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ABSTRACT
Sliding-window aggregation is a widely-used approach for extract-
ing insights from the most recent portion of a data stream. Most
aggregation operations of interest can be cast as binary operators
that are associative, but not necessarily commutative nor invert-
ible. However, non-invertible operators are nontrivial to support
efficiently. The best existing algorithms for this setting require
Oplog nq aggregation steps per window operation, where n is the
window size at that point.

This paper presents DABA, a novel algorithm that significantly
improves upon this time bound, assuming the sliding window has
FIFO semantics. DABA requires only Op1q aggregation steps, in the
worst case, per window operation. As such, DABA asymptotically
improves the performance of sliding-window aggregation without re-
stricting the operator to be invertible. Furthermore, our experimental
results demonstrate that these theoretic improvements hold in prac-
tice. DABA is a significant improvement over the state-of-the-art
for both throughput and latency.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—systems

General Terms
Algorithms, Performance

Keywords
Stream processing, aggregation, sliding windows, data structures,
continous analytics, (de-)amortization.

1. INTRODUCTION
The last several years have witnessed a proliferation of high-speed

continuous data sources in virtually all domains, including social,
transportation, financial, telecommunications, medical, and more.
For many of these data sources, quick reactions are more valuable
than late reactions. This has led to the rise of stream processing
systems. Many technology companies have built their own stream-
ing platforms, including AT&T [8], Yahoo! [17], Microsoft [2, 16],

IBM [10], Google [1], and Twitter [6, 22]. Others embrace open-
source offerings [25] or purchase licenses to commercial platforms.
Stream processing is growing and maturing.

Velocity is key in stream processing. In many applications, the
newest data is often more relevant or valuable than older data, and
has to be analyzed rapidly. To this end, most streaming systems
operate on sliding windows, for example, the last hour’s worth of
data. The notion of sliding windows not only provides intuitive
semantics to the end users but also helps bound the storage space
required by a stream-processing system in a meaningful way.

Aggregation is one of the most common operations performed
over sliding windows. Following Boykin et al. [6], we use the term
aggregation broadly, to include both classical relational aggregation
operators such as sum, average, minimum, and maximum, as well as
a more general class of associative operators. For instance, Bloom
filters [5] can be implemented as an associative binary operator.

For invertible operators, sliding-window aggregation is easy: one
can keep a running sum and subtract off the value upon eviction.
However, many aggregation operators of prime interest are not
invertible. In this case, the problem becomes much more involved
and has been a topic of extensive research [3, 4, 12, 13, 15, 21, 23].

To sidestep the need for an inverse operation, the state-of-the-art
approaches maintain some number of partial sums in the form of a
balanced aggregation tree or a set of dyadic intervals [3, 21]. This
allows them to support sliding-window aggregation (query, insert,
and evict) by making about Oplog nq calls to the aggregation opera-
tors, where n is the window size at that time. These approaches also
differ in whether the bounds are amortized or hold in the worst case.

1.1 Our Contributions
In this paper, we present novel algorithms that support sliding-

window aggregation using only Op1q aggregation operator invo-
cations per sliding-window operation (insert, evict, and query),
asymptotically improving upon the previous gold standard of Oplog nq.
For constant-time aggregation operators, this ultimately means Op1q
time per sliding-window operation.

Our algorithms support both fixed-sized and variable-sized win-
dows, and are designed to minimize memory allocation and pointer
chasing. They work as long as the aggregation operators are asso-
ciative (no requirements for invertibility or commutativity) and the
window has first-in first-out (FIFO) semantics; more details of what
is supported are given in Section 2. As far as we know, these are the
first algorithms that are able to achieve constant-time bounds. Our
main contributions are:
— Amortized Op1q Sliding-Window Aggregation: We first describe
a simple algorithm for sliding-window aggregation, called two-
stacks, that nonetheless uses only amortized Op1q aggregation-
operator invocations. Our starting point is the observation that
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one can easily maintain aggregation on a stack (Section 3). We
then derive the two-stack algorithm by extending a technique for
implementing a FIFO queue using two stacks so that it supports
aggregation. This is described in Section 4.

— Worst-Case Op1q Sliding-Window Aggregation: We present an
improved algorithm, called DABA, that “deamortizes” the two-stack
algorithm, resulting in an algorithm for sliding-window aggregation
that requires at most Op1q (the constant is 3) aggregation-operator
invocations per sliding-window action. We describe this algorithm
in two steps. First, we present an algorithm called ABA (Section 5),
which improves upon two-stacks in terms of memory allocation and
data movement. Then, we derive DABA (Section 6) by systemati-
cally performing the high-latency action gradually over time.

