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Dynamic data Is everywhere

a data stream =

caller id:

caller id: M caller id: W caller id: W caller id:
len: len: len: len: len:

timestamp:_

timestamp:_ @ timestamp:_ M@ timestamp:_ @ timestamp:_

tnow \

often interested in a\sliding windov(r
Compute some aggregation on this data



BU”d a SyStem tO X x x Aggregation

in stream

out stream

caller id: _ { caller id: caller id:
SELECT IStreamiMaxiien) AS mxl,
|en: o |en: o v |en: . MaxCount{len) AS num,

ArgMax(len, caller) AS who)

timestamp:_ | timestamp:_ timestamp:_

FROM  Catis [Range 24 Hours Slide 1 Minute]|
/1
\ Window S —

Answer the following questions every minute about the
past 24 hrs:

* How long was the longest call?

* How many calls have that duration?

* Who is a caller with that duration?




Answer the following questions every about the
past 24 hrs:

* How long was the longest call?

* How many calls have that duration?

* Who is a caller with that duration?

Basic Solution:

Maintain a sliding window (past 24 hr)

1. 2.0.0.0.0.6.0.6.0.6.60.¢
Nalk through the WInM

every

Simple but slow:
O(n) per query



Improvement Opportunities

Idea: \When window slides, lots of common contents with the
MOSt recent query.

How to Reuse?

> f invertible, keep a running sum: add on arrival, subtract
on departure SuUm

1 .90.0.0.0.60.0.0.0.6 .6 ¢

Partial sum: bundle items that arrive and depart together to

e e
4 ¢ ¢




This Work:

How to engineer sliding-window aggregation so that

} can add new aggregation operations easily

} can get good performance with little hassle

(using a combination of simple, known ideas) )
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Performance

} Good for small updates

(e.q., Arasu-Widom VLDB'04, Moon et al. ICDE’'00)

} Good for large updates

(e.g., Cranor et al. SIGMOD’03,
Krishnamurthi et al. SIGMOD’06)

This Work

Good for Large & Small:

It m updates are made to a window
of size n, use O(mlog(n/m)) time to
compute aggregate.

Generality

o o
p

P Require FIFO windows

Require invertibility or
commutativity or assoc.

This Work

Require associativity (not but
invertibility nor commutativity)

OK to be non-FIFO



Our Approach

High-level Idea
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Aggregation Interface
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sum of values

StdDev

n
1 72
\ ~ E (w; — ) sum of squares
i=1

r—{c:1,Y:z,0: 2%}

component-wise add
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Perfect Binary Tree

Keep Partial Sum in Internal Nodes

Depth: log n

Changing k leaves affects
< O(k log(n/k)) nodes
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Data Structure Engineering

Minimize pointer chasing
/ Allocate memory in bulk
[ Data Structure J/

Template Place data to help cache
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Main idea:
keep a perfect binary tree, treating leaves as a circular buffer, all laid
out as one array

physical [1[2[3]4|5|6|7[8]9]10[11]|12[13]14]15

binary heap t \

encoding 1

logical 2/ \3
7\ /
i[5 6 7
JAEA /\ A

8| [9]{10]{11][12]|[213][14]]15 0

Q: Non power of 2?7 Dynamic window size? non-FIFO?

The queue’s front and back locations give a natural demarcation.

Resize and rebuild as necessary. Amortized bounds (see paper)
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But...
Circular Buffer Leaves = Window-Ordered Data

leaft view Fix? \When inverted:
1 ] e f g h
/ \ prefix suffix
/ \ / \ ans = combine(suffix, prefix)
A0 1
i 2B 1 2
FR o =z 1 2 3
B, 2 3 48 1 2 3 4
i, =z 4, 2 3 4
sB By 3 4 S B3 4 5



Experimental Analysis

Q What’s the throughput relative to non-incremental?

What's the performance trend under updates of
different sizes?

How does wildly-changing window size affect the
overall throughput?
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What'’s the throughput relative to non-incremental?
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a What’s the performance trend under updates of
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How does wildly-changing window size atfect the

overall throughput?
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lake-Home Points

This work: sliding-window aggregation

* easlly extendible by users and has good

performance

e careful systems + algorithmic design and

engineering (
e general (non-

O

end of
FO, on

Known ideas)

y need associativity)

and fast for large & small windows

It m updates have been made on a window of size n, use

O(mlog(n/m)) time to derive aggregate.

More details: see paper/come to the poster session.
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