 = 0.

We ran experiments that repeatedly perform several single inserts
followed by a bulk evict and query. Using awindow of size= = 222 ⇡
4M, the FiBA algorithms perform as expected but the Flink baseline
was prohibitively slow, so we report a comparison at = = 8, 192
instead. At this size, the trends are already clear. Figure 17 shows
that even without our new bulk eviction support, FiBA is much
faster than Flink. Using bulk evictions further widens that gap.
As expected, throughput improves with increasing bulk size <,
consistent with our �ndings with C++ benchmarks.

8 CONCLUSION
This paper describes algorithms for bulk insertions and evictions
for incremental sliding-window aggregation. Such bulk operations
are necessary for real-world data streams, which tend to be bursty.
Furthermore, real-world data streams tend to have out-of-order
data. Hence, besides handling bulk operations, our algorithms also
handle that case. Our algorithms are carefully crafted to yield the
same algorithmic complexity as the best prior work for the non-bulk
case while substantially improving over that for the bulk case.

Window Size @ 1 day NYC Citi Bike Data (Aug - Dec 2018)
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Figure 15: Histograms of (left) citi bike instantaneous window sizes =, (middle) eviction bulk sizes< for a time-based window
of 1 day, and (right) the out-of-order distance 3 , i.e., the number of records skipped over by insertions.
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7.4 Real Data
The previous experiments carefully controlled the variables =,<,
and 3 to explore tradeo�s and validate the theoretical results. It
is also important to see how the algorithms perform on real data.
Speci�cally, real applications tend to use time-based windows (caus-
ing both = and < to �uctuate), and real data tends to be out-of-
order (with varying 3). In other words, all three variables vary
within a single run. Figure 15 shows this for the NYC Citi Bike
dataset [1] (Aug–Dec 2018). The �gure shows a histogram of win-
dow sizes= (left) and a histogram of bulk sizes< (middle), assuming
a time-based sliding window of 1 day. Depending on whether that
1 day currently contains more or fewer stream data items, = ranges
broadly, as one would expect for real data whose event frequencies
are uneven. Similarly, depending on the timestamp of the newest
inserted window entry, it can cause a varying number < of the
oldest entries to be evicted. Most single insertions cause only a
single eviction, but there are a non-negligible number of bulk evicts
of hundreds or thousands of entries. The �gure also shows a his-
togram of out-of-order distances 3 (right). While the vast majority
of insertions have a small out-of-order distance 3 , there are also
hundreds of insertions with 3 in the tens of thousands.

Figure 16 shows the throughput results for the Citi Bike dataset
on a run that involves bulk evicts with varying< and single inserts
with varying 3 . Since amta, twostacks_lite, and daba require in-
order data, we cannot use them here. In theory, we expect the bulk
operations to give b_fiba an advantage over nb_fiba. In practice,
we �nd that this is indeed the case for real-world data.

7.5 Java and Apache Flink
To experiment with our algorithm in the context of an end-to-end
system, we reimplemented it in Java inside Apache Flink 1.17 [9].
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We ran experiments that repeatedly perform several single inserts
followed by a bulk evict and query. Using awindow of size= = 222 ⇡
4M, the FiBA algorithms perform as expected but the Flink baseline
was prohibitively slow, so we report a comparison at = = 8, 192
instead. At this size, the trends are already clear. Figure 17 shows
that even without our new bulk eviction support, FiBA is much
faster than Flink. Using bulk evictions further widens that gap.
As expected, throughput improves with increasing bulk size <,
consistent with our �ndings with C++ benchmarks.

8 CONCLUSION
This paper describes algorithms for bulk insertions and evictions
for incremental sliding-window aggregation. Such bulk operations
are necessary for real-world data streams, which tend to be bursty.
Furthermore, real-world data streams tend to have out-of-order
data. Hence, besides handling bulk operations, our algorithms also
handle that case. Our algorithms are carefully crafted to yield the
same algorithmic complexity as the best prior work for the non-bulk
case while substantially improving over that for the bulk case.
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Figure 15: Histograms of (left) citi bike instantaneous window sizes =, (middle) eviction bulk sizes< for a time-based window
of 1 day, and (right) the out-of-order distance 3 , i.e., the number of records skipped over by insertions.
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Figure 16: Throughput, citi bike, varying window size =, bulk size< and ooo distance 3 from real data.

