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ABSTRACT
Stream processing is gaining importance as more data becomes

available in the form of continuous streams and companies com-
pete to promptly extract insights from them. In such applications,
sliding-window aggregation is a central operator, and incremental
aggregation helps avoid the performance penalty of re-aggregating
from scratch for each window change.

This paper presents Reactive Aggregator (RA), a new framework
for incremental sliding-window aggregation. RA is general in that it
does not require aggregation functions to be invertible or commuta-
tive, and it does not require windows to be FIFO. We implemented
RA as a drop-in replacement for the Aggregate operator of a com-
mercial streaming engine. Given m updates on a window of size n,
RA has an algorithmic complexity of Opm` m logpn{mqq, rivaling
the best prior algorithms for any m. Furthermore, RA’s implementa-
tion minimizes overheads from allocation and pointer traversals by
using a single flat array.

1. INTRODUCTION
Stream processing is important in time-critical applications that

deal with continuous data, so much so that several streaming plat-
forms have been developed over the past few years [2, 9, 20, 34, 38].
As our world is increasingly instrumented, stream processing has
widespread uses in telecommunications, health care, finance, retail,
transportation, social media, and more. Most streaming applica-
tions involve aggregation of some form or another. For instance, a
trading application may aggregate the average price over the last
1,000 trades, or a network monitoring application may track the total
network traffic in the last 10 minutes.

Streaming aggregation is often performed over sliding windows.
Windows are a central concept in stream processing because an
application cannot store an infinite stream in its entirety. Instead,
windows summarize the data in a way that is intuitive to the user,
as the most recent data is typically the most relevant data. Sliding
windows are so fundamental to streaming systems that papers about
their semantic subtleties are widely cited [7, 21].
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This paper introduces Reactive Aggregator (RA), a framework
for sliding-window aggregation. RA brings together a novel com-
bination of algorithmic techniques in a common package that is
more general than prior work and at the same time can take better
advantage of incremental computation than existing solutions.

RA is general enough to serve as a drop-in replacement for the
Aggregate operator of SPL, which is the language for InfoSphere
Streams, an industrial-strength streaming engine [18]. Over the
years, Streams customers have requested support for a host of cus-
tom aggregations, for instance, for time series analyses or statistical
functions—and that they have good performance.

Achieving this level of generality requires addressing several
cases rarely supported by prior work, most notably the ability to
efficiently handle non-invertible, non-commutative aggregations and
non-FIFO windows. Prior work often relies on aggregation func-
tions to be invertible. In practice, there are several non-invertible
cases, including Min, Max, First, Last, CollectDistinct, and ArgMax.
Furthermore, prior work often depends on aggregation functions
to be commutative. In practice, there are several non-commutative
cases, including First, Last, Sum<String> (i.e., concatenation), Col-
lect, and ArgMax. For instance, ArgMax is not invertible, and its
result may not be uniquely defined. A common approach for return-
ing a unique result is using the first maximum tuple in arrival order.
Doing so yields deterministic results for high-stakes and highly-
regulated domains such as finance (e.g., find the highest offer) or
medical (e.g., find the most severe alarm), at the cost of being non-
commutative. Finally, most prior solutions require sliding windows
to be strictly FIFO. In practice, windows are often defined based
on timestamp attributes that may be slightly out of order. RA can
handle non-invertible, non-commutative, and non-FIFO scenarios.

To understand the performance benefits that RA offers, let n be
the window size and m be the update size, i.e., the number of tuples
inserted or evicted before recomputation. Prior work falls into two
camps: work that optimizes for small m vs. work that optimizes
for large m. Work that optimizes for small m uses various forms
of balanced trees, yielding Oplog nq time assuming m is a constant,
such as m “ 1 [3, 26, 36]. Work that optimizes for large m uses
some form of two-step aggregation, yielding Opmq time assuming
m is proportional to n, such as m “ n{7 [9, 22, 23]. RA yields
Opm`m logpn{mqq time, rivaling the best prior work for both small
and large m. To our knowledge, no prior algorithms can both achieve
this time complexity and support variable-sized windows.

RA not only has good theoretical complexity but also performs
well in practice because the implementation stores its state in a single
flat array, minimizing pointer traversal and allocation overheads. It
also uses code generation to eliminate dynamic dispatch overheads.
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SELECT

FROM

IStream(Max(len)	 	 AS mxl,

MaxCount(len)	 AS num,

ArgMax(len, caller)	 AS who)

Calls [Range 24 Hours Slide 1 Minute]


Aggregation Window 
Parameters

Figure 1: Example query in CQL (left) and the same query in stream-relational algebra (right).

As a framework, RA combines an efficient data structure with
a simple abstraction for library developers to program aggregation
operations. It requires that the aggregation operation be decomposed
into lift, combine, and lower functions (to be explained); and that
combine be associative (not necessarily commutative nor invertible).
Furthermore, RA supports both fixed-size windows and variable-size
windows (e.g., time-based windows) by resizing the data structure
appropriately. We provide a resizing algorithm where the resizing
overhead can be amortized and absorbed into the processing cost.

Our experiments confirm the theoretical findings and show that
RA performs well in practice. For most aggregation operations, RA
is never more than 10% worse than from-scratch recomputation on
small windows (between 1 and 100), but is capable of delivering
at least an order of magnitude higher throughput—and often much
higher—on a window as small as 6K elements.

2. OVERVIEW OF OUR APPROACH
To provide context for the remainder of the paper, we formalize

the supported queries, as well as discussing considerations that
shaped the design and implementation.

2.1 Query Example and Semantics
This section describes the queries implemented by our reac-

tive aggregator in terms of CQL’s stream-relational algebra [4].
The reactive aggregator implements algebraic queries of the form
IStream ˝ γ ˝Window. As an example, Figure 1 shows a query that
uses sliding-window aggregation to compute statistics over phone
calls, transforming input stream S i into output stream S o.

We denote the input stream by S i, in this example, S i “ Calls.
Formally, a stream is a possibly infinite bag of stream elements.
A stream element is a pair xd, τy of a tuple d and a timestamp τ.
For the example, we assume the tuples of input stream Calls have
schema tlen : Float, caller : Stringu.

Rw “ Windowt...upS iq is the window. At each time τ, a window
converts a stream S i into a relation Rwpτq containing recent tuples
from S i. In the example, Range 24 Hours specifies the window size,
and Slide 1 Minute specifies the slide parameter, which determines
the granularity at which the window contents change. Formally, the
window at time τ begins at time τb “

Y

τ´24 Hours
1 Minute

]

¨ 1 Minute and
ends at time τe “ τb ` 24 Hours. The window is the bag of tuples
Rwpτq “ td | xd, τ1y P S i ^ τ1 ě τb ^ τ1 ď τeu.

Ra “ γt...upRwq is the aggregation. After applying a window, CQL
uses standard relational algebra operators on the resulting relation.
This works because a window at time τ simply returns a bag of
tuples Rwpτq. The semantics of relational algebra on bags of tuples
is well-understood and can be found in databases texts. Formally,
the γ operator in the example computes a bag Ra with a single tuple

Aggregate Operator

Aggregation operations
(Max, MaxCount, ArgMax, �)

Windowing library
(Window{�})

FlatFAT

(γ{�})

Reactive Aggregator
(IStream, and overall flow)

insert,

evict,

trigger

update,

aggregate,

prefix, suffix

lift,

combine,

lower

process

submit
combine

Figure 2: Overview of our approach.

that has the schema tmxl : Float, num : Int,who : Stringu, where

mxl “ maxtd.len | d P Rwpτqu

num “ |td | d P Rwpτq ^ d.len “ mxlu|

who P td.caller | d P Rwpτq ^ d.len “ mxlu

Note that who might not be uniquely defined. For deterministic
results, the tie can be resolved to the first tuple in arrival order.

S o “ IStreampRaq turns the singleton relation Ra back into a
stream. The IStream operator watches a time-varying relation Rapτq,
producing a stream element xd, τy whenever a tuple d is inserted
into Ra at time τ.

