
Out-of-Order Sliding-Window
Aggregation with Efficient
Bulk Evictions and Insertions

Scan me for

the paper

Kanat Tangwongsan
Mahidol University International College (MUIC)

Martin Hirzel
IBM Research

Scott Schneider
Meta

Context & Motivation

2

… …

a stream = a (potentially infinite) sequence of data

Context & Motivation

2

… …

a stream = a (potentially infinite) sequence of data

processing such infinite streams often
hinges on defining a sliding-window on it

Context & Motivation

2

… …

a stream = a (potentially infinite) sequence of data

processing such infinite streams often
hinges on defining a sliding-window on it

as new data arrives…

it is inserted in the back…
… oldest data is evicted

Context & Motivation

2

… …

a stream = a (potentially infinite) sequence of data

processing such infinite streams often
hinges on defining a sliding-window on it

as new data arrives…

it is inserted in the back…
… oldest data is evicted

Sliding-Window Aggregation
Combine data items in time-
order using a binary operator.
E.g., maxCount, min, Bloom filter,
mergeable sketches. Only expect
associativity, not commutativity
nor inverses.

Context & Motivation

2

… …

a stream = a (potentially infinite) sequence of data

processing such infinite streams often
hinges on defining a sliding-window on it

as new data arrives…

it is inserted in the back…
… oldest data is evicted

Sliding-Window Aggregation
Combine data items in time-
order using a binary operator.
E.g., maxCount, min, Bloom filter,
mergeable sketches. Only expect
associativity, not commutativity
nor inverses.

Out-of-order Streams
Data items are timestamped.
The newest arrivals may be
older than the most recent
previous arrivals. E.g., clock
skews across IoT devices.

Context & Motivation

2

… …

a stream = a (potentially infinite) sequence of data

processing such infinite streams often
hinges on defining a sliding-window on it

as new data arrives…

it is inserted in the back…
… oldest data is evicted

Sliding-Window Aggregation
Combine data items in time-
order using a binary operator.
E.g., maxCount, min, Bloom filter,
mergeable sketches. Only expect
associativity, not commutativity
nor inverses.

Out-of-order Streams
Data items are timestamped.
The newest arrivals may be
older than the most recent
previous arrivals. E.g., clock
skews across IoT devices.

Bulk Arrivals/Departures
Multiple data items enter/leave
the window at once. E.g.,
catching up after an outage.

Prior and Related Work

3

Sliding-Window
Aggregation

Out-of-order
Support Bulk Handling

Selected

AMTA
[Villalba-Berral-Carrera, TPDS’19]

✓ Only bulk eviction,
taking O(log n)❌Amortized O(1)

DABA Lite
[T.-Hirzel-Schneider, VLDBJ’21]

FiBA
[T.-Hirzel-Schneider, VLDB’19]

Data Structure Papers
[Brown-Tarjan’79, Kaplan-Tarjan’95,

Hinze-Paterson’06]

✓
Worst-case O(1) ❌ ❌

✓
Amortized O(log d)

✓ ❌

❌ ❌ ✓
Various settings

Other work and techniques: Scotty, CPiX, ChronicleDB, Hammer Slide, LightSaber, FlatFIT

This Paper:

4

FiBA
[T.-Hirzel-Schneider, VLDB’19]

✓
Amortized O(log d)

✓ ❌

Sliding-Window
Aggregation

Out-of-order
Support Bulk Handling

Efficient Bulk Evictions and Insertions

This Paper:

4

FiBA
[T.-Hirzel-Schneider, VLDB’19]

✓
Amortized O(log d)

✓ ❌

Sliding-Window
Aggregation

Out-of-order
Support Bulk Handling

Efficient Bulk Evictions and Insertions

Make FiBA natively support bulk operations

Keep query (whole window + range) the same

bulkInsert(B) - Add a bulk of ordered data to the window

bulkEvict(t) - Remove all items with timestamps ≤ t

✓

This Paper:

4

FiBA
[T.-Hirzel-Schneider, VLDB’19]

✓
Amortized O(log d)

✓ ❌

Sliding-Window
Aggregation

Out-of-order
Support Bulk Handling

Efficient Bulk Evictions and Insertions

Make FiBA natively support bulk operations

Keep query (whole window + range) the same

bulkInsert(B) - Add a bulk of ordered data to the window

bulkEvict(t) - Remove all items with timestamps ≤ t

✓

Theorem [This Paper]:

• bulkEvict in amortized time

• bulkInsert in amortized time

• query in worst-case

where = window size, = the bulk size and = out-of-order distance = #
of data items in the window that overlap with the bulk