7.4 Real Data
The previous experiments carefully controlled the variables =,<,
and 3 to explore tradeo�s and validate the theoretical results. It
is also important to see how the algorithms perform on real data.
Speci�cally, real applications tend to use time-based windows (caus-
ing both = and < to �uctuate), and real data tends to be out-of-
order (with varying 3). In other words, all three variables vary
within a single run. Figure 15 shows this for the NYC Citi Bike
dataset [1] (Aug–Dec 2018). The �gure shows a histogram of win-
dow sizes= (left) and a histogram of bulk sizes< (middle), assuming
a time-based sliding window of 1 day. Depending on whether that
1 day currently contains more or fewer stream data items, = ranges
broadly, as one would expect for real data whose event frequencies
are uneven. Similarly, depending on the timestamp of the newest
inserted window entry, it can cause a varying number < of the
oldest entries to be evicted. Most single insertions cause only a
single eviction, but there are a non-negligible number of bulk evicts
of hundreds or thousands of entries. The �gure also shows a his-
togram of out-of-order distances 3 (right). While the vast majority
of insertions have a small out-of-order distance 3 , there are also
hundreds of insertions with 3 in the tens of thousands.

Figure 16 shows the throughput results for the Citi Bike dataset
on a run that involves bulk evicts with varying< and single inserts
with varying 3 . Since amta, twostacks_lite, and daba require in-
order data, we cannot use them here. In theory, we expect the bulk
operations to give b_fiba an advantage over nb_fiba. In practice,
we �nd that this is indeed the case for real-world data.

7.5 Java and Apache Flink
To experiment with our algorithm in the context of an end-to-end
system, we reimplemented it in Java inside Apache Flink 1.17 [9].
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We ran experiments that repeatedly perform several single inserts
followed by a bulk evict and query. Using awindow of size= = 222 ⇡
4M, the FiBA algorithms perform as expected but the Flink baseline
was prohibitively slow, so we report a comparison at = = 8, 192
instead. At this size, the trends are already clear. Figure 17 shows
that even without our new bulk eviction support, FiBA is much
faster than Flink. Using bulk evictions further widens that gap.
As expected, throughput improves with increasing bulk size <,
consistent with our �ndings with C++ benchmarks.

8 CONCLUSION
This paper describes algorithms for bulk insertions and evictions
for incremental sliding-window aggregation. Such bulk operations
are necessary for real-world data streams, which tend to be bursty.
Furthermore, real-world data streams tend to have out-of-order
data. Hence, besides handling bulk operations, our algorithms also
handle that case. Our algorithms are carefully crafted to yield the
same algorithmic complexity as the best prior work for the non-bulk
case while substantially improving over that for the bulk case.
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Figure 15: Histograms of (left) citi bike instantaneous window sizes =, (middle) eviction bulk sizes< for a time-based window
of 1 day, and (right) the out-of-order distance 3 , i.e., the number of records skipped over by insertions.
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Figure 16: Throughput, citi bike, varying window size =, bulk size< and ooo distance 3 from real data.

7.4 Real Data
The previous experiments carefully controlled the variables =,<,
and 3 to explore tradeo�s and validate the theoretical results. It
is also important to see how the algorithms perform on real data.
Speci�cally, real applications tend to use time-based windows (caus-
ing both = and < to �uctuate), and real data tends to be out-of-
order (with varying 3). In other words, all three variables vary
within a single run. Figure 15 shows this for the NYC Citi Bike
dataset [1] (Aug–Dec 2018). The �gure shows a histogram of win-
dow sizes= (left) and a histogram of bulk sizes< (middle), assuming
a time-based sliding window of 1 day. Depending on whether that
1 day currently contains more or fewer stream data items, = ranges
broadly, as one would expect for real data whose event frequencies
are uneven. Similarly, depending on the timestamp of the newest
inserted window entry, it can cause a varying number < of the
oldest entries to be evicted. Most single insertions cause only a
single eviction, but there are a non-negligible number of bulk evicts
of hundreds or thousands of entries. The �gure also shows a his-
togram of out-of-order distances 3 (right). While the vast majority
of insertions have a small out-of-order distance 3 , there are also
hundreds of insertions with 3 in the tens of thousands.

Figure 16 shows the throughput results for the Citi Bike dataset
on a run that involves bulk evicts with varying< and single inserts
with varying 3 . Since amta, twostacks_lite, and daba require in-
order data, we cannot use them here. In theory, we expect the bulk
operations to give b_fiba an advantage over nb_fiba. In practice,
we �nd that this is indeed the case for real-world data.

7.5 Java and Apache Flink
To experiment with our algorithm in the context of an end-to-end
system, we reimplemented it in Java inside Apache Flink 1.17 [9].
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= = 8,192, varying bulk size<, in-order data 3 = 0.