2.2 Window Size and Update Size
While the example in Figure 1 only illustrates one particular

configuration of γ and Window operators, the reactive aggregator
supports other configurations. Window size can be specified by time,
count, delta, or punctuation. The slide parameter can be anything
from a single tuple to the entire window size, in which case the
sliding window degenerates to a tumbling window. Furthermore,
the window and the aggregation can be partitioned on a key (a set of
attributes). Tuples from input stream S i belong to the same partition
if their key attributes have the same value. Each partition of the
window is aggregated independently.

We define nτ, the instantaneous window size at time τ, as the
number of tuples in Rwpτq. If the user specifies a count-based
window, nτ is constant once the application reaches steady-state. For
all other window size specifications (time, delta, or punctuation), nτ
can vary throughout the application run. We define m, the update
size between two successive time instants τ and τ1, as the number of
insertions and deletions between Rwpτq and Rwpτ

1q. With a count-
based slide parameter, m is constant; otherwise, m is variable.

2.3 Aggregate Operator
To concretely describe our solution, we explain how it works as a

drop-in replacement for SPL’s Aggregate operator [18]. The tech-
niques presented in this paper, however, are platform-independent.

Figure 2 gives an overview of the Aggregate operator using our
solution. In broad strokes, this works as follows. When a tuple is
delivered to Aggregate, the SPL runtime calls the process function.
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Operation Types: Functions:

In Agg Out lift(v:In) : Agg combine(a:Agg, b:Agg) : Agg lower(c:Agg) : Out

Count T Int Int 1 a+b c
Sum T T T v a+b c
Max T T T v a>b ? a : b c
Min T T T v a<b ? a : b c
ArithmeticMean T {n:Int, Σ:T} T n=1, Σ=v n=a.n+b.n, Σ=a.Σ+b.Σ Σ/n
GeometricMean T {n:Int, Π:T} T n=1, Π=v n=a.n+b.n, Π=a.Π*b.Π n?

Π
MaxCount T {n:Int, max:T} Int n=1, max=v pick higher or add if equal n
MinCount T {n:Int, min:T} Int n=1, min=v pick lower or add if equal n

SampleStdDev T {n:Int, Σ:T, sq:T} T n=1, Σ=v, sq=v2 a.n+b.n, a.Σ+b.Σ, a.sq+b.sq
b

1
n´1 psq´ Σ2{nq

PopulationStdDev T {n:Int, Σ:T, sq:T} T n=1, Σ=v, sq=v2 a.n+b.n, a.Σ+b.Σ, a.sq+b.sq
b

1
n psq´ Σ2{nq

ArgMax {m:T, a:T’} {max:T, arg:T’} T’ max=v.m, arg=v.a pick higher or first if equal arg
ArgMin {m:T, a:T’} {min:T, arg:T’} T’ min=v.m, arg=v.a pick lower or first if equal arg
Collect T List<T> List<T> [v] concat(a, b) c

Table 1: Decomposition of a variety of aggregate operations, showing the input type In, intermediate aggregate type Agg, and output type Out; and the
corresponding functions to perform the aggregation.

The operator then performs various steps (more details below) re-
sponsible for bookkeeping and generating output tuples. When it is
time to produce an output tuple, the operator calls the SPL runtime
to submit the tuple to the output stream.

There are several components to the Aggregate operator. The win-
dowing library implements the Windowt...u operator from Figure 1.
It supports combinations of time, count, delta, sliding, tumbling,
partitioning, punctuation, etc. The windowing library takes care
of tracking which tuples are currently in the window, and offers
a uniform interface for all the different window kinds. With the
windowing library, the reactive aggregator must only handle three
kinds of events: insert, evict, and trigger. Gedik describes the details
of the windowing library [12].

Using our solution, the aggregation operations (Section 3) are
each described by three functions (lift, combine, and lower). Users
who wish to develop an aggregation operation only have to write
these functions; we merely require that combine be associative.

FlatFAT (Section 4) implements the γt...u operator from Figure 1.
It maintains intermediate aggregates in a tree, using the combine
function of the various aggregate operations at internal tree nodes.
The details of FlatFAT are the core contribution of this paper.

Reactive Aggregator (Section 5) batches several insert and evict
events while tracking the relevant indices in FlatFAT. When the
window triggers, the reactive aggregator lifts the relevant input values
based on the relevant aggregation operations, and updates FlatFAT.
Then, it gets the result from the FlatFAT and calls lower from the
relevant aggregation operations. Finally, it implements the IStream
operator from Figure 1 by putting the results in an output tuple, and
submitting that.

3. AGGREGATION OPERATIONS
As shown in Figure 2, the reactive aggregator relies on aggrega-

tion operations implemented via three functions lift, combine, and
lower. This simple abstraction for building an aggregation opera-
tion shields library developers from the burden of reasoning about
incrementalization and potentially tricky implementation details.

3.1 Library Developer’s Perspective
Each operation works with three types: input In, partial aggrega-

tion Agg, and output Out. The three function signatures are:
‚ lift(v: In) : Agg computes the partial aggregation for a single-tuple

subwindow;
‚ combine(a : Agg, b : Agg) : Agg, often rendered in the binary

operator notation a‘ b, transforms partial aggregations for two

subwindows into the partial aggregation for the combined sub-
window; and

‚ lower(c : Agg) : Out turns a partial aggregation for the entire
window into an output.

As an example, Table 1 summarizes several aggregation operations,
their types, and functions; we pick two representative operations
based on the CQL example from Figure 1 to explain next.

Max is one of the simpler operations in Table 1: it uses the same
type for In, Agg, and Out, and the functions lift and lower are mere
identity functions. The example in Figure 1 invokes Max as follows:
Maxplenq Ñ mxl. The type of len is Float, and unifies with the
generic type variable T in Table 1. The combine function takes
partial aggregation results from two subwindows, and returns a new
partial aggregation for the fused subwindow. For the case of Max,
that simply means taking the larger value.

In contrast to Max, ArgMax exercises the full generality of the
three types and three functions. ArgMax has two parameters, as
illustrated in in the example ArgMaxplen, callerq Ñ who from Fig-
ure 1, which maximizes len while tracking the argument caller for
which the maximum is reached. Unifying the concrete actual input
type {len:Float, caller:String} against the generic formal input type In,
which is {m:T, a:T’}, yields the substitution rT ÞÑ Float, T’ ÞÑ Strings.
With this substitution, type Agg is {max:Float, arg:String} and type
Out is String. The functions work as follows:
ArgMax.lift returns a partial aggregation for a singleton subwindow,

in this example, max=len and arg=caller.
ArgMax.combine takes partial aggregations from two subwindows.

It yields arg and max from the subwindow that has a higher value
of max. If max is the same in both subwindows, combine resolves
the ambiguity deterministically by picking arg from the first one.

ArgMax.lower takes a partial aggregation over the entire window,
and produces the actual output. In the case of the running example
ArgMax(len, caller), the output is simply the caller corresponding
to the maximum len.

Our interface is general as demonstrated by the variety of operations
in Table 1. Note that besides the generality across operations, the
approach also yields generality across concrete types, by using
generic types and functions. Specifically, the operations work across
different input types In, and the other types Agg and Out depend on
that type, as do the function signatures.

3.2 Algebraic Properties
Algebraic properties offer insights into the behavior of an ag-

gregation operation, indicating the difficulty of incrementalization.
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They set frameworks apart in terms of generality. For example, a
framework that only works for invertible operations is less general
than one that also works for non-invertible ones. Our reactive ag-
gregation approach requires associativity, but not invertibility or
commutativity. We remember the related definitions below.

A combine function, rendered in binary-operator notation as ‘,
is associative if x‘ py‘ zq “ px‘ yq ‘ z holds for all partial ag-
gregation results x, y, z. Without associativity, one can only handle
insertions one element at a time at the end of the window. Asso-
ciativity enables breaking down the computation in flexible ways,
including balanced splitting into perfect binary trees.