— Extensive Experimental Analysis: We have implemented our
new algorithms in C++ and benchmarked them against several al-
ternative approaches. The results show that our algorithms have
small overhead: only slightly slower than naïve approaches for very
small windows. For moderate and large windows, they outperform
existing algorithms by a large margin, thanks to the asymptotic
differences. When the associative operator of the underlying aggre-
gation (such as maximum or Bloom filters) is constant-time, then
our algorithms offer constant-time sliding-window aggregation and
that constant is small.

Two of our algorithms are called ABA and DABA, which stand
for Amortized Banker’s Aggregator and Deamortized Banker’s Ag-
gregator, respectively. The reference to banker’s aggregator comes
from the banker’s queue of Okasaki [19], which inspired this work
(see Section 8 for further discussion). The banker’s queue is a per-
sistent (functional) data structure based on the banker’s method for
amortized analysis of algorithms, which tracks money movements
between the algorithm and a (fictitious) bank.

2. BACKGROUND AND MODEL
In this section, we formalize the problem of maintaining aggre-

gation in a first-in first-out sliding window and discuss the kinds of
aggregation operations supported in this work.

2.1 Sliding-Window Aggregation Data Type
Sliding-window aggregation is often performed on a first-in first-

out (FIFO) window. In this type of window, the earliest data item
to arrive is also the earliest data item to leave the window. Hence,
the sliding window is essentially a queue that supports aggregation
of the queue’s data from the earliest to the latest. As a queue, the
window is only affected by two kinds of changes:

Data Arrival: The arrival of a window data item results in a new
data item at the end of the window. This is often triggered by
the arrival of a data item in a relevant data stream.

Data Eviction: An eviction causes the data item at the front of
the window to be removed from the window. The choice
of when this happens is typically controlled by the window
policy (e.g., a time based window evicts the earliest data item
when it falls out of the time-frame of interest and a fixed-size
window evicts the earliest data item to keep the size constant).

We model the problem of maintaining aggregation in a FIFO
sliding window as an abstract data type (ADT), with an interface
similar to that of a queue. To begin, we review the concept of an
algebraic structure called a monoid:

Definition 1 (Monoid) A monoid is a tripleM “ pS ,‘, 0̄q where
‘ : S ˆ S Ñ S is a binary operator on S such that
– Associativity: For all a, b, c P S , a‘ pb‘ cq “ pa‘ bq ‘ c; and
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Figure 1: SWAG example trace. The sliding-window maintains the maxi-
mum value, depicted in a boldface font surrounded by a shaded circle.

– Identity: 0̄ P S is the identity: 0̄‘ a “ a “ a‘ 0̄ for all a P S .

In comparison to real-number arithmetic, the‘ operator can be seen
as a generalization of arithmetic addition where the identity element
is a generalization of the number 0.

We say that a monoid is commutative if a ‘ b “ b ‘ a for
all a, b P S . We say that the monoid has a left inverse if there
exists a (known and reasonably cheap) function invp¨q such that
a‘ b‘ invpaq “ b for all a, b P S . In general, a monoid may not
be commutative nor invertible.

In the context of aggregation, monoids strike a good balance
between generality and efficiency as demonstrated in previous pa-
pers [6, 21, 24]. For this reason, we focus our attention on supporting
monoidal aggregation, formulating the data type as follows:

Definition 2 (Sliding-Window Aggregation) The first-in first-out
sliding-window aggregation (SWAG) data type is to maintain a
collection of window data that supports the following operations:

‚ newp‘, 0̄q creates an empty instance of SWAG that computes
aggregation prescribed by the monoid that has‘ as the binary
operator and 0̄ as its identity element.

‚ insertpvq adds v to the rear of the sliding window. That
is, if the sliding window contains values v0, v2, . . . , vn´1 in
their arrival order, then insertpvq updates the collection to
v10, v

1
1, . . . , v

1
n, where v1i “ vi for i “ 0, 1, . . . , n´1 and v1n “ v.

‚ evictpq removes the oldest item from the sliding window.
That is, if the sliding window contains values v0, v1, . . . , vn´1

in their arrival order, then evictpq updates the collection to
v10, v

1
1, . . . , v

1
n´2, where v1i “ vi`1 for i “ 0, 1, 2, . . . , n´ 2.

‚ querypq returns the ordered monoidal sum of the window data.
That is, if the sliding window contains values v0, v1, . . . , vn´1

in their arrival order, query will return v0 ‘ v1 ‘ ¨ ¨ ¨ ‘ vn´1.
If the window is empty, query will return 0̄.

Throughout the paper, we will denote by n the size of the current
sliding window and refer to the contents of the sliding window as
v0, v1, . . . , vn´1, in their arrival order. This means v0 is the oldest
element and vn´1 is the youngest element.

