Out-of-Order Sliding-Window
Aggregation with Efficient
Bulk Evictions and Insertions

Kanat Tangwongsan
Mahidol University International College (MUIC)

Martin Hirzel
IBM Research

Scott Schneider Scan me for
Meta the paper

Context & Motivation

a stream = a (potentially infinite) sequence of data

Context & Motivation

processing such infinite streams often
hinges on defining a sliding-window on it

a stream = a (potentially infinite) sequence of data

Context & Motivation

as new data arrives...

processing such infinite streams often it is inserted in the back...
hinges on defining a sliding-window on it

... oldest data is evicted

a stream = a (potentially infinite) sequence of data

Context & Motivation

as new data arrives...

processing such infinite streams often it is inserted in the back...
hinges on defining a sliding-window on it

... oldest data is evicted

a stream = a (potentially infinite) sequence of data

. Sliding-Window Aggregation
Combine data items in time-
order using a binary operator.
E.g., maxCount, min, Bloom filter,
mergeable sketches. Only expect
associativity, not commutativity
nor inverses.

Context & Motivation

as new data arrives...

processing such infinite streams often it is inserted in the back...
hinges on defining a sliding-window on it

... oldest data is evicted

a stream = a (potentially infinite) sequence of data

. Sliding-Window Aggregation . Out-of-order Streams

Combine data items in time-
order using a binary operator.
E.g., maxCount, min, Bloom filter,
mergeable sketches. Only expect
associativity, not commutativity
nor inverses.

Data items are timestamped.
The newest arrivals may be
older than the most recent
previous arrivals. E.g., clock
skews across loT devices.

Context & Motivation

as new data arrives...
processing such infinite streams often it is inserted in the back...
hinges on defining a sliding-window on it

... oldest data is evicted

a stream = a (potentially infinite) sequence of data

. Sliding-Window Aggregation . Out-of-order Streams
Combine data items in time-
order using a binary operator.
E.g., maxCount, min, Bloom filter,
mergeable sketches. Only expect
associativity, not commutativity
nor inverses.

Data items are timestamped.
The newest arrivals may be
older than the most recent
previous arrivals. E.g., clock
skews across loT devices.

B Bulk Arrivals/Departures

Multiple data items enter/leave
the window at once. E.g.,
catching up after an outage.

Selected

Prior and Related Work

Sliding-Window Out-of-order

. Bulk Handlin

Aggregation Support 9
AMTA v x Only bulk eviction,
[Villalba-Berral-Carrera, TPDS’19] Amortized O(1) taking O(log n)
DABA Lite 4 X) ¢
[T.-Hirzel-Schneider, VLDBJ’21] Worst-case O(1)
FiBA v v X
[T.-Hirzel-Schneider, VLDB’19] Amortized O(log d)
Data Structure Papers x x v
[Brown-Tarjan’79, Kaplan-Tarjan’95,
Hinze-Paterson’06] Various settings

Other work and techniques: Scotty, CPiX, ChronicleDB, Hammer Slide, LightSaber, FlatFIT

ThIS Papel’: Efficient Bulk Evictions and Insertions

Sliding-Window Out-of-order
Aggregation Support

FIBA v v X

[T.-Hirzel-Schneider, VLDB’19] Amortized O(log d)

Bulk Handling

ThIS Paper: Efficient Bulk Evictions and Insertions

Sliding-Window Out-of-order

Aggregation Support Bulk Handling
FiBA v v X
[T.-Hirzel-Schneider, VLDB’19] Amortized O(log d)
Make FIBA natively support bulk operations v

> bulkInsert(B) - Add a bulk of ordered data to the window

’ bulkEvict(t) - Remove all items with timestamps <t

} Keep query (whole window + range) the same

ThIS Paper: Efficient Bulk Evictions and Insertions

Theorem [This Paper]:

e bulkEvict in amortized O(log m) time iling

o bulkIngsert in amortized O(m log —) time
m

FiBi ¢ query in worst-case O(1)

T where 11 = window size, m = the bulk size and d = out-of-order distance = #
of data items in the window that overlap with the bulk

Make FIBA natively support bulk operations v

} bulkInsert(B) - Add a bulk of ordered data to the window

> bulkEvict(t) - Remove all items with timestamps <t

’ Keep query (whole window + range) the same

This work builds on FIBA

Finger B-Tree Aggregator
[T.-Hirzel-Schneider, VLDB’19]

root
agg gh..o
times 7 15
: g o] d : :
left finger valu right finger
N
cdef hi..n grst
3 9 12 20
| I t
ab..f d f h jk mn qrs qr..v
2 4 6 8 10 11 13 14 17 18 19 21 22
a b d f h] k m n q r S u Y

B Timestamp-ordered B-Tree keeping data in internal + leaf nodes
B Left and right fingers for faster searching

B Position-aware partial aggregates

pbulkEvict, intuitively...