A combine function ‘ is invertible if there exists a (known and
reasonably cheap) function a such that px‘ yq a y “ x holds for
all partial aggregation results x, y. Invertibility enables handling
deletions as inverse insertions. This is the standard approach to
incremental sliding-window aggregation. In contrast, our algorithm
does not require invertibility, making it more general.

A combine function ‘ is commutative if x‘ y “ y‘ x holds for
all partial aggregation results x, y. A commutative combine function
makes it possible to ignore the order of the input when computing
aggregation results. Our algorithm does not require commutativity.

Operation Algebraic properties:

associative invertible commutative

Count X X X
Sum X X X
Max X X
Min X X
ArithmeticMean X X X
GeometricMean X X X
MaxCount X X
MinCount X X
SampleStdDev X X X
PopulationStdDev X X X
ArgMax X
ArgMin X
Collect X X

Table 2: Algebraic properties of aggregate operations.

Table 2 shows the algebraic properties of the operations from
Table 1. All the common aggregations are associative, validating
our approach (and the improved algorithmic complexity it brings).
Several aggregations are non-commutative, and several common
aggregations are not invertible, mostly because they are not bijective.
In certain cases, one can handcraft case-by-case solutions to make
them bijective by introducing additional state; in contrast, we present
a general solution that avoids this requirement.

4. FLAT FIXED-SIZED AGGREGATOR
The reactive aggregator framework, as Figure 2 shows, imple-

ments the relational aggregation operator γt...u using FlatFAT. A flat
fixed-sized aggregator (FlatFAT) of size n for ‘ : Dˆ DÑ D is a
fixed-capacity data structure that maintains values ar1s, . . . , arns P
D while allowing for updates to the values and queries for the ag-
gregate value of any prefix and suffix. A FlatFAT instance is created
by newpxval1, . . . , valnyq, which initializes aris “ vali and sets the
capacity to n. The reactive aggregator may invoke the following
operations on a FlatFAT instance:

‚ updatepxploc1, val1q, . . . , plocm, valmqyq, where each loci is a
unique location, writes vali to arlocis for each i;

‚ aggregatepq produces the result of ar1s ‘ ¨ ¨ ¨ ‘ arns;
‚ prefixpiq produces the result of ar1s ‘ ¨ ¨ ¨ ‘ aris; and
‚ suffixp jq produces the result of ar js ‘ ¨ ¨ ¨ ‘ arns.

4.1 Design Overview
The reactive aggregator framework takes an incremental approach

to maintaining the aggregate as the window changes. When only a
small change is made to the window, the framework performs only
a small amount of work. To realize this within the abstraction of lift,
combine, and lower from Section 3, we maintain a number of partial
aggregate results. When the window changes, the algorithm updates
these results and uses them to derive the aggregate more efficiently
than recomputing everything from scratch. In particular, we show
the following bounds:

Theorem 4.1 Let lift, combine, and lower be constant-time func-
tions, and Agg be a constant-sized data type. The FlatFAT functions
take Opm ` m logpn{mqq time, where m is the number of window
events after the previous firing and n is the window size at the time
of firing. Furthermore, FlatFAT consumes Opnq space.

Notice that this is Oplog nq time for constant changes to the win-
dow and Opmq for changes that completely overwrite the window,
an amount that is already needed to make m changes. To meet these
bounds, we first design FAT (fixed-sized aggregator), a data struc-
ture that acts as a container holding exactly n values while efficiently
maintaining the aggregate of the contained data (Section 4.2). It
is represented as a complete binary tree on n leaves, holding the
window elements. We design algorithms to update and query this
tree efficiently by maintaining, at each internal node, the aggregate
of the data in the leaves below it.

An important feature of FAT is that it can be kept “flat” in consec-
utive memory in a layout so simple that it is pointerless (Section 4.3),
motivated by the following observations about modern systems:
‚ Pointers are expensive; eliminate them. Pointers seem to be

a necessity of complex data structures; however, they require
significant memory just to keep and traversing pointers generally
has performance implications. For example, each (system) pointer
is 8 bytes on a 64-bit machine. For this reason, we employ
(virtually) pointerless data structures.

‚ Many small malloc’s are slow; buy in bulk. Dynamic memory
allocation is typically faster when the allocation is performed in
bulk than in multiple small requests of the same total size. Hence,
we work with structurally-static data structures, where memory is
only allocated once at creation or infrequently for resizing.

‚ Cache misses are costly; place data carefully. The memory
hierarchy is complex to navigate, but it is a good principle to
exploit spatial locality. Therefore, after we settled on using a tree,
we picked a memory layout where sibling nodes that are accessed
together are in the same cache line or consecutive lines.

4.2 Fixed-Sized Aggregator
We begin by describing the FAT tree, a conceptual data structure

which provides a foundation for the description of the FlatFAT in the
following section. The focus here is on how to efficiently support the
functions update, aggregate, prefix, and suffix required by
the reactive aggregator framework. Because this section deals with
an abstraction implementation, we measure each function’s cost
in terms of the number of ‘ operations, deferring the complexity
analysis of internal bookkeeping to the next section. We assume
that n is a power of two, which is how we will use it. The following
theorem summarizes our results:

Theorem 4.2 A size-n FAT can be maintained such that (i) new
makes n´ 1 calls to ‘, (ii) for m writes, update requires at most
mp1` rlogpn{mqsq calls to ‘, and (iii) prefixpiq and suffixp jq
each requires at most log2pnq calls to‘. Furthermore, aggregatepq
requires no ‘ calls.
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a[1] a[7]a[6]a[5]a[4]a[3]a[2] a[8]

leaf(3)

cba d

e f

g

Figure 3: An example of FAT as a binary tree on 8 leaf nodes, storing
ar1s, ar2s, . . . , ar8s.

Algorithm 1: An algorithm for newpxval1, . . . , valnyq

1: T Ð Allocate a complete binary tree with n leaves
2: for i “ 1, . . . , n do Tpleafpiqq Ð vali

3:

4: `Ð 1, W1 Ð tparentpleafpiqq | i “ 1, . . . , nu
5: while pW` ‰ Hq do
6: for pv P W`q do
7: Tpvq “ Tpleftpvqq ‘ Tprightpvqq
8: if pv ‰ T.rootq then
9: W``1 “ W``1 Y tparentpvqu

10: `Ð `` 1

11: return T

Representing FAT: We maintain FAT as a complete binary tree
T with n leaves, which store the values ar1s, . . . , arns. The leaf
node containing aris—or simply, the i-th leaf—is referred to by
leafpiq. Each internal node v keeps a value Tpvq P D that satisfies
the invariant

Tpvq “ Tpleftpvqq ‘ Tprightpvqq, (4.1)

where leftpvq and rightpvq denote the left child and the right
child of v respectively. Thanks to associativity, simple mathematical
induction implies that if v is the root of a subtree whose leaves are
ar js, ar j` 1s, . . . , arks, then

Tpvq “ ar js ‘ ¨ ¨ ¨ ‘ arks (4.2)

To illustrate Figure 3 shows a binary tree for FAT with 8 leaves.
The leaf node corresponding to aris is denoted by leafpiq; for
instance, as depicted in the figure, leafp3q refers to the leaf which
stores ar3s. By definition, we know that Tpbq “ ar3s ‘ ar4s.

4.2.1 Creating an Instance
The user creates a new FAT instance by invoking new with the
values vali, i “ 1, . . . , n. Once invoked, new builds the tree structure
and computes the value for each internal node, making sure that it
satisfies equation (4.1).

Algorithm 1 shows the pseudocode for new. In words, it first
allocates a complete binary tree containing n leaves and stores vali

in the i-th leaf (Lines 1–3). After that, it proceeds bottom-up level
by level, computing Tpvq Ð Tpleftpvqq ‘ Tprightpvqq for every
internal node v. Because the computation for a level depends only on
the computation of the levels below it, we know that equation (4.1)
holds at all internal nodes after the algorithm finishes.