Example: As a running example, Figure 1 shows a typical interac-
tion with the SWAG data type. At the beginning, a SWAG instance
is created with the max function as the binary operator and ´8 as
the identity element. It is easy to check that this is a monoid. Steps
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in the figure show SWAG interactions starting from a sliding win-
dow containing elements 2, 6, 3, 5, 3. For each state in the trace, the
maximum element in the window is shown in bold. Step (a)Ñ(b)
evicts the element at the front (2), causing the window to be 6, 3, 5, 3.
Step (b)Ñ(c) then inserts 1, yielding the window 6, 3, 5, 3, 1. The
remaining steps alternate between evict and insert operations,
causing the maximum to change. It should be stressed that even
though in this trace, insert and evict alternate, the SWAG data
type, as well all our algorithms, places no restrictions on how insert
and evict may be called. They can be arbitrarily interleaved, sup-
porting, e.g., dynamically-sized windows.

2.2 Aggregation on Monoids
Despite the simplicity, monoids are expressive enough to capture

all basic aggregation operations [6, 21], as well as more sophisti-
cated operations such as maintaining approximate membership via
a Bloom filter [5], maintaining an approximate count of distinct
elements [9], and maintaining the versatile count-min sketch [7].

However, many aggregation operations (e.g., standard deviation)
are not themselves monoids but can be couched as operations on a
monoid with the help of two extra steps. To accomplish this, prior
work [21] gives a framework for the user to provide three types In,
Agg, and Out and write three functions as follows:

‚ liftpe : Inq : Agg takes an element of the input type and
“lifts” it to an element of an aggregation type that will be
monoid operable.

‚ combinepv1 : Agg, v2 : Aggq : Agg is a binary operator that
operates on the aggregation type. In our paper’s terminology,
combine is the monoidal binary operator ‘.

‚ lowerpa : Aggq : Out turns an element of the aggregation type
into an element of the output type.

In this framework, a query is conceptually answered as follows: If
the sliding window consists of the elements e0, e1, . . . , en´1, from
the earliest to the latest, then lift derives vi “ liftpeiq for i “
0, 1, 2, . . . , n ´ 1. Then, combine, rendered as infix ‘, is used to
compute a “ v0 ‘ v1 ‘ . . . vn´1. Finally, lower is used to produce
the final answer as lowerpaq.

Note that lift only needs to be applied to each element when it
first arrives and lower, to query results at the end. As a result, the
present paper focuses exclusively on the issue of maintaining the
monoidal sum—i.e., how to call combine as rarely as possible.

3. TOOL: STACK AGGREGATION
This section describes a key ingredient of this work: how to

efficiently maintain aggregation on a stack. While this may seem
unrelated to sliding-window aggregation at first, it will be the basic
building block for our efficient SWAG implementations.

The basic stack data type supports push and pop operations, which
insert and remove an element, respectively. In a stack, the last
element to arrive is the first element to be removed. Hence, both
push and pop operations work on the same end. This differs from
the queue, whose operations work on opposite ends. Because of this
difference, aggregation on a stack is much easier to maintain.

Our solution is depicted in Figure 2. We keep a stack of inserted
values (shaded in gray), where each value is associated with the
(monoidal) sum of the values from the bottom of the stack to itself:
‚ The push operation has two simple steps: (1) add the element

to the stack; (2) compute the corresponding sum by reading
the sum from below and adding the new item to it;

‚ The pop operation is even simpler: just remove the entry at
the top of the stack, including its corresponding sum; and

a
b

c push

a
b
c

a
b
c

c
pop

Figure 2: Aggregation on a stack-like (LIFO) collection.
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Figure 3: Two-Stacks example execution trace.

‚ The query operation simply reports the sum at the top of the
stack, which equals the sum of the whole stack’s contents.

Overall, this requires one invocation to ‘ per stack operation. In
other words, this solution supports push, pop, and query in Op1q
time provided that each ‘ takes Op1q time.

At this point, we have a stack that can maintain aggregation at
virtually no additional cost. The next section describes how to use
this for aggregation on a sliding window, which has the opposite
data movement semantics.

4. TWO-STACKS ALGORITHM
This section presents a simple, amortized Op1q algorithm that

implements the SWAG data type. The main idea is to apply a classic
technique from functional programming for implementing a FIFO
queue using two stacks after extending it to support aggregation.
The two stacks are the stack structure that supports aggregation from
the previous section. The resulting algorithm invokes the monoid’s
‘ operation amortized Op1q times per invocation of query, insert,
and evict methods.

Example: We begin describing the algorithm by way of example.
Figure 3 depicts the states of the two-stacks algorithm corresponding
directly to the same states (a) through (i) in Figure 1.

