
General Incremental
Sliding-Window Aggregation

Kanat Tangwongsan
Mahidol University International College, Thailand
(part of this work done at IBM Research, Watson)

Joint work with Martin Hirzel, Scott Schneider, and Kun-Lung Wu
IBM Research, Watson

Dynamic data is everywhere

caller_id: __	

 len: __	

 timestamp:_

caller_id: __	

 len: __	

 timestamp:_

caller_id: __	

 len: __	

 timestamp:_

caller_id: __	

 len: __	

 timestamp:_

caller_id: __	

 len: __	

 timestamp:_

tnow

often interested in a sliding window

2

Compute some aggregation on this data

a data stream =

caller_id: __	

 len: __	

 timestamp:_

…

in stream
out stream

…

Aggregation

Window

caller_id: __	

 len: __	

 timestamp:_

caller_id: __	

 len: __	

 timestamp:_

…

Build a system to…

Answer the following questions every minute about the
past 24 hrs:

• How long was the longest call?
• How many calls have that duration?
• Who is a caller with that duration?

3

Answer the following questions every minute about the
past 24 hrs:

• How long was the longest call?
• How many calls have that duration?
• Who is a caller with that duration?

Basic Solution:

Maintain a sliding window (past 24 hr)

Walk through the window
every minute

Simple but slow:
O(n) per query

4

Improvement Opportunities
Idea: When window slides, lots of common contents with the
most recent query.

How to Reuse?
If invertible, keep a running sum: add on arrival, subtract
on departure sum

Partial sum: bundle items that arrive and depart together to
reduce # of items in the window.

5

This Work:
How to engineer sliding-window aggregation so that

can add new aggregation operations easily

can get good performance with little hassle

6

(using a combination of simple, known ideas)

Performance Generality

This Work

Require invertibility or
commutativity or assoc.

Require FIFO windows

Prior Work

7

Good for small updates

Good for large updates

Prior Work

(e.g., Arasu-Widom VLDB’04, Moon et al. ICDE’00)

(e.g., Cranor et al. SIGMOD’03,
Krishnamurthi et al. SIGMOD’06)

This Work

Require associativity (not but
invertibility nor commutativity)

OK to be non-FIFO

Good for Large & Small:
If m updates are made to a window
of size n, use O(mlog(n/m)) time to
compute aggregate.

Our Approach
High-level Idea Aggregation Interface

map-assoc. reduce-map

w1 w2 w3 wn…

t1 t2 t3 tn…
lift

a
combine
reduce using

lower

final answer

User declares
query

Data Structure
Template

injected into

Window-
Management

Library

linked with

User writes
aggregation code

following an interface

8

9

Example

StdDev

lift

combine component-wise add

lower

x 7! {c : 1,⌃ : x,� : x2}

q
1
c (� � ⌃2/c)

vuut 1
n

nX

i=1

(wi � x̄)2

count

sum of values

sum of squares

Perfect Binary Tree

10
w[0] w[1] w[2]

Depth: log n

w[3]

Changing k leaves affects
≤ O(k log(n/k)) nodes

w[4] w[5] w[6] w[7]

comb(.,.) comb(.,.) comb(.,.) comb(.,.)

comb(.,.) comb(.,.)

comb(.,.)

0⍟1 2⍟3 4⍟5 6⍟7

0⍟1⍟2⍟3 4⍟5⍟6⍟7

0⍟1⍟2⍟…⍟7

Keep Partial Sum in Internal Nodes

Data Structure Engineering

User writes code
following an

interface

Data Structure
Template

injected into

Window-
Management

Library

linked with

Minimize pointer chasing

Allocate memory in bulk

Place data to help cache

11

12

Main idea:

keep a perfect binary tree, treating leaves as a circular buffer, all laid
out as one array

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

logical
8

9

15

14

13
12

11

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15physical

binary heap
encoding

Q: Non power of 2? Dynamic window size? non-FIFO?

The queue’s front and back locations give a natural demarcation.

Resize and rebuild as necessary. Amortized bounds (see paper)

But…
Circular Buffer Leaves != Window-Ordered Data

1

1 2

1 2 3
1 2 3 4

2 3 4
2 3 45

F B

F

F

F

F

F

B

B

B

B

B

leaf view window view

1

1
1
1

2
2

2
2
2

3

3
3
3

4
4
4 5

Fix? When inverted:
i j e f g hFB

suffixprefix

ans = combine(suffix, prefix)

13

Experimental Analysis

What’s the throughput relative to non-incremental?1

What’s the performance trend under updates of
different sizes?2

How does wildly-changing window size affect the
overall throughput?3

14

our scheme
15

crossover for
StdDev (~ 10)

crossover for
Max (~ 260)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 4 16 64 256 1024

M
ill

io
n

 T
u

p
le

s/
S

e
co

n
d

Window Size

ISS Max
ISS StdDev

RA Max
RA StdDev

Small windows:
slow down ≤ 10%

Break 10x as early as
n in the thousands

What’s the throughput relative to non-incremental?1

faster

baseline
recompute all

 0

 0.5

 1

 1.5

 2

 1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

A
vg

.
P

e
r-

tu
p
le

 C
o
st

 (
M

ic
ro

se
co

n
d
s)

Window Size (n)

m = 1
m = 4

m = 64
m = n/16
m = n/4

m = n

Our Theory: Process k events in
O(1 + log (n/k)) time per event.

What’s the performance trend under updates of
different sizes?2

faster

16

 0

 0.5

 1

 1.5

 2

 1 4 16 64 256 1K 4K 16K 64K 256K 1M 4MA
vg

 C
o

st
 P

e
r

T
u

p
le

 (
M

ic
ro

se
co

n
d

s)

Window Size

RA StdDev (fixed)
RA Max (fixed)

RA StdDev (osc.)
RA Max (osc.)

How does wildly-changing window size affect the
overall throughput?

3

faster

17

18

Take-Home Points

More details: see paper/come to the poster session.

This work: sliding-window aggregation
• easily extendible by users and has good

performance
• careful systems + algorithmic design and

engineering (blend of known ideas)
• general (non-FIFO, only need associativity)

and fast for large & small windows
If m updates have been made on a window of size n, use
O(mlog(n/m)) time to derive aggregate.