O(log m)
O(m log

d
m

)

O(1)
n m d

This work builds on FiBA

5

[T.-Hirzel-Schneider, VLDB’19]
Finger B-Tree Aggregator

ab..f
1
a

2
b

d
4
d

f
6
f

cdef
3
c

5
e

h
8
h

jk
10
j

11
k

mn
13
m

14
n

hi..n
9
i

12
l

17
q

19
s

21
u

22
v

20
t

gh..o
7
g

15
o

qrs
18
r

qr..v

qrst

agg
times

values

root

↑

↑ right fingerleft finger

Timestamp-ordered B-Tree keeping data in internal + leaf nodes

Left and right fingers for faster searching

Position-aware partial aggregates

bulkEvict, intuitively…

6

To support bulkEvict(t)…

0 1 3

2

5 7 8 9 11 13 14

6 10 12

16 17 19 20 21 26 27

18 22

4 15

29 31 32

30

34 36 37 38

35

33

40 41 42 44 45 46 48

43 47

50 52 53 54 56

51 55

58 60 61 63

59 62

49 57

28 39

bulkEvict, intuitively…

6

To support bulkEvict(t)…

0 1 3

2

5 7 8 9 11 13 14

6 10 12

16 17 19 20 21 26 27

18 22

4 15

29 31 32

30

34 36 37 38

35

33

40 41 42 44 45 46 48

43 47

50 52 53 54 56

51 55

58 60 61 63

59 62

49 57

28 39

1. Boundary search from a finger as if looking for t
Goal: List every node on the discard-keep boundary and its right neighbor

bulkEvict, intuitively…

6

To support bulkEvict(t)…

0 1 3

2

5 7 8 9 11 13 14

6 10 12

16 17 19 20 21 26 27

18 22

4 15

29 31 32

30

34 36 37 38

35

33

40 41 42 44 45 46 48

43 47

50 52 53 54 56

51 55

58 60 61 63

59 62

49 57

28 39

1. Boundary search from a finger as if looking for t
Goal: List every node on the discard-keep boundary and its right neighbor

2. A pass up along the boundary towards the root
Goal: Disconnect nodes to discard and repair the affected nodes
towards the root

bulkEvict, intuitively…

6

To support bulkEvict(t)…

0 1 3

2

5 7 8 9 11 13 14

6 10 12

16 17 19 20 21 26 27

18 22

4 15

29 31 32

30

34 36 37 38

35

33

40 41 42 44 45 46 48

43 47

50 52 53 54 56

51 55

58 60 61 63

59 62

49 57

28 39

1. Boundary search from a finger as if looking for t
Goal: List every node on the discard-keep boundary and its right neighbor

2. A pass up along the boundary towards the root
Goal: Disconnect nodes to discard and repair the affected nodes
towards the root

3. A pass down to clean up nodes on the updated spine(s)
Goal: Fix the spine(s) and repair spine aggregates

bulkInsert, intuitively…

7

81 82 84 85 87 88

83 86

90 91 93 94 96 97

92 95

99 100 102 103 105 106

101

89 98

144 145 147 148 149

146

107

To support bulkInsert(B)…

bulkInsert, intuitively…

7

81 82 84 85 87 88

83 86

90 91 93 94 96 97

92 95

99 100 102 103 105 106

101

89 98

144 145 147 148 149

146

107

To support bulkInsert(B)…

1. Search for insertion sites, starting with the oldest entry in the batch
Goal: Identify the nodes where the batch entries will go to, without starting
the search from scratch for every search.

bulkInsert, intuitively…

7

81 82 84 85 87 88

83 86

90 91 93 94 96 97

92 95

99 100 102 103 105 106

101

89 98

144 145 147 148 149

146

107

To support bulkInsert(B)…

1. Search for insertion sites, starting with the oldest entry in the batch
Goal: Identify the nodes where the batch entries will go to, without starting
the search from scratch for every search.

bulkInsert, intuitively…

7

81 82 84 85 87 88

83 86

90 91 93 94 96 97

92 95

99 100 102 103 105 106

101

89 98

144 145 147 148 149

146

107

To support bulkInsert(B)…

1. Search for insertion sites, starting with the oldest entry in the batch
Goal: Identify the nodes where the batch entries will go to, without starting
the search from scratch for every search.

2. Level-by-level pass up to add in new entries and split overflowing nodes
Goal: No more overflowing nodes and all new entries incorporated

bulkInsert, intuitively…

7

81 82 84 85 87 88

83 86

90 91 93 94 96 97

92 95

99 100 102 103 105 106

101

89 98

144 145 147 148 149

146

107

To support bulkInsert(B)…

1. Search for insertion sites, starting with the oldest entry in the batch
Goal: Identify the nodes where the batch entries will go to, without starting
the search from scratch for every search.