As an example, when new is called with xx1, x2, . . . , x8y, the
algorithm first creates a tree structure like in Figure 3 and generates
W1 “ ta, b, c, du, where for each v P W1, it computes Tpvq Ð
Tpleafpvqq ‘ Tprightpvqq. Then, it proceeds to work on W2 “

te, f u and W3 “ tgu. In this case, the number of ‘ calls is |W1| `

|W2| ` |W3| “ 4` 2` 1 “ 7.

a[1] a[7]a[6]a[5]a[4]a[3]a[2] a[8]

cba d

e f

g

= affected

Figure 4: An 8-leaf FAT tree with ar1s, ar2s, ar4s, and ar7s being updated.
The internal nodes that need to be updated are circled. The dashed horizontal
line marks the location of `˚ used in our analysis.

Algorithm 2: An algorithm for the operation
updatepxploc1, val1q, . . . , plocm, valmqyq.

1: for i “ 1, . . . ,m do Tpleafplociqq Ð vali

2:

3: `Ð 1, W1 Ð tparentpleafplociqq | i “ 1, . . . ,mu
4: while pW` ‰ Hq do
5: for pv P W`q do
6: Tpvq “ Tpleftpvqq ‘ Tprightpvqq
7: if pv ‰ T.rootq then
8: W``1 “ W``1 Y tparentpvqu

9: `Ð `` 1

In general, the cost of new in terms of the number of ‘ calls
can be analyzed as follows: For each level `, the number of ‘
calls is precisely |W`| as is evident from Line 7. Therefore, to
obtain the total number of ‘ calls, we only have to sum up the
sizes of the W`’s. Now observe that W1—the sets of the parents
of the leaves—is the set of all level-1 nodes and inductively, W`—
the sets of the parents of W`´1—is the set of all level-` nodes, so
|W`| “ n{2`. Hence, we conclude that the number of ‘ calls is
řlog2 n

`“1 |W`| “
řlog2 n

`“1
n
2` “ n ´ 1, which follows from a standard

geometric-sum identity. This proves clause (i) of Theorem 4.2.

4.2.2 Updating Values
The user modifies the contents stored in FAT by calling update.
This takes a list of changes to be made and incorporates them into
FAT by first updating the corresponding ar¨s values and then up-
dating the internal nodes affected by the changes. (Section 5.1.1
explains how to find these positions when a window slides.)

The goal is to update only the internal nodes that are affected by
the changes. To understand this, consider the case where exactly
one aris is modified. Here only the internal nodes whose values
depend on aris need to be updated. The relationship in equation (4.2)
characterizes which nodes need to be updated: exactly those on the
path from aris to the root. For example, by this reasoning, if ar3s in
Figure 3 is altered, only the nodes b, e, g need to be updated—and
they should be updated in this order because of their dependencies.

By a similar reasoning, in the case of multiple modifications, an
internal node needs to be updated if a leaf in its subtree is modified.
There are, however, dependencies between these nodes that deter-
mine how we must update them. For instance, consider Figure 4, in
which ar1s, ar2s, ar4s, ar7s are modified. Using this logic, we know
that a, b, d, e, f , g are the nodes that have to be updated; these are
circled in the figure. But although we may update a, b, and d in any
order, we cannot, for example, update e before a and b.

To resolve the internal dependency, we follow the principle of
change propagation [1] to identify and update the internal nodes
affected by the modifications: when a node is updated, it triggers
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the nodes that depend on it to be updated. Algorithm 2 summarizes
the update algorithm. First, the algorithm modifies the leaves
corresponding to the updates (Line 2). Then, it constructs W1, the
set of nodes in level-1 (one level above the leaves) that need to be
updated. The rule is simple: if v is changed, parentpvq will be
updated. As shown in Lines 3–9, the algorithm proceeds bottom-up
level by level, ` “ 1, 2, . . . , updating the affected nodes W`, and
scheduling the nodes that depend on them by adding them to W``1.

To better understand the update algorithm, we step through the
algorithm using our running example in Figure 4. After updating
the leaves, it identifies W1 “ ta, b, du. Among these nodes, the
algorithm does not prescribe which order they must be carried out,
leaving the choice open to the implementation. While processing
W1, it populates W2, resulting in W2 “ te, f u. The same steps are
repeated, yielding W3 “ tgu.

Correctness of the algorithm—that it ensures (4.1)—follows triv-
ially by mathematical induction. The more involved question is,
how many ‘ calls are needed for an update of m locations?

We analyze the number of‘ calls by upper-bounding the number
of calls per level of the tree. The number of calls at level `, as is
evident from the algorithm’s description, is |W`|. Hence, the total
number of invocations is

# of calls “
ÿ

`ě1

|W`| (4.3)

To proceed, we derive an upper bound on the size of each W` as a
function of the number of modified leaves m and the level number `:

Claim 4.3 The work at level ` P r1, log2 ns is |W`| ď mintm, n{2`u.

Proof. Using the characterization in equation (4.2), we know
that an internal node belongs to W` if and only if it is on the leaf-
to-root path of a modified leaf. Because exactly m leaves were
modified, there cannot be more than m leaf-to-root paths passing
through level `, so |W`| ď m. Furthermore, W` is, by definition,
a subset of the nodes in level `, so |W`| ď n{2`. This means that
|W`| ď mintm, n{2`u.

Similar to [33], our analysis centers on accounting for work at
different levels of the tree. Our analysis continues by separating the
levels `’s into two parts—top and bottom. The top part accounts for
level `˚ “ 1` rlog2pn{mqs and above, and the bottom part accounts
for levels below `˚. Hence, # of calls “ top` bottom, where

top “
log2 n
ÿ

`“`˚

|W`| and bottom “
`˚´1
ÿ

`“1

|W`|.

For intuition, these two cases are handled differently because most
leaf-to-root paths have yet to merge near the leaves, whereas these
paths have sufficiently merged in the top portion. The dashed hori-
zontal line in Figure 4 illustrates this division.

We now analyze the contribution due to the top and the bottom,
in turn: To analyze the top portion, let λ “ n{2`

˚
. Since rxs ě x for

x ě 0, it follows that λ “ n
21`rlog2pn{mqs

ď
n{2

2log2pn{mq
“

n{2
n{m “ m{2.

Therefore, we have

top “
log2 n
ÿ

`“`˚

|W`| ď

log2 n
ÿ

`“`˚

mintm, n{2`u [Claim 4.3]

ď

log2 n
ÿ

`“`˚

n
2`
“

n
2`˚

`
n

2`˚`1
` ¨ ¨ ¨ ` 1 rminta, bu ď bs

ď
2n
2`˚

“ 2λ [Geometric Sum]

Algorithm 3: An algorithm for handling prefixpiq.

1: v Ð leafpiq, a Ð Tpvq
2: while pv ‰ T.rootq do
3: p Ð parentpvq
4: if pv “ rightppqq then a Ð Tpleftppqq ‘ a
5:

6: v Ð p

7: return a

which means top ď m. The bottom part is simply

bottom “
`˚´1
ÿ

`“1

|W`| ď

`˚´1
ÿ

`“1

m ď p`˚ ´ 1qm “ rlog2pn{mqs ¨ m.

Hence, we conclude that the total number of ‘ calls is at most
m` rlog2pn{mqs ¨ m, proving clause (ii) of Theorem 4.2.

4.2.3 Answering Queries
The user can ask for the aggregate of the whole data, or any prefix or
suffix using the aggregate, prefix, and suffix operations. The
aggregate operation requires no work, as it only needs to return
the value at the root of the tree. The prefix and suffix operations
can be supported with minimal work because as we will show, any
such query can be answered by combining at most log2pnq values
in the tree. We need the prefix and suffix operations later in the
paper to correctly handle non-commutative aggregations.