To support bulkEvict(t)...

(]

—

-
’ | “ | | . | - | E

| 31

- | | " | i | i | | ” | ! | “ | | - | b | * | n H n i

o
!

pbulkEvict, intuitively...

To support bulkEvict(t)...

"

: : -- | ° | " ° | " | | ° | 5 | “ | | - | - | n | 5 N | | N | N | N | | * | ! | “ | | - | ¢ | * | n n H ° n n n ° !

1. Boundary search from a finger as if looking for ¢
Goal: List every node on the discard-keep boundary and its right neighbor

pbulkEvict, intuitively...

To support bulkEvict(t)...

49

N
: : -- | ° | " ' ° | " | | ° | 5 | “ | | - | - | n | 5 N | | N | N | N | | * | ! | “ | | - | ¢ | * | n n H ° n n n ° !

1. Boundary search from a finger as if looking for ¢
Goal: List every node on the discard-keep boundary and its right neighbor

Goal: Disconnect nodes to discard and repair the affected nodes
towards the root

pbulkEvict, intuitively...

To support bulkEvict(t)...

49

N
: : -- | ° | " ' ° | " | | ° | 5 | “ | | - | - | n | 5 N | | N | N | N | | * | ! | “ | | - | ¢ | * | n n ° n E n ° !

1. Boundary search from a finger as if looking for t
Goal: List every node on the discard-keep boundary and its right neighbor

Goal: Disconnect nodes to discard and repair the affected nodes
towards the root

3. A pass down to clean up nodes on the updated spine(s)
Goal: Fix the spine(s) and repair spine aggregates

pulkinsert, intuitively...

To support bulkInsert(B)...

pulkinsert, intuitively...

To support bulkInsert(B)...

1. Search for insertion sites, starting with the oldest entry in the batch

Goal: Identify the nodes where the batch entries will go to, without starting
the search from scratch for every search.

pulkinsert, intuitively...

To support bulkInsert(B)...

1. Search for insertion sites, starting with the oldest entry in the batch

Goal: Identify the nodes where the batch entries will go to, without starting
the search from scratch for every search.

pulkinsert, intuitively...

To support bulkInsert(B)...

1. Search for insertion sites, starting with the oldest entry in the batch

Goal: Identify the nodes where the batch entries will go to, without starting
the search from scratch for every search.

Goal: No more overflowing nodes and all new entries incorporated

pulkinsert, intuitively...

To support bulkInsert(B)...

1. Search for insertion sites, starting with the oldest entry in the batch

Goal: Identify the nodes where the batch entries will go to, without starting
the search from scratch for every search.

Goal: No more overflowing nodes and all new entries incorporated

3. A pass down to clean up nodes on the updated spine(s)
Goal: Fix the spine(s) and repair spine aggregates

Implementation Consideration

bulkEvict(t) is about to remove m data items...

: : | ° | " | | ° | " | | ° | 5 | B | | - | - | n | 5 N | | * | N | * | | * | ! | “ | | " | ¢ | * | n n ° n n * i

Implementation Consideration

bulkEvict(t) is about to remove m data items...

: : | ° | " | | ° | " | | ° | 5 | B | | - | - | n | 5 N | | * | N | * | | * | ! | “ | | " | ¢ | * | n n ° n n * i

Implementation Consideration

bulkEvict(t) is about to remove m data items...

II- B
]

- -]
: : | ° | " | | ° | " | | ° | 5 | B | | . | - | | 5 N | | * | N | * | | * | ! | “ | | " | ¢ | * | n n ° n n * i

To discard

“

Implementation Consideration

bulkEvict(t) is about to remove m data items...

g | g

- -]
: : | ° | " | | ° | " | | ° | 5 | B | | . | - | N | | * | N | * | | * | ! | “ | | " | ¢ | * | n n ° n n * i

Concern: When bulkEvict removes m data items, it

needs to discard O(m) nodes but can’t afford to
eagerly free them

E
| 31

To discard

49 .57
35 43 a7 51 55 50 62
- | ¥ | * | | N |) | - | | B | N | - | n ﬂ " n 5 i}

Implementation Consideration

bulkEvict(t) is about to remove m data items...