2. Level-by-level pass up to add in new entries and split overflowing nodes
Goal: No more overflowing nodes and all new entries incorporated

3. A pass down to clean up nodes on the updated spine(s)
Goal: Fix the spine(s) and repair spine aggregates

Implementation Consideration

8

0 1 3

2

5 7 8 9 11 13 14

6 10 12

16 17 19 20 21 26 27

18 22

4 15

29 31 32

30

34 36 37 38

35

33

40 41 42 44 45 46 48

43 47

50 52 53 54 56

51 55

58 60 61 63

59 62

49 57

28 39

bulkEvict(t) is about to remove data items…m

Implementation Consideration

8

0 1 3

2

5 7 8 9 11 13 14

6 10 12

16 17 19 20 21 26 27

18 22

4 15

29 31 32

30

34 36 37 38

35

33

40 41 42 44 45 46 48

43 47

50 52 53 54 56

51 55

58 60 61 63

59 62

49 57

28 39

bulkEvict(t) is about to remove data items…m

Implementation Consideration

8

0 1 3

2

5 7 8 9 11 13 14

6 10 12

16 17 19 20 21 26 27

18 22

4 15

29 31 32

30

34 36 37 38

35

33

40 41 42 44 45 46 48

43 47

50 52 53 54 56

51 55

58 60 61 63

59 62

49 57

28 39

26 27 29 31 32

28 30

34 36 37 38

35

33

40 41 42 44 45 46 48

43 47

50 52 53 54 56

51 55

58 60 61 63

59 62

49 57

39

ea

0 1 3

2

5 7 8 9 11 13 14

6 10 12

4 15

To discard

bulkEvict(t) is about to remove data items…m

Implementation Consideration

8

0 1 3

2

5 7 8 9 11 13 14

6 10 12

16 17 19 20 21 26 27

18 22

4 15

29 31 32

30

34 36 37 38

35

33

40 41 42 44 45 46 48

43 47

50 52 53 54 56

51 55

58 60 61 63

59 62

49 57

28 39

26 27 29 31 32

28 30

34 36 37 38

35

33

40 41 42 44 45 46 48

43 47

50 52 53 54 56

51 55

58 60 61 63

59 62

49 57

39

ea

0 1 3

2

5 7 8 9 11 13 14

6 10 12

4 15

To discard

Concern: When bulkEvict removes data items, it
needs to discard nodes but can’t afford to
eagerly free them

m
O(m)

bulkEvict(t) is about to remove data items…m

Implementation Consideration

8

0 1 3

2

5 7 8 9 11 13 14

6 10 12

16 17 19 20 21 26 27

18 22

4 15

29 31 32

30

34 36 37 38

35

33

40 41 42 44 45 46 48

43 47

50 52 53 54 56

51 55

58 60 61 63

59 62

49 57

28 39

26 27 29 31 32

28 30

34 36 37 38

35

33

40 41 42 44 45 46 48

43 47

50 52 53 54 56

51 55

58 60 61 63

59 62

49 57

39

ea

0 1 3

2

5 7 8 9 11 13 14

6 10 12

4 15

To discard
Solution: Only eagerly free those on boundary
(same as the search cost) and store their children
in a deferred free list for future (re)use/disposal

Concern: When bulkEvict removes data items, it
needs to discard nodes but can’t afford to
eagerly free them

m
O(m)

bulkEvict(t) is about to remove data items…m

Experimental Analysis

9

How does native bulkEvict alter the latency profile?

How does native bulkInsert alter the latency profile?

Does it matter on real-world data with wildly-
fluctuating window sizes and out-of-order levels?

1

2

3

Lang/
Compiler

C++, g++ 9.4.0 using -O3

OS Ubuntu Linux 20.04.5, Kernel 5.4.0

Machine Intel Xeon 4310 @ 2.1Ghz (exp. run single-threaded)