We focus on the prefix operation; the suffix operation is sym-
metric. To gather some intuition, we consider answering prefix(7)
on FAT in Figure 3. Instead of directly computing ar1s‘ ¨ ¨ ¨‘ ar7s,
we can break this up into a small number of segments that corre-
spond to the nodes of T :

ar1s ‘ ¨ ¨ ¨ ‘ ar7s “ par1s ‘ ¨ ¨ ¨ ‘ ar4s
looooooooomooooooooon

Tpeq

q ‘ ppar5s ‘ ar6s
looooomooooon

Tpcq

q ‘ ar7sq

“ Tpeq ‘ Tpcq ‘ ar7s.

Extending this idea, we present a natural bottom-up algorithm
(Algorithm 3), which makes exactly one leaf-to-root traversal. It
starts at the leaf node leafpiq, setting a “ aris (Line 1). Then, as it
walks up the tree, it incorporates more segments into a, extending
the coverage of a further to the left. The main logic is on Line 4,
which updates a to Tpleftppqq‘a if v is the right child of its parent.
To understand this, it helps to notice that if v is the right child of
p “ parentpvq, node v’s sibling—i.e., the left child of p—contains
an extension of a, a new prefix segment next to what a has included.

In terms of complexity, the algorithm traverses a leaf-to-root path,
making at most one ‘ call at each node; therefore, the number
of ‘ calls is at most log2pnq, proving clause (iii) of Theorem 4.2.
Furthermore, correctness of the algorithm follows from the invariant
that after each execution of Line 4, a contains the aggregate of all
the leaves to the left of aris in the subtree rooted at p.

4.3 FlatFAT: Storing FAT in Memory
FlatFAT is an efficient implementation of the FAT data structure.

Because FAT is structurally static, FlatFAT is able to allocate the
necessary memory at creation and guarantee that sibling nodes are
placed next to each other. This design reduces dynamic memory
allocation calls in the overall framework and improves cache friend-
liness as these nodes tend to be accessed together.

To accomplish this, FlatFAT uses a numbering scheme often
used in array-based binary heap implementations (see, e.g., [30]),
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which we will now recall. Let T be a FAT of size n, so T is a tree
with 2n ´ 1 nodes. This can be kept as an array of length 2n ´ 1
using the following recursive numbering1: the root node is at index
hpT.rootq “ 1, and for a node v, its left and right children are at

hpleftpvqq “ 2hpvq and hprightpvqq “ 2hpvq ` 1.

With this mapping, each of the navigation operations required by
FAT takes Op1q time. To navigate downward, we use the definition
to give the positions of the left and right children of a node. To
navigate upward, observe that for any node v other than the root,
hpparentpvqq “ thpvq{2u. Finally, to access a leaf node, we note
that the location of the i-th leaf (i.e., the leaf corresponding to aris)
is hpleafpiqq “ n` i´ 1.

Consequently, the following running time bounds follow directly
from Theorem 4.2:

Corollary 4.4 For a constant-time binary operator, a size-n Flat-
FAT can be maintained such that (i) new takes Opnq time, (ii) for
m writes, update takes Opm ` m logpn{mqq time, (iii) prefixpiq
and suffixp jq each takes Oplog2pnqq time, and (iv) aggregatepq
takes Op1q time.

5. REACTIVE AGGREGATOR
As shown in Figure 2, RA accepts windowing events (insert,

evict, trigger); internally uses the FlatFAT and aggregation functions;
and finally implements the IStream operator from stream-relational
algebra to submit output tuples. Upon an insert event, RA lifts
the tuple using the lift function and stows it away in the FlatFAT.
The lifted tuple remains there until the corresponding evict event.
Meanwhile, RA can handle trigger events probing for the current
window’s aggregate value. It obtains these from the FlatFAT, lowers
the result using the lower function, and calls submit on the SPL
runtime to emit an output tuple.

So far, we have made no distinction between the instantaneous
window size and the capacity of the FlatFAT, denoting both with n.
For this section, we will be more explicit:

ntuples “ the current number of tuples in the window; and
ncapacity “ the current capacity of FlatFAT.

Therefore, ntuples changes as tuples enter or leave the window and
ncapacity changes because of resizing.

5.1 Reactive Aggregator Using FlatFAT
To describe the RA implementation, we first describe how it

maintains the window under tuple arrival and tuple eviction; then,
we describe how it provides the aggregate upon request.

5.1.1 Maintaining a sliding window
RA views the slots of FlatFAT (ar1s, . . . , arncapacitys) as an array of
length ncapacity, using this space to implement a circular buffer, where
it keeps the (lifted) elements of the sliding window. As is standard,
the implementation maintains a front pointer and a back pointer to
mark the boundaries of the circular buffer. Unfilled FlatFAT slots
are given a special marker, denoted by K. The K marker serves as a
neutral element that short-circuits the binary operator to return the
other value: x‘K “ x and K‘ y “ y. This marker is not necessary
for FIFO windows, as we will see in the following section.

At the start, RA creates a FlatFAT instance with a default capacity,
filling all the slots with K. As tuples enter into the window, they are
inserted into the circular buffer. As tuples leave the window, they
are removed from the buffer, and their locations are marked with K.
1We use 1-based indexing.

As an example, Figure 5 shows an instance of a sliding window that
keeps the latest 4 numbers, as well as how the window is physically
represented. It also shows the locations of the front pointer ( F ) and
the back pointer ( B ), which indicate, respectively, the starting point
and the ending point of the circular buffer.

Unless the window logic respects FIFO semantics, the circular
buffer can have “holes”, potentially creating a situation where it
cannot take more tuples even though there is room in the middle2.
We resolve this with a compact operation. The compact operation
starts by scanning the leaves, shifting non-K values left to fill in
holes marked by K values, while building up a work list of parents
whose children changed. After that, it uses the same algorithm as
for update to rewrite internal nodes, see lines 3-9 of Algorithm 2.
Overall, this requires time linear in the capacity of the buffer.

Despite compaction, windows may grow to fill up the FlatFAT
or shrink such that usage is too low for the current capacity (see
Section 2.2). We resolve this with a resize operation. The resize
operation creates a new FlatFAT, and copies the data over, skip-
ping K values. In other words, it uses the algorithm for new, see
Algorithm 1, which requires linear time in the capacity of the buffer.

Because of their hefty cost, the algorithm makes sure to call
resize and compact judiciously so that their cost gets amortized
over the normal window events. The algorithm works as follows:
‚ Upon receiving a tuple and the buffer is full: if ntuples ď

3
4 ncapacity,

run compact; otherwise, use resize to double the capacity.
‚ After evicting a tuple: if ntuples ă

1
4 ncapacity, use resize to shrink

the capacity by half.
Hence, we observe that (i) after a resize operation, the buffer
is between 3

8 ncapacity and 1
2 ncapacity full; and (ii) after a resize or

compact operation, the buffer has no holes. These observations are
crucial in analyzing the amortized cost.

We begin by accounting for the cost of the compact operations.
When a compact operation is performed, at least 1

4 ncapacity evictions
must have happened since the last time that there were no holes—
because the buffer is full but ntuples ď

3
4 ncapacity. We charge the

Opncapacityq cost of compacting to the evictions that created these
holes, Op1q per eviction. We note that this accounting did not double
charge because by (ii), there are no holes in the buffer after a resize
or compact operation.

As for the resize operations, when the capacity needs to be dou-
bled, at least ncapacity ´

1
2 ncapacity “

1
2 ncapacity arrivals must have hap-

pened since the last resize—because the buffer is full but immedi-
ately after the last resize, the buffer can only be between 3

8 ncapacity

and 1
2 ncapacity full (via. (i) above). We charge the Opncapacityq cost of

doubling to these arrivals, Op1q per arrival. By a similar reasoning,
when the capacity is shrunk in half, at least 3

8 ncapacity ´
1
4 ncapacity “

1
8 ncapacity evictions must have happened since the last resize—
because the buffer is 1

4 ncapacity full but immediately after the last
resize, the buffer can only be between 3

8 ncapacity and 1
2 ncapacity full

(via. (i) above). Again, we charge the Opncapacityq cost of shrinking
to these evictions, Op1q per eviction. Therefore, it takes constant
amortized time to support an arrival or eviction event.