We ran experiments that repeatedly perform several single inserts
followed by a bulk evict and query. Using awindow of size= = 222 ⇡
4M, the FiBA algorithms perform as expected but the Flink baseline
was prohibitively slow, so we report a comparison at = = 8, 192
instead. At this size, the trends are already clear. Figure 17 shows
that even without our new bulk eviction support, FiBA is much
faster than Flink. Using bulk evictions further widens that gap.
As expected, throughput improves with increasing bulk size <,
consistent with our �ndings with C++ benchmarks.

8 CONCLUSION
This paper describes algorithms for bulk insertions and evictions
for incremental sliding-window aggregation. Such bulk operations
are necessary for real-world data streams, which tend to be bursty.
Furthermore, real-world data streams tend to have out-of-order
data. Hence, besides handling bulk operations, our algorithms also
handle that case. Our algorithms are carefully crafted to yield the
same algorithmic complexity as the best prior work for the non-bulk
case while substantially improving over that for the bulk case.
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Figure 15: Histograms of (left) citi bike instantaneous window sizes =, (middle) eviction bulk sizes< for a time-based window
of 1 day, and (right) the out-of-order distance 3 , i.e., the number of records skipped over by insertions.
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Figure 16: Throughput, citi bike, varying window size =, bulk size< and ooo distance 3 from real data.

7.4 Real Data
The previous experiments carefully controlled the variables =,<,
and 3 to explore tradeo�s and validate the theoretical results. It
is also important to see how the algorithms perform on real data.
Speci�cally, real applications tend to use time-based windows (caus-
ing both = and < to �uctuate), and real data tends to be out-of-
order (with varying 3). In other words, all three variables vary
within a single run. Figure 15 shows this for the NYC Citi Bike
dataset [1] (Aug–Dec 2018). The �gure shows a histogram of win-
dow sizes= (left) and a histogram of bulk sizes< (middle), assuming
a time-based sliding window of 1 day. Depending on whether that
1 day currently contains more or fewer stream data items, = ranges
broadly, as one would expect for real data whose event frequencies
are uneven. Similarly, depending on the timestamp of the newest
inserted window entry, it can cause a varying number < of the
oldest entries to be evicted. Most single insertions cause only a
single eviction, but there are a non-negligible number of bulk evicts
of hundreds or thousands of entries. The �gure also shows a his-
togram of out-of-order distances 3 (right). While the vast majority
of insertions have a small out-of-order distance 3 , there are also
hundreds of insertions with 3 in the tens of thousands.

Figure 16 shows the throughput results for the Citi Bike dataset
on a run that involves bulk evicts with varying< and single inserts
with varying 3 . Since amta, twostacks_lite, and daba require in-
order data, we cannot use them here. In theory, we expect the bulk
operations to give b_fiba an advantage over nb_fiba. In practice,
we �nd that this is indeed the case for real-world data.

7.5 Java and Apache Flink
To experiment with our algorithm in the context of an end-to-end
system, we reimplemented it in Java inside Apache Flink 1.17 [9].
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= = 8,192, varying bulk size<, in-order data 3 = 0.

We ran experiments that repeatedly perform several single inserts
followed by a bulk evict and query. Using awindow of size= = 222 ⇡
4M, the FiBA algorithms perform as expected but the Flink baseline
was prohibitively slow, so we report a comparison at = = 8, 192
instead. At this size, the trends are already clear. Figure 17 shows
that even without our new bulk eviction support, FiBA is much
faster than Flink. Using bulk evictions further widens that gap.
As expected, throughput improves with increasing bulk size <,
consistent with our �ndings with C++ benchmarks.

8 CONCLUSION
This paper describes algorithms for bulk insertions and evictions
for incremental sliding-window aggregation. Such bulk operations
are necessary for real-world data streams, which tend to be bursty.
Furthermore, real-world data streams tend to have out-of-order
data. Hence, besides handling bulk operations, our algorithms also
handle that case. Our algorithms are carefully crafted to yield the
same algorithmic complexity as the best prior work for the non-bulk
case while substantially improving over that for the bulk case.
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Bulk FiBA: Take-Away Points
• Efficient bulk eviction/insertion (asymptotically better)


• Retain FiBA’s efficient tuple-at-a time + queries


• Plenty more in the paper: proof(s), Flink experiments, 
other benchmarks, n = 1Billion, etc.


• Code is public on GitHub:

Scan me for 

the paper

https://github.com/IBM/sliding-window-aggregators