10

How does native bulkEvict alter the latency profile?1

���
�
��

��

���
����

��
�
��� ���

�
�
��

��	
�
��

���
��

����
	
��

����
�

���

��	

��

���

��
��
��
��
���

 �
��
�

�����
�����

����� ����� �����

����� �����
�������

�������

�������
������� ������� ������� �������

�������

Window size 𝑛 = 4M, bulk size 𝑚 = 1,024

Native bulkEvict

faster

10

How does native bulkEvict alter the latency profile?1

���
�
��

��

���
����

��
�
��� ���

�
�
��

��	
�
��

���
��

����
	
��

����
�

���

��	

��

���

��
��
��
��
���

 �
��
�

�����
�����

����� ����� �����

����� �����
�������

�������

�������
������� ������� ������� �������

�������

Window size 𝑛 = 4M, bulk size 𝑚 = 1,024

Native bulkEvict

faster

..translates to improved
throughput as well

11

How does native bulkInsert alter the latency profile?2

�
�

���

��

���
��
�

����
���
��

����

�
�
����

�

���

���

�
���

���

���

��	

��
��
��
��
���
��
��
�

����� ����� �����

����� ����� �����
�����

�������
������� �������

������� �������

������� �������

�����
�

FIFO (in-order)

Window size 𝑛 = 4M, bulk size 𝑚 = 1,024, still using geomean

����
�
�

����
�

���
���

�

���
���

���

��	

��
��
��
��
���
��
��
�

����� �����
����� �����

������� �������
������� �������

�����
�

Out-of-order

d=1,024

faster

11

How does native bulkInsert alter the latency profile?2

�
�

���

��

���
��
�

����
���
��

����

�
�
����

�

���

���

�
���

���

���

��	

��
��
��
��
���
��
��
�

����� ����� �����

����� ����� �����
�����

�������
������� �������

������� �������

������� �������

�����
�

FIFO (in-order)

Window size 𝑛 = 4M, bulk size 𝑚 = 1,024, still using geomean

����
�
�

����
�

���
���

�

���
���

���

��	

��
��
��
��
���
��
��
�

����� �����
����� �����

������� �������
������� �������

�����
�

Out-of-order

d=1,024

faster

..translates to improved
throughput as well

Does it matter on real-world data with wildly-
fluctuating window sizes and out-of-order levels?3

� � � � 	
 � �

���������������������� ���	

��	

��

���

���
��

��
��

� ���� ���� ���� 	���
������
������
����
�

���

���

��

��

��

�
��

� 	 �
 �
��������������������������� ����

���

��

���

���

���
��

��
��

Figure 15: Histograms of (left) citi bike instantaneous window sizes =, (middle) eviction bulk sizes< for a time-based window
of 1 day, and (right) the out-of-order distance 3 , i.e., the number of records skipped over by insertions.

��
 ��� � �

 �� �� �
 	�
�

�

�

 �
��

!�
��

!
���

���
��

��
� �

�
��

�� �!�

��
 ��� � �

 �� �� �
 	�
"����"���$�������#�

�

�

�

	

�

�
�������

��
 ��� � �

 �� �� �
 	�
���

���

���

��	

��

���

�����
������
 �������
 ������
 �������

Figure 16: Throughput, citi bike, varying window size =, bulk size< and ooo distance 3 from real data.

7.4 Real Data
The previous experiments carefully controlled the variables =,<,
and 3 to explore tradeo�s and validate the theoretical results. It
is also important to see how the algorithms perform on real data.
Speci�cally, real applications tend to use time-based windows (caus-
ing both = and < to �uctuate), and real data tends to be out-of-
order (with varying 3). In other words, all three variables vary
within a single run. Figure 15 shows this for the NYC Citi Bike
dataset [1] (Aug–Dec 2018). The �gure shows a histogram of win-
dow sizes= (left) and a histogram of bulk sizes< (middle), assuming
a time-based sliding window of 1 day. Depending on whether that
1 day currently contains more or fewer stream data items, = ranges
broadly, as one would expect for real data whose event frequencies
are uneven. Similarly, depending on the timestamp of the newest
inserted window entry, it can cause a varying number < of the
oldest entries to be evicted. Most single insertions cause only a
single eviction, but there are a non-negligible number of bulk evicts
of hundreds or thousands of entries. The �gure also shows a his-
togram of out-of-order distances 3 (right). While the vast majority
of insertions have a small out-of-order distance 3 , there are also
hundreds of insertions with 3 in the tens of thousands.

Figure 16 shows the throughput results for the Citi Bike dataset
on a run that involves bulk evicts with varying< and single inserts
with varying 3 . Since amta, twostacks_lite, and daba require in-
order data, we cannot use them here. In theory, we expect the bulk
operations to give b_fiba an advantage over nb_fiba. In practice,
we �nd that this is indeed the case for real-world data.

7.5 Java and Apache Flink
To experiment with our algorithm in the context of an end-to-end
system, we reimplemented it in Java inside Apache Flink 1.17 [9].