5.1.2 Reporting the aggregate result
We describe how RA derives the aggregate of the current win-
dow. At first glance, this seems to be just be a matter of reading a
value: FlatFAT has the window contents stored in the leaves and
its aggregatepq operation can return, at constant cost, the value of
ar1s ‘ ¨ ¨ ¨ ‘ arncapacitys.

2We cannot put a new tuple in the holes because we have to retain
the window order.
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Event Window’s Contents FlatFAT’s Slots
ar1s ar2s ar3s ar4s

1) 4 arrives 4 F 4 B K K K

2) 7 arrives 4, 7 F 4 7 B K K

3) 3 arrives 4, 7, 3 F 4 7 3 B K

4) 2 arrives 4, 7, 3, 2 F 4 7 3 2 B

5) 4 leaves 7, 3, 2 K F 7 3 2 B

6) 9 arrives 7, 3, 2, 9 9 B F 7 3 2

Figure 5: A sequence of events that the window logic might issue in main-
taining a sliding window that keeps the latest 4 numbers, showing how the
window is physically represented.

However, more care is required to correctly derive the window
aggregate. The problem, which we call the inverted buffer problem,
is that the ordering in the linear space ar1s, ar2s, . . . , arncapacitys can
differ from the ordering in the circular buffer (i.e., the window order).
To explain this, we will revisit the example in Figure 5. Important to
this discussion are the locations of the front pointer ( F ) and the back
pointer ( B ), which indicate, respectively, the starting point and the
ending point of the circular buffer. Events 1–5 are as expected: the
window order is identical to FlatFAT’s order. In event 6, the element
9 is inserted—correctly into ar1s; however, while the window order
is 7, 3, 2, 9, the “physical” order is inverted. Because of this, if we
were to call aggregate now, we would get 9‘ 7‘ 3‘ 2, which
would be incorrect unless the operator is commutative.

The correct aggregate in this case is not difficult to derive. The
key is to recognize that an inverted buffer is a circular buffer split in
the middle because of the linear address space. Hence, the correct
aggregate is suffixp F q ‘ prefixpB q, which FlatFAT can answer.

Therefore, to report the aggregate result, we first detect whether
the buffer is currently inverted. The buffer is inverted only if the back
pointer has wrapped around and comes up ahead of the front pointer.
In other words, it is inverted if and only if the back pointer precedes
the front pointer. If the buffer is not inverted, we use aggregatepq;
if the buffer is inverted, we use suffixp F q ‘ prefixpB q. In either
case, this costs at most Oplog2 ncapacityq time.

5.2 Optimizing For FIFO
Many sliding-window policies are first-in, first-out (FIFO): the

first tuple to arrive is the first to leave the window. Indeed, in SPL,
both count-based and time-based policies ensure FIFO ordering. We
describe some optimization for this common case.

When the window is FIFO, the area from the front pointer to the
back pointer (wrapping around the array boundary) is always fully
occupied—there can be no “holes.” The direct consequence for RA
is that it does not need a compact operation, making it easier to
maintain the desired utilization. But more importantly, this means
that we do not need to explicitly store K in unused slots: the buffer’s
demarcation can be baked into the update algorithm, so unused
slots are automatically skipped over. When the buffer is inverted,
the unoccupied area is between the leaf-to-root path of the back
pointer and that of the front pointer. Symmetrically, when the buffer
is normal, the occupied area is between the leaf-to-root path of the
front pointer and that of the back pointer.

5.3 Optimizing Through Code Generation
We use operator code generation to reduce runtime overhead

by moving many decisions to compile time. This has an important
benefit of static type checking. Through SPL’s code-generation inter-
face [18], operators can generate, at compile time, code specialized
for a particular configuration. Because in our scenario, data types
(schemas) and aggregation functions are known in advance, we are

able to use this interface to hardwire both types and functions while
ensuring type safety. This helps eliminate overhead from dynamic
dispatching and runtime handling of variable types, and facilitates
inlining. We remark that our baseline operators (both SPL’s existing
implementation [18] and our implementation of Arasu and Widom’s
algorithm [3]) also use this approach.

5.4 Additional Features
Users often want to aggregate per group based on one or more key

attributes rather than globally over an entire window. We support
this by maintaining a separate instance of FlatFAT for each ac-
tive unique key, specifically using the partitioning feature of SPL’s
windowing library [12]. Furthermore, because RA is a bona fide
operator in a general-purpose streaming system, it can be combined
with other technologies on that streaming system. For instance,
other work shows how to auto-parallelize SPL operators [29], and
those techniques apply directly to RA with group-by. As another ex-
ample, while Aggregate itself is a unary operator, SPL can assemble
operators into arbitrary topologies supporting, among other things,
multiple input streams [18].

6. EVALUATION
This section presents an experimental evaluation that examines

whether the theoretical complexity bounds for RA are true in prac-
tice, as well as whether the raw performance of the RA framework
is competitive. Our baseline is the standard library implementation
of Aggregate in IBM InfoSphere Streams (abbreviated ISS), which
is nonincremental. We refer to reactive aggregation as RA. We also
study RA’s performance relative to an implementation of Arasu and
Widom’s algorithm (henceforth, AW) [3], the only prior algorithm
that matches RA’s theoretical complexity.

6.1 Experimental Setup
The performance of sliding-window aggregation depends on the

window size n; we intuitively expect it to spend more time on larger
windows. All figures in this section put the window size on the
x-axis. To evaluate a large range of sizes, we use a logarithmic scale.
Unless otherwise specified, all experiments use a slide granularity
m “ 1, i.e., each time the aggregation fires, it handles one insertion
and one eviction. As will be explained later, this is the worst-case
behavior in terms of per-tuple cost. Furthermore, we use 32-bit
integers as the data type to aggregate unless specified otherwise.

All experiments used IBM InfoSphere Streams and the SPL lan-
guage. While SPL programs are usually distributed across a cluster
of machines, for our experiments, we wanted to minimize interfer-
ence from distribution unrelated to the research questions at hand.
Hence, we built each benchmark as a standalone process that runs on
a single machine. For robustness, we performed three independent
runs, each flowing roughly 120 million tuples through; we report
the median time and the maximum memory consumption.

We ran experiments on a 2-core, 3.00 GHz Intel Xeon X5160
with 8 GB of RAM. The L2 data cache is 4 MB. The machine ran
RHEL 6.3, and we used GNU g++ 4.4.6.

6.2 Results and Analysis
Break-Even Points: The first question we investigate is, what is
the smallest window size at which incremental computation in our
RA framework pays off? With very small windows, ISS does so
little work that it outperforms an incremental scheme; with large
windows, ISS eventually becomes so expensive that it will be out-
performed by incremental evaluation. We ran both implementations
at different window sizes and measured the sustained throughput
until we narrowed the break-even point down to the nearest 10.
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Aggregation Function Break-Even Point 10x

Count Never Never
Sum « 370 « 5, 200
Sum<Double> « 290 « 5, 200
Max « 260 « 5, 200
Max<Double> « 130 « 3, 600
ArithmeticMean « 10 « 900
MinCount « 200 « 4, 480
SampleStdDev « 10 « 700
PopulationStdDev « 10 « 700
ArgMax « 130 « 2, 770
ArgMax<Double> « 250 « 5, 810
Collect Never Never

Table 3: The smallest window size (to the nearest ten), for different ag-
gregation functions, where incremental computation in RA becomes faster
than ISS and RA becomes 10x faster than ISS, which reevaluates the whole
window.
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Figure 6: The sustained throughput (in million tuples per second) for
different sliding-window aggregate schemes (ISS vs. RA) and aggregation
functions (Max and StdDev) as the window size is varied.

