General Incremental
Sliding-Window Aggregation

Mahidol University International College, Thailand
(part of this work done at IBM Research, Watson)

Joint work with Martin Hirzel, Scott Schneider, and Kun-Lung Wu
IBM Research, Watson

Dynamic data Is everywhere

a data stream =

caller id:

caller id: M caller id: W caller id: W caller id:
len: len: len: len: len:

timestamp:_

timestamp:_ @ timestamp:_ M@ timestamp:_ @ timestamp:_

tnow \

often interested in a\sliding windov(r
Compute some aggregation on this data

BU”d a SyStem tO X x x Aggregation

in stream

out stream

caller id: _ { caller id: caller id:
SELECT IStreamiMaxiien) AS mxl,
|en: o |en: o v |en: . MaxCount{len) AS num,

ArgMax(len, caller) AS who)

timestamp:_ | timestamp:_ timestamp:_

FROM Catis [Range 24 Hours Slide 1 Minute]|
/1
\ Window S —

Answer the following questions every minute about the
past 24 hrs:

* How long was the longest call?

* How many calls have that duration?

* Who is a caller with that duration?

Answer the following questions every about the
past 24 hrs:

* How long was the longest call?

* How many calls have that duration?

* Who is a caller with that duration?

Basic Solution:

Maintain a sliding window (past 24 hr)

1. 2.0.0.0.0.6.0.6.0.6.60.¢
Nalk through the WInM

every

Simple but slow:
O(n) per query

Improvement Opportunities

Idea: \When window slides, lots of common contents with the
MOSt recent query.

How to Reuse?

> f invertible, keep a running sum: add on arrival, subtract
on departure SuUm

1 .90.0.0.0.60.0.0.0.6 .6 ¢

Partial sum: bundle items that arrive and depart together to

e e
4 ¢ ¢

This Work:

How to engineer sliding-window aggregation so that

} can add new aggregation operations easily

} can get good performance with little hassle

(using a combination of simple, known ideas))

— 9
\'*—-/

Performance

} Good for small updates

(e.q., Arasu-Widom VLDB'04, Moon et al. ICDE’'00)

} Good for large updates

(e.g., Cranor et al. SIGMOD’03,
Krishnamurthi et al. SIGMOD’06)

This Work

Good for Large & Small:

It m updates are made to a window
of size n, use O(mlog(n/m)) time to
compute aggregate.

Generality

o o
p

P Require FIFO windows

Require invertibility or
commutativity or assoc.

This Work

Require associativity (not but
invertibility nor commutativity)

OK to be non-FIFO

Our Approach

High-level Idea

-~

Aggregation Interface

\
User writes User declares

aggregation code query

} map-assoc. reduce-map

Qollowrng an interface
Va]ected into

Template

L Data Structure
Ilznked wzth

c N

v
Window-
Management
9 Library y

Wy

W,

Wy

|

|

by

|

3

2
reduce using\\ 1

a

1

w

n

|

oz

final answer

sum of values

StdDev

n
1 72
\ ~ E (w; —) sum of squares
i=1

r—{c:1,Y:z,0: 2%}

component-wise add

Vi o —%2/0)

Perfect Binary Tree

Keep Partial Sum in Internal Nodes

Depth: log n

Changing k leaves affects
< O(k log(n/k)) nodes

ODelele...®f

Del1e2e3 deobeoo®7

'comb(.,.) '

Data Structure Engineering

Minimize pointer chasing
/ Allocate memory in bulk
[Data Structure J/

Template Place data to help cache

11

Main idea:
keep a perfect binary tree, treating leaves as a circular buffer, all laid
out as one array

physical [1[2[3]4|5|6|7[8]9]10[11]|12[13]14]15

binary heap t \

encoding 1

logical 2/ \3
7\ /
i[5 6 7
JAEA /\ A

8| [9]{10]{11][12]|[213][14]]15 0

Q: Non power of 2?7 Dynamic window size? non-FIFO?

The queue’s front and back locations give a natural demarcation.

Resize and rebuild as necessary. Amortized bounds (see paper)
12

But...
Circular Buffer Leaves = Window-Ordered Data

leaft view Fix? \When inverted:
1] e f g h
/ \ prefix suffix
/ \ / \ ans = combine(suffix, prefix)
A0 1
i 2B 1 2
FR o =z 1 2 3
B, 2 3 48 1 2 3 4
i, =z 4, 2 3 4
sB By 3 4 S B3 4 5

Experimental Analysis

Q What’s the throughput relative to non-incremental?

What's the performance trend under updates of
different sizes?

How does wildly-changing window size affect the
overall throughput?

14

What'’s the throughput relative to non-incremental?

3 | | |
2 5 I_~\ ».. Small windows: <
= A crossover for
S P Max (~ 260)
D 2 S ~~~‘__*’~‘ 5 -
@)p) ~
S *--A\N’ <%
@ ""‘*12 Lg e
5 ok By x*A-L:‘.:_' S e 2
|3 crossover for St B¢
- StdDev (~ 10) Break 10x as early as
o ke n in the thousands)
=
0.5 \
0 | | | |
faster 1 4 16 64 256 1024
‘ Window Size
baseline ISS Max RA Max -

recompute all 1SS StdDev RA StdDgy ---a--- oufScheme

a What’s the performance trend under updates of

2
)
2
Q 1:5
(D)
(d))
£
AL
=
3 1
@)
QD
o
=
i
: 0.5
(@))
>
<C

faster W o

different sizes?

|
M= e
. nm = 4
Our Theory: Process k events in s s
O(1 + log (n/k)) time per event. m=n/16
(g() P m=n/4 --+-- |
”””” ‘ Hl =5 ol ==
o7
e i
G
.
8 7
Ty o s
0
Nl o
e
o 4 ;
..0"""\
'\l.,.._**'.,._. .
B s i il i o g e sl Sl T ol

.

4 16 64 256 1K 4K 16K 64K 256K 1M 4M
Window Size (n)

16

S 2
=
@)
o
((b)
(dp)
Ol 5
O
=
= 1
)
|_
o
Q.05
%
@
O
2 0
<C

How does wildly-changing window size atfect the

overall throughput?
| | I I I I | I I I I
RA StdDev (fixed) ---4--- RA StdDev (osc.)
- RA Max (fixed) ---:e--- RA Max (osc.) ---+:
“ —*—*—_‘
o ,;e_*_‘;_‘”::""' o
= *_A—:::.v-"’ ¥ I
ey 4 .|._--|-"'""+
£3 3-—-':‘—""7"’4_ I e
PV 3+ L D0t da R il
;1*.1#'#:$¥-’§f--+-'+ L %
I I I I I I I I I I I
4 16 64 256 1K 4K 16K 64K 256K 1M 4M

Window Size

lake-Home Points

This work: sliding-window aggregation

* easlly extendible by users and has good

performance

e careful systems + algorithmic design and

engineering (
e general (non-

O

end of
FO, on

Known ideas)

y need associativity)

and fast for large & small windows

It m updates have been made on a window of size n, use

O(mlog(n/m)) time to derive aggregate.

More details: see paper/come to the poster session.

18