2

1

2

1

2

3

2

5

2

7

2

9

2

11

Bulk size

0.0

0.5

1.0

1.5

t
h
r
o
u
g
h
p
u
t

[
m

i
l
.

i
t
e
m

s
/
s
]

Flink: bulkEvict, geomean, window 8192

Flink

b_fiba4

b_fiba8

nb_fiba4

nb_fiba8

Figure 17: Throughput, Flink, bulk evict only, window size
= = 8,192, varying bulk size<, in-order data 3 = 0.

We ran experiments that repeatedly perform several single inserts
followed by a bulk evict and query. Using awindow of size= = 222 ⇡
4M, the FiBA algorithms perform as expected but the Flink baseline
was prohibitively slow, so we report a comparison at = = 8, 192
instead. At this size, the trends are already clear. Figure 17 shows
that even without our new bulk eviction support, FiBA is much
faster than Flink. Using bulk evictions further widens that gap.
As expected, throughput improves with increasing bulk size <,
consistent with our �ndings with C++ benchmarks.

8 CONCLUSION
This paper describes algorithms for bulk insertions and evictions
for incremental sliding-window aggregation. Such bulk operations
are necessary for real-world data streams, which tend to be bursty.
Furthermore, real-world data streams tend to have out-of-order
data. Hence, besides handling bulk operations, our algorithms also
handle that case. Our algorithms are carefully crafted to yield the
same algorithmic complexity as the best prior work for the non-bulk
case while substantially improving over that for the bulk case.

Window Size @ 1 day NYC Citi Bike Data (Aug - Dec 2018)
� � � � 	
 � �

���������������������� ���	

��	

��

���

���
��

��
��

� ���� ���� ���� 	���
������
������
����
�

���

���

��

��

��

�
��

� 	 �
 �
��������������������������� ����

���

��

���

���

���
��

��
��

Figure 15: Histograms of (left) citi bike instantaneous window sizes =, (middle) eviction bulk sizes< for a time-based window
of 1 day, and (right) the out-of-order distance 3 , i.e., the number of records skipped over by insertions.

��
 ��� � �

 �� �� �
 	�
�

�

�

 �
��

!�
��

!
���

���
��

��
� �

�
��

�� �!�

��
 ��� � �

 �� �� �
 	�
"����"���$�������#�

�

�

�

	

�

�
�������

��
 ��� � �

 �� �� �
 	�
���

���

���

��	

��

���

�����
������
 �������
 ������
 �������

Figure 16: Throughput, citi bike, varying window size =, bulk size< and ooo distance 3 from real data.

7.4 Real Data
The previous experiments carefully controlled the variables =,<,
and 3 to explore tradeo�s and validate the theoretical results. It
is also important to see how the algorithms perform on real data.
Speci�cally, real applications tend to use time-based windows (caus-
ing both = and < to �uctuate), and real data tends to be out-of-
order (with varying 3). In other words, all three variables vary
within a single run. Figure 15 shows this for the NYC Citi Bike
dataset [1] (Aug–Dec 2018). The �gure shows a histogram of win-
dow sizes= (left) and a histogram of bulk sizes< (middle), assuming
a time-based sliding window of 1 day. Depending on whether that
1 day currently contains more or fewer stream data items, = ranges
broadly, as one would expect for real data whose event frequencies
are uneven. Similarly, depending on the timestamp of the newest
inserted window entry, it can cause a varying number < of the
oldest entries to be evicted. Most single insertions cause only a
single eviction, but there are a non-negligible number of bulk evicts
of hundreds or thousands of entries. The �gure also shows a his-
togram of out-of-order distances 3 (right). While the vast majority
of insertions have a small out-of-order distance 3 , there are also
hundreds of insertions with 3 in the tens of thousands.

Figure 16 shows the throughput results for the Citi Bike dataset
on a run that involves bulk evicts with varying< and single inserts
with varying 3 . Since amta, twostacks_lite, and daba require in-
order data, we cannot use them here. In theory, we expect the bulk
operations to give b_fiba an advantage over nb_fiba. In practice,
we �nd that this is indeed the case for real-world data.

7.5 Java and Apache Flink
To experiment with our algorithm in the context of an end-to-end
system, we reimplemented it in Java inside Apache Flink 1.17 [9].

2

1

2

1

2

3

2

5

2

7

2

9

2

11

Bulk size

0.0

0.5

1.0

1.5

t
h
r
o
u
g
h
p
u
t

[
m

i
l
.

i
t
e
m

s
/
s
]

Flink: bulkEvict, geomean, window 8192

Flink

b_fiba4

b_fiba8

nb_fiba4

nb_fiba8

Figure 17: Throughput, Flink, bulk evict only, window size
= = 8,192, varying bulk size<, in-order data 3 = 0.