Table 3 shows the results. A lower number represents a better
result for our new algorithm. All experiments use 32-bit integers
except for those annotated with <Double>, which use 64-bit float-
ing point numbers. We observe break-even points from 10 to 370
depending on the inherent cost of the aggregation functions. RA
does not break even for Count or Collect. The baseline Count simply
reads off the container size, which is a constant-time operation. Col-
lect computes an output of the same size as the window: although
both ISS and RA perform the same n´ 1 operations, the framework
overhead in RA is, as to be expected, higher than that of a reexecu-
tion scheme. In all other cases, RA breaks even for relatively small
windows—and in general, the costlier the aggregation function, the
sooner RA breaks even.

Column 10x in Table 3 shows the smallest window size at which
RA outperforms ISS by one order of magnitude. This happens at rel-
atively moderate window sizes between 700 and 5,810, confirming
the practical utility of our framework on reasonable window sizes.

Relative Performance: How much slower is RA on small windows,
and how much faster is it on large windows than reexecution?
Figure 6 shows the sustained throughput of the two schemes at
different window sizes (higher is better). There are two pairs of
lines. The two Max lines show that RA is about 10% slower on small
windows and almost 3x faster on windows of size 1,024. The two
StdDev lines show that RA is about 5% slower on small windows
and over 10x faster on windows of size 1,024. These numbers
demonstrate that the overhead is moderate on small windows; we
are not concerned with the slight slowdown, because at such small
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Figure 7: The average per-tuple cost (in microseconds) to update after
a p1, 1q-change for the Max and StdDev aggregation functions. Both the
measured values and their best-fit to the log curve are shown.
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Figure 8: The time (in microseconds) to aggregate the whole window
from scratch without incremental computation (i.e., the standard non-RA
implementation) and with incremental computation for the Max and StdDev
aggregation functions.

window sizes, the aggregation is unlikely to be the bottleneck of the
application anyway. On the other hand, RA yields large speedups
even at the moderate window size of 1,024, and we can observe
even larger speedups when increasing the window size further.
Time Complexity: Are the theoretical time complexity bounds true
in practice? Figure 7 shows the average per-tuple cost of RA at
different window sizes, and compares it to the ideal line. Note that
since the x-axis uses a log-scale, a straight line actually indicates
logarithmic performance. Given that the measured results closely
match the ideal line, we can conclude that the performance is indeed
Oplog nq as predicted. Furthermore, note that the x-axis goes up
to a window size of 8 million tuples. This requires RA to store
16 million intermediate results. Each intermediate result for Max
takes 4B, and each intermediate result for StdDev takes 20B. This
means the memory footprint of the entire data structure is 64MB and
320MB, respectively, far exceeding the size of all caches and TLBs
on the machine where we ran our experiments. However, despite
that, there is no knee in the curve at the critical memory-hierarchy
boundaries, because our algorithm only touches a small part of the
data structure each time it fires.
Tumbling Windows: How does RA perform when there is no op-
portunity for it to pay off because the window does not slide incre-
mentally? This is a measure of the framework’s overhead. Let n be
the window size and m be the sliding granularity, i.e., the number
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Figure 9: The average tuple cost (in microseconds) for the reactive aggre-
gator to compute Max and StdDev with fixed window capacities of size n
(fixed), and window capacities that oscillate between n and 2n (osc.).

of tuples inserted and removed on each aggregation firing. The
experiments so far used m “ 1, resulting in fine-grained sliding.
On the other hand, when m “ n, the sliding window degenerates
to a tumbling window. None of the results can be reused from one
firing to the next. Figure 8 shows the average cost per firing in
microseconds (lower is better). Evidently, the cost is about the same
irrespective of the scheme (RA or ISS) or the aggregation function.
This indicates that RA has a low overhead: even when RA cannot
benefit from incremental changes, it performs essentially no worse
than the non-incremental algorithm.

Dynamic Windows: How does RA perform when it must constantly
resize its window’s capacity? Recall from Section 5.1.1 that if the
buffer is full when a tuple arrives (ntuples “ ncapacity), we call resize
to make n1capacity “ 2ncapacity. Upon evicting a tuple from the window,
if ntuples ă

1
4 ncapacity, we call resize to make n1capacity “

1
2 ncapacity.

Figure 9 shows experiments designed to force the window capacity
to oscillate between n and 2n. First we send enough tuples to ramp
up the capacity so that ncapacity “ 2n. We then evict 1

2 n tuples,
forcing a call to resize, causing n1capacity “ n. The process then
starts over after the window receives the next 1

2 n tuples. The data
confirms that the cost of resizing the capacity is indeed amortized.
The oscillating experiments are faster because they spend most of
their aggregation time with ntuples ă n, while the non-oscillating
experiments spend all of their aggregation time with ntuples “ n. This
discrepancy, however, is necessary if we are to force the capacity to
vary, as the resizing scheme is explicitly designed to amortize the
linear cost of a resize.

As with any solution whose algorithmic complexity depends on
amortization, individual firings may incur a linear cost, increasing
latency. For example, for StdDev, resizing from a window of size
256 to 512 takes 4.2 µs, and resizing from 1 M to 2 M takes 9.4 ms.
Circumstances that cannot tolerate a rare linear cost can fix the
window size to a large value of n to ensure no resizing.

Coarse-Grained Sliding: Often, multiple window events take place
between firings. How does RA behave between the two extremes
of fine-grained sliding and tumbling? Figure 10 shows the average
per-tuple cost (lower is better), with separate curves for different
sliding granularity m. Recall that the theoretical time complexity
of our algorithm is Opm` m logpn{mqq per firing. Given that each
firing processes m tuples, that amounts to Op1 ` logpn{mqq per
tuple. For constant m, this is the same as Oplogpnqq, and indeed,
the lines for m “ 1, m “ 4, and m “ 64 are straight on a log-scale.
On the other hand, when m is a fraction of n, the time complexity
becomes Op1 ` logpn{nqq, in other words, a constant. The lines
for m “ n{16, m “ n{4, and m “ n indeed demonstrate constant
per-tuple cost, for large enough window sizes, as predicted. The
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Figure 10: The average per-tuple cost (in microseconds) to update a batch
of m changes using the reactive aggregator (RA) with StdDev, where the
window size is n.
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Figure 11: The average per-tuple cost (in microseconds) for Max to incor-
porate m changes, using the reactive aggregator (RA) vs. using the algorithm
by Arasu and Widom (AW), as the window size (n) is varied.

downward trend on small windows can be attributed to the overhead
due to change propagation’s walking up the tree, about Oplog nq per
firing, which gets absorbed in the big-O notation in the complexity
bound and is offset by the cost of real aggregation operations for
larger window sizes.

Comparison with Arasu-Widom: How does RA compare to prior
work? In prior work, Arasu and Widom (AW) [3] describe the only
algorithm that matches RA’s theoretical complexity bounds. We
re-implemented AW in InfoSphere Streams and added the same
code-generation optimization we used for RA. As Figure 11 shows,
both implementations have comparable algorithmic complexity in
practice, with RA faster by a constant factor. We further confirm this
across a range of aggregation functions, as Table 4 shows: for the
same window size, the choice of an aggregation function makes little
difference to the relative performance. However, inherent differences
in the data representation seem to contribute to the widening of the
gap as the window size increases. Whereas RA uses a single flat
array, AW uses several arrays. Also, whereas RA uses simple
loops to derive the aggregated value, AW contains a relatively-more-
complicated step that splits the current window into base intervals.