.ﬁ-
: : | ° | " | | ° | " | | ° | 5 | B | | . | . | | 5 N | | * | N | * | | * | ! | “ | | " | ¢ | * | n n ° n n * i

Concern: When bulkEvict removes m data items, it

needs to discard O(m) nodes but can’t afford to
eagerly free them

— ______——

Solution: Only eagerly free those on boundary
(same as the search cost) and store their children
in a deferred free list for future (re use/dlsposal

ol o s o i

To discard

Experimental Analysis

a How does native bulkEvict alter the latency profile?

a How does native bulkInsert alter the latency profile?

Does it matter on real-world data with wildly-
fluctuating window sizes and out-of-order levels?

Co#\iﬂgi C++, g++ 9.4.0 using -O3
05 Ubuntu Linux 20.04.5, Kernel 5.4.0

Machine Intel Xeon 4310 @ 2.1Ghz (exp. run single-threaded)

Window size n = 4M, bulk size m = 1,024

How does native bulkEvict alter the latency profile?

faster

: geomean
w»y 10
L, 99.999%
S,
O 106 - Native bulkEvict
-) m— 0 o
8 N - 99.999% 99.0099 %5707 /2:.88.8909%

=P - 99.999%
$ 104 - + 4-99.9% L 00,99 F999% L99.9%
3 +7 %
et
Q 102 | I | | | |
X e ?) > 0 e
S T LA LN ol
o2 06»@0 L N PP

10

Window size n = 4M, bulk size m = 1,024

How does native bulkEvict alter the latency profile?

faster

: geomean
w»y 10
i) 99.999%
3
O 106 i Native bulkEvict
-) — 0 o
8 59 995 - 99.999% 99.0099 %5707 /2:.88.8909%

999%
—99.999%
$ 104 - + $99.9% T 09.9% £ 99-9% & 99.9%
s $7
el
Q 102 | | | | | I
XC e (o))Y o)))
00 W \& PR\ P\ A \ L\
N©

..translates to improved
throughput as well

T —

10

Window size n = 4M, bulk size m = 1,024, still using geomean

FIFO (in-order)

processor cycles

processor cycles

|—I
o
IS

[

o
(9
1

99.999%
£ 88.999% 88.899%
99.9% ; ' i

99.999%__ 99.999%

99.999%7T 33:3¢2 %

o

How does native bulkInsert alter the latency profile?

faster

=

o
(9]

|

e 0,
99.999% —— 99.999%

—1— 99.9%

+

—1—99.9%

S~

—— 99.999%
—— 99.9%

+

— 33:39

D%

11

How does native bulkInsert alter the latency profile?

Window size n = 4M, bulk size m = 1,024, still using geomean

FIFO (in-order)

processor cycles

processor cycles

faster
99.999%__ 99.999%
99.999%7 33:3¢2 %
10° 5 99.999% 99.9% —4-99.9% _{999%
£ 98.999%F 99:899%
99.9% ; ' i

104 I I I I I I I

\SZ e ? b Y Q

IS AV N N LN L\
o
—— 99.999% o 99.999% e
99 9% 1 99.9% - 39:9% "
> B mite —— 99.9% ——
10° 1 e
..translates to improved
throughput as well
104 ! T T T |
o N
(0 Sl Qo° il
e 0. (\\0/ (\‘0/

11

Does it matter on real-world data with wildly-
fluctuating window sizes and out-of-order levels?

Window Size @ 1 day

throughput [million items/s]

106 J

frequency

=

o
>
L

~

=

o
w
L

0o 1
#

NYC Citi Bike Data (Aug - Dec 2018)

frequency
= =
”L

[
o
=

2 3 4 5 6 7 8 0 1000 2000
of records in window x10°

3

geomean

.-
_—
-__———-

1/2

1 2 4 8 1216 24 32
window size in days

3000

of records evicted

107

=
o
G

frequency
(=]
o

=
o
-

2 4 6 8
out-of-order distance (ood) *10°

4000

0

QU

—— b fibad -4- nb fiba4d

—— b fiba8 -4- nb_fiba8

faster

BUulk FIBA: lake-Away Points

* Efficient bulk eviction/insertion (asymptotically better)
* Retain FIBA's efficient tuple-at-a time + queries

* Plenty more in the paper: proof(s), Flink experiments,
other benchmarks, n = 1Billion, etc.

 Code is public on GitHub:
https://github.com/IBM/sliding-window-aggregators

3 $og et

@: SR

Scan me for
the paper