We ran experiments that repeatedly perform several single inserts
followed by a bulk evict and query. Using awindow of size= = 222 ⇡
4M, the FiBA algorithms perform as expected but the Flink baseline
was prohibitively slow, so we report a comparison at = = 8, 192
instead. At this size, the trends are already clear. Figure 17 shows
that even without our new bulk eviction support, FiBA is much
faster than Flink. Using bulk evictions further widens that gap.
As expected, throughput improves with increasing bulk size <,
consistent with our �ndings with C++ benchmarks.

8 CONCLUSION
This paper describes algorithms for bulk insertions and evictions
for incremental sliding-window aggregation. Such bulk operations
are necessary for real-world data streams, which tend to be bursty.
Furthermore, real-world data streams tend to have out-of-order
data. Hence, besides handling bulk operations, our algorithms also
handle that case. Our algorithms are carefully crafted to yield the
same algorithmic complexity as the best prior work for the non-bulk
case while substantially improving over that for the bulk case.

� � � � 	
 � �

���������������������� ���	

��	

��

���

���
��

��
��

� ���� ���� ���� 	���
������
������
����
�

���

���

��

��

��

�
��

� 	 �
 �
��������������������������� ����

���

��

���

���

���
��

��
��

Figure 15: Histograms of (left) citi bike instantaneous window sizes =, (middle) eviction bulk sizes< for a time-based window
of 1 day, and (right) the out-of-order distance 3 , i.e., the number of records skipped over by insertions.

��
 ��� � �

 �� �� �
 	�
�

�

�

 �
��

!�
��

!
���

���
��

��
� �

�
��

�� �!�

��
 ��� � �

 �� �� �
 	�
"����"���$�������#�

�

�

�

	

�

�
�������

��
 ��� � �

 �� �� �
 	�
���

���

���

��	

��

���

�����
������
 �������
 ������
 �������

Figure 16: Throughput, citi bike, varying window size =, bulk size< and ooo distance 3 from real data.

7.4 Real Data
The previous experiments carefully controlled the variables =,<,
and 3 to explore tradeo�s and validate the theoretical results. It
is also important to see how the algorithms perform on real data.
Speci�cally, real applications tend to use time-based windows (caus-
ing both = and < to �uctuate), and real data tends to be out-of-
order (with varying 3). In other words, all three variables vary
within a single run. Figure 15 shows this for the NYC Citi Bike
dataset [1] (Aug–Dec 2018). The �gure shows a histogram of win-
dow sizes= (left) and a histogram of bulk sizes< (middle), assuming
a time-based sliding window of 1 day. Depending on whether that
1 day currently contains more or fewer stream data items, = ranges
broadly, as one would expect for real data whose event frequencies
are uneven. Similarly, depending on the timestamp of the newest
inserted window entry, it can cause a varying number < of the
oldest entries to be evicted. Most single insertions cause only a
single eviction, but there are a non-negligible number of bulk evicts
of hundreds or thousands of entries. The �gure also shows a his-
togram of out-of-order distances 3 (right). While the vast majority
of insertions have a small out-of-order distance 3 , there are also
hundreds of insertions with 3 in the tens of thousands.

Figure 16 shows the throughput results for the Citi Bike dataset
on a run that involves bulk evicts with varying< and single inserts
with varying 3 . Since amta, twostacks_lite, and daba require in-
order data, we cannot use them here. In theory, we expect the bulk
operations to give b_fiba an advantage over nb_fiba. In practice,
we �nd that this is indeed the case for real-world data.

7.5 Java and Apache Flink
To experiment with our algorithm in the context of an end-to-end
system, we reimplemented it in Java inside Apache Flink 1.17 [9].

2

1

2

1

2

3

2

5

2

7

2

9

2

11

Bulk size

0.0

0.5

1.0

1.5

t
h
r
o
u
g
h
p
u
t

[
m

i
l
.

i
t
e
m

s
/
s
]

Flink: bulkEvict, geomean, window 8192

Flink

b_fiba4

b_fiba8

nb_fiba4

nb_fiba8

Figure 17: Throughput, Flink, bulk evict only, window size
= = 8,192, varying bulk size<, in-order data 3 = 0.

We ran experiments that repeatedly perform several single inserts
followed by a bulk evict and query. Using awindow of size= = 222 ⇡
4M, the FiBA algorithms perform as expected but the Flink baseline
was prohibitively slow, so we report a comparison at = = 8, 192
instead. At this size, the trends are already clear. Figure 17 shows
that even without our new bulk eviction support, FiBA is much
faster than Flink. Using bulk evictions further widens that gap.
As expected, throughput improves with increasing bulk size <,
consistent with our �ndings with C++ benchmarks.