Space Complexity: What difference does RA make for space con-
sumption? Figure 12 shows the resident set size (RSS; lower is
better), which we measured using a separate process that polls the
/proc file system once a second. Note that this methodology did not
interfere with the overall timing results, from which we conclude
that it did not perturb the experiment. The figure only shows results
for windows up to 4K entries, because ISS is very slow beyond
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Aggregation Function Relative Time TAW{TRA

n “ 8 n “ 8K n “ 8M

Sum 1.02 1.20 1.36
Max 1.02 1.25 1.37
ArithmeticMean 1.05 1.24 1.39
MinCount 1.04 1.23 1.35
PopulationStdDev 1.06 1.26 1.37

Table 4: Relative average per-tuple cost TAW{TRA (ratio) for firing after every
tuple’s arrival, where TAW is the time for Arasu-Widom and TRA is the time
for our reactive aggregator.
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Figure 12: The resident set size (RSS, in MB) of the program that maintains
Aggregate comparing ISS and RA.

4K entries. It confirms our theoretical result that RA requires Opnq
space and that the constant is small. At these small to moderate
window sizes, the impact of window size on RSS is minor compared
to the base RSS of the entire process, including the SPL runtime.
Beyond 4K entries, the RA version continues to consume space
linear in the size of the window.

Conclusion: Our experiments confirm the theoretical algorithmic
complexity and space bounds. Furthermore, our experiments show
that the practical performance of RA is competitive for small win-
dows and much better than reexecution for large windows.

7. RELATED WORK
This section compares and contrasts our Reactive Aggregator

(RA) with related work on sliding-window aggregation in particular
and incremental computation in general.

7.1 Sliding-Window Aggregation
Gray et al. propose a trichotomy of aggregation functions [14],

and many sliding-window aggregation papers adopt this terminol-
ogy. An algebraic aggregation is associative and has fixed-sized
intermediate results. A distributive aggregation is a special case
of algebraic aggregation that does not require a final lower step.
And a holistic aggregation has no constant bound on the size of
intermediate results. This trichotomy was initially intended to ex-
plain implementation strategies for data cubes. We did not adopt it,
because it does not capture invertibility or commutativity, which are
important for sliding windows on ordered streams.

In the following discussion, let n be the window size, m the
number of updates in a batch, and s the size of the stream history.
In robust, long-running systems, s tends to infinity.

Work on temporal databases predates stream processing but ad-
dresses issues similar to sliding-window aggregation. Temporal
databases store Opsq tuples and support aggregation over any his-
torical windows, whereas streaming systems store only Opnq tuples
and only support aggregation over windows that end at or near the
current time. Moon et al. implement aggregation using red-black
trees [26], and Yang and Widom use SB-trees, a hybrid of segment

trees and B-trees [36]. For invertible aggregations, these tempo-
ral aggregation algorithms emulate evictions as negative insertions,
yielding time Oplog nq for m “ 1. However, for non-invertible
aggregations, they construct trees over the complete stream his-
tory, yielding time Oplog sq. In contrast, RA yields time Oplog nq
for m “ 1 even for non-invertible aggregations.

Bulut and Singh save time and space with an approximate aggrega-
tion algorithm based on wavelets [8]. RA, in contrast, is an exact al-
gorithm. Gigascope splits aggregates to support pre-aggregation on
network interface cards [9] but does not use sliding windows. Hirzel
aggregates incrementally over patterns instead of windows [17]. RA
handles sliding windows, which are tricky because of tuple eviction.
Ghanem et al. incrementalize a broad spectrum of sliding-window
queries using negative tuples [13]. Unlike RA, this means they
require invertible functions.

Arasu and Widom present the B-Int algorithm for incremental
aggregation using base intervals [3]. B-Int is the only algorithm we
are aware of that matches the algorithmic complexity of RA and
handles non-invertible aggregations. However, we made RA more
general as it is intended as a drop-in replacement for the aggregation
operator in a commercial streaming system. In particular, B-Int does
not address non-FIFO windows or variable-sized windows.

Some algorithms optimize for large m, by using only a two-level
aggregation instead of a full-fledged tree. Examples include paned
windows [23] and paired windows [22]. These approaches use time
Opn{mq for each update, degenerating to Opnq for small m. RA’s
algorithmic complexity matches that of paned and paired windows
for large m, but it is better for small m.

To our knowledge, none of the existing algorithms can both match
RA’s time complexity and support variable-sized windows.

The idea of decomposing aggregation operations into multiple
helper functions is not new. For instance, it is a key feature of the AT-
LAS extension to SQL [35]. Yu et al. even offer techniques for auto-
matically decomposing aggregation operations [37]. Some systems
decompose aggregation operations differently than RA. Specifically,
RA uses a combine(Agg,Agg) function, resembling a monoid [16].
Other systems (including ATLAS [35]) use an addOne(In,Agg) func-
tion, resembling a fold in functional programming. The drawback of
a fold is that it adds items one by one in linear time; in contrast, the
monoid variant enables RA to break down a window into balanced
subwindows that it aggregates in logarithmic time.

This work focuses on incremental aggregation. An orthogonal
topic is shared aggregation, optimizing the case where many similar
stream queries are evaluated together. While some of the papers
discussed above offer both incremental and shared aggregation [3,
22], we leave shared aggregation with RA to future work since our
customers have yet to request it.

Soisalon-Soininen and Widmayer [33] study a class of search
trees known as stratified trees and propose an algorithm for bulk
insertion, for which they study rebalancing cost in terms of pointer
changes. In another paper, Soisalon-Soininen and Widmayer [32]
study the complexity of bulk insertion into an AVL tree. These
papers, like ours, consider bulk operations and show the benefits
of coordinating bulk changes to start from the leaves and progress
up to the root. However, both their goals and techniques differ
significantly from ours. Their analyses are tailored for pointer-
update cost due to rebalancing and are not readily applicable to our
setting, which keeps no pointers and requires no rebalancing but
where the main cost is in maintaining the partial aggregation values.

7.2 General Incremental Computation
Whereas RA incrementalizes sliding-window aggregation, there

is also literature on incrementalizing more general computations.
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Demers et al. incrementalize attribute grammars using static de-
pendency graphs [10]. The RETE algorithm incrementalizes pro-
duction rule matching, and can handle not just changes in data, but
also changes in rules themselves [11]. Later, Pugh and Teitelbaum
use result memoizing to incrementalize pure functions [28]. None
of these approaches focuses on aggregation.

Functional reactive programming (FRP, [19]) and self-adjusting
computation (SAC, [1]) incrementalize general programs in func-
tional languages. Both build and use dynamic dependency graphs,
yielding a high overhead in both time and memory consumption.
In the ideal case, these dynamic dependency graphs turn out to be
balanced trees, yielding logarithmic performance. In contrast, the
trees that RA constructs are leaner and always balanced.

There is growing literature on incremental large-scale batch pro-
cessing. In contrast to our work on streaming with latencies in the
micro-second range, these systems focus on scaling out to large
clusters and have several orders of magnitude slower latencies. CBP
(continuous bulk processing) makes it easier to hand-incrementalize
computations by externalizing state as loop-back I/O in functional
computation stages [24]. The Percolator uses observers, which are
similar to database triggers, over a distributed data store [27]. Nectar
offers a caching service where derived datasets are indexed by the
computation that produced them [15]. Incoop [5] and Slider [6]
memoize partial results of Hadoop jobs and use the associativity of
Hadoop’s combine functions for tree-based aggregation. Similar to
our work, Slider uses a circular data structure for fixed-size sliding
windows. But unlike our work, it does not keep trees balanced for
variable-size windows. M3R (main-memory map reduce) focuses
on caching results in iterative jobs, rather than incremental jobs
where the input changes [31]. Finally, differential dataflow in Naiad
uses caching for both iterative and incremental jobs [25] by using
multi-dimensional version numbers. All of these discretize the com-
putation into large batches, whereas RA can efficiently handle even
single-tuple updates.

8. CONCLUSION
We have described Reactive Aggregation (RA), a new framework

for sliding-window aggregation that works for non-commutative
or non-invertible aggregations and even on non-FIFO windows.
For m changes in a size-n window with Op1q-time aggregation
functions, it updates results in Opm`m logp n

m qq time. By using a flat,
pointerless structure and code generation, RA achieves outstanding
raw performance.
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