8 CONCLUSION
This paper describes algorithms for bulk insertions and evictions
for incremental sliding-window aggregation. Such bulk operations
are necessary for real-world data streams, which tend to be bursty.
Furthermore, real-world data streams tend to have out-of-order
data. Hence, besides handling bulk operations, our algorithms also
handle that case. Our algorithms are carefully crafted to yield the
same algorithmic complexity as the best prior work for the non-bulk
case while substantially improving over that for the bulk case.

� � � � 	
 � �

���������������������� ���	

��	

��

���

���
��

��
��

� ���� ���� ���� 	���
������
������
����
�

���

���

��

��

��

�
��

� 	 �
 �
��������������������������� ����

���

��

���

���

���
��

��
��

Figure 15: Histograms of (left) citi bike instantaneous window sizes =, (middle) eviction bulk sizes< for a time-based window
of 1 day, and (right) the out-of-order distance 3 , i.e., the number of records skipped over by insertions.

��
 ��� � �

 �� �� �
 	�
�

�

�

 �
��

!�
��

!
���

���
��

��
� �

�
��

�� �!�

��
 ��� � �

 �� �� �
 	�
"����"���$�������#�

�

�

�

	

�

�
�������

��
 ��� � �

 �� �� �
 	�
���

���

���

��	

��

���

�����
������
 �������
 ������
 �������

Figure 16: Throughput, citi bike, varying window size =, bulk size< and ooo distance 3 from real data.

7.4 Real Data
The previous experiments carefully controlled the variables =,<,
and 3 to explore tradeo�s and validate the theoretical results. It
is also important to see how the algorithms perform on real data.
Speci�cally, real applications tend to use time-based windows (caus-
ing both = and < to �uctuate), and real data tends to be out-of-
order (with varying 3). In other words, all three variables vary
within a single run. Figure 15 shows this for the NYC Citi Bike
dataset [1] (Aug–Dec 2018). The �gure shows a histogram of win-
dow sizes= (left) and a histogram of bulk sizes< (middle), assuming
a time-based sliding window of 1 day. Depending on whether that
1 day currently contains more or fewer stream data items, = ranges
broadly, as one would expect for real data whose event frequencies
are uneven. Similarly, depending on the timestamp of the newest
inserted window entry, it can cause a varying number < of the
oldest entries to be evicted. Most single insertions cause only a
single eviction, but there are a non-negligible number of bulk evicts
of hundreds or thousands of entries. The �gure also shows a his-
togram of out-of-order distances 3 (right). While the vast majority
of insertions have a small out-of-order distance 3 , there are also
hundreds of insertions with 3 in the tens of thousands.

Figure 16 shows the throughput results for the Citi Bike dataset
on a run that involves bulk evicts with varying< and single inserts
with varying 3 . Since amta, twostacks_lite, and daba require in-
order data, we cannot use them here. In theory, we expect the bulk
operations to give b_fiba an advantage over nb_fiba. In practice,
we �nd that this is indeed the case for real-world data.

7.5 Java and Apache Flink
To experiment with our algorithm in the context of an end-to-end
system, we reimplemented it in Java inside Apache Flink 1.17 [9].

2

1

2

1

2

3

2

5

2

7

2

9

2

11

Bulk size

0.0

0.5

1.0

1.5

t
h
r
o
u
g
h
p
u
t

[
m

i
l
.

i
t
e
m

s
/
s
]

Flink: bulkEvict, geomean, window 8192

Flink

b_fiba4

b_fiba8

nb_fiba4

nb_fiba8

Figure 17: Throughput, Flink, bulk evict only, window size
= = 8,192, varying bulk size<, in-order data 3 = 0.

We ran experiments that repeatedly perform several single inserts
followed by a bulk evict and query. Using awindow of size= = 222 ⇡
4M, the FiBA algorithms perform as expected but the Flink baseline
was prohibitively slow, so we report a comparison at = = 8, 192
instead. At this size, the trends are already clear. Figure 17 shows
that even without our new bulk eviction support, FiBA is much
faster than Flink. Using bulk evictions further widens that gap.
As expected, throughput improves with increasing bulk size <,
consistent with our �ndings with C++ benchmarks.

8 CONCLUSION
This paper describes algorithms for bulk insertions and evictions
for incremental sliding-window aggregation. Such bulk operations
are necessary for real-world data streams, which tend to be bursty.
Furthermore, real-world data streams tend to have out-of-order
data. Hence, besides handling bulk operations, our algorithms also
handle that case. Our algorithms are carefully crafted to yield the
same algorithmic complexity as the best prior work for the non-bulk
case while substantially improving over that for the bulk case.

� � � � 	
 � �

���������������������� ���	

��	

��

���

���
��

��
��

� ���� ���� ���� 	���
������
������
����
�

���

���

��

��

��

�
��

� 	 �
 �
��������������������������� ����

���

��

���

���

���
��

��
��

Figure 15: Histograms of (left) citi bike instantaneous window sizes =, (middle) eviction bulk sizes< for a time-based window
of 1 day, and (right) the out-of-order distance 3 , i.e., the number of records skipped over by insertions.

��
 ��� � �

 �� �� �
 	�
�

�

�

 �
��

!�
��

!
���

���
��

��
� �

�
��

�� �!�

��
 ��� � �

 �� �� �
 	�
"����"���$�������#�

�

�

�

	

�

�
�������

��
 ��� � �

 �� �� �
 	�
���

���

���

��	

��

���

�����
������
 �������
 ������
 �������

Figure 16: Throughput, citi bike, varying window size =, bulk size< and ooo distance 3 from real data.

7.4 Real Data
The previous experiments carefully controlled the variables =,<,
and 3 to explore tradeo�s and validate the theoretical results. It
is also important to see how the algorithms perform on real data.
Speci�cally, real applications tend to use time-based windows (caus-
ing both = and < to �uctuate), and real data tends to be out-of-
order (with varying 3). In other words, all three variables vary
within a single run. Figure 15 shows this for the NYC Citi Bike
dataset [1] (Aug–Dec 2018). The �gure shows a histogram of win-
dow sizes= (left) and a histogram of bulk sizes< (middle), assuming
a time-based sliding window of 1 day. Depending on whether that
1 day currently contains more or fewer stream data items, = ranges
broadly, as one would expect for real data whose event frequencies
are uneven. Similarly, depending on the timestamp of the newest
inserted window entry, it can cause a varying number < of the
oldest entries to be evicted. Most single insertions cause only a
single eviction, but there are a non-negligible number of bulk evicts
of hundreds or thousands of entries. The �gure also shows a his-
togram of out-of-order distances 3 (right). While the vast majority
of insertions have a small out-of-order distance 3 , there are also
hundreds of insertions with 3 in the tens of thousands.

Figure 16 shows the throughput results for the Citi Bike dataset
on a run that involves bulk evicts with varying< and single inserts
with varying 3 . Since amta, twostacks_lite, and daba require in-
order data, we cannot use them here. In theory, we expect the bulk
operations to give b_fiba an advantage over nb_fiba. In practice,
we �nd that this is indeed the case for real-world data.

7.5 Java and Apache Flink
To experiment with our algorithm in the context of an end-to-end
system, we reimplemented it in Java inside Apache Flink 1.17 [9].

2

1

2

1

2

3

2

5

2

7

2

9

2

11

Bulk size

0.0

0.5

1.0

1.5

t
h
r
o
u
g
h
p
u
t

[
m

i
l
.

i
t
e
m

s
/
s
]

Flink: bulkEvict, geomean, window 8192

Flink

b_fiba4

b_fiba8

nb_fiba4

nb_fiba8

Figure 17: Throughput, Flink, bulk evict only, window size
= = 8,192, varying bulk size<, in-order data 3 = 0.

We ran experiments that repeatedly perform several single inserts
followed by a bulk evict and query. Using awindow of size= = 222 ⇡
4M, the FiBA algorithms perform as expected but the Flink baseline
was prohibitively slow, so we report a comparison at = = 8, 192
instead. At this size, the trends are already clear. Figure 17 shows
that even without our new bulk eviction support, FiBA is much
faster than Flink. Using bulk evictions further widens that gap.
As expected, throughput improves with increasing bulk size <,
consistent with our �ndings with C++ benchmarks.

8 CONCLUSION
This paper describes algorithms for bulk insertions and evictions
for incremental sliding-window aggregation. Such bulk operations
are necessary for real-world data streams, which tend to be bursty.
Furthermore, real-world data streams tend to have out-of-order
data. Hence, besides handling bulk operations, our algorithms also
handle that case. Our algorithms are carefully crafted to yield the
same algorithmic complexity as the best prior work for the non-bulk
case while substantially improving over that for the bulk case.

faster

n m d

Bulk FiBA: Take-Away Points
• Efficient bulk eviction/insertion (asymptotically better)

• Retain FiBA’s efficient tuple-at-a time + queries

• Plenty more in the paper: proof(s), Flink experiments,
other benchmarks, n = 1Billion, etc.

• Code is public on GitHub:

Scan me for

the paper

https://github.com/IBM/sliding-window-aggregators