In broad strokes, the two-stacks algorithm maintains the two ends
of the sliding window as two separate stacks: the front stack sF

and the back stack sB. Several features are worth noting: First, the
sliding-window (FIFO) order of values can be obtained by reading
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sF (front) sB (back)

val agg val agg

Figure 4: Two-Stacks data structure.

1 fun query()

2 return Σ
‘
F ‘ Σ

‘
B

3 fun insert(v)
4 sB.push(val Ð v, agg Ð Σ

‘
B ‘ v)

5 fun evict()
6 if sF.empty()
7 flip()
8 sF.pop()

9 fun Σ
‘
F

10 return sF.empty() ? 0̄ : sF.peek().agg

11 fun Σ
‘
B

12 return sB.empty() ? 0̄ : sB.peek().agg
13 fun flip()
14 while not sB.empty()
15 v Ð sB.peek().val
16 sB.pop()

17 sF.push(val Ð v, agg Ð v‘ Σ
‘
F )

Figure 5: Two-Stacks algorithm.

the val fields of the front stack sF top-down followed by the val
fields of the back stack sB bottom-up.

Second, partial monoidal sums (i.e., cumulative maxima), stored
in the agg attribute, are cumulative sums bottom-up for the respective
stack. Hence, at any point, the aggregate over the entire sliding-
window (i.e., the maximum value of the slding-window in this
case) is the aggregation value at the top of sF combined with the
aggregation value at the top of sB (i.e., the maximum of the two
stacks in this case).

Third, insert pushes an element onto the back stack and evict
pops an element from the front stack. For example, evict in Step
(a)Ñ(b) pops one value and cumulative sum from sF , and insert
in Step (b)Ñ(c) pushes one value and cumulative sum onto sB.

Forth, with this arrangement, it is possible to “subtract” off the
evicted element without having an inverse function. Indeed, in Step
(c)Ñ(d), a new lower maximum is reached without needing the
inverse of the max-monoid. To support evict, the algorithm simply
removes the top of sF . The problem now is, the algorithm cannot
keep on popping from sF forever; it will become empty. What to do
when the front stack sF become empty?

Finally, when the front stack is empty, the following evict re-
verses sB onto sF . Step (e)Ñ(f) illustrates an evict on an empty sF ,
which first reverses sB onto sF as shown in the intermediate state (f1)
and proceeds with the usual evict process.

Details and Theorems: More generally, the SWAG operations
can be supported as follows: Figure 4 shows the two-stacks data
structure, consisting of two stacks, sF and sB. Focusing first on
the val fields, the top of sF holds the oldest value, thus optimizing
for evict. The value at the bottom of sF immediately precedes the
value at the bottom of sB. The top of sB holds the newest value, thus
optimizing for insert. In other words, sF is in reverse order. An
occasional flip operation reverses sB onto sF . Formally, the data

structure obeys the invariant that the ith oldest value in the FIFO is

vi “

"

sFr|sF | ´ 1´ is.val if i ă |sF |

sBri´ |sF |s.val otherwise

Turning our attention to the agg components, the aggregates
within each of the two stacks are cumulative from the bottom. Fig-
ure 4 indicates this with the ‚

| notation, where agg[‚] holds the
monoidal sum of the values next to the vertical line |. Formally, the
data structure obeys the invariants

@i P 0 . . . |sF | ´ 1 : sFris.agg “ sFris.val‘ . . .‘ sFr0s.val
and @i P 0 . . . |sB| ´ 1 : sBris.agg “ sBr0s.val‘ . . .‘ sBris.val

Crucially, the aggregation order in sF is the opposite of that of sB,
so the algorithm works correctly even if ‘ is not commutative. As a
direct result of these invariants, the total aggregation is the sum of
the aggregations at the tops of the two stacks.

Figure 5 lists the pseudo-code for the Two-Stacks algorithm.
Functions query, insert, and evict implement the SWAG abstract
data type. The remaining functions are helper functions. Functions
Σ‘F and Σ‘B return the aggregation of the front and back stacks,
respectively, as either the monoid’s identity element 0̄ if the stack
is empty, or the top-most agg otherwise. Function flip reverses sB

onto sF . Since order matters for non-commutative monoids, Line 4
adds v on the right (v is younger in FIFO order), whereas Line 17
adds v on the left (v is older in FIFO order).

Theorem 3 If the window currently contains the values v0, . . . , vn´1,
Two-Stacks query returns v0 ‘ . . .‘ vn´1.

Proof. The algorithm in Figure 5 maintains the invariants de-
scribed earlier in this section. The theorem follows from those
invariants.

Theorem 4 Each invocation of query, insert, or evict of Two-
Stacks makes amortized O(1) invocations of ‘.

Proof. The only loop occurs in flip, and it can be amortized
by charging to the corresponding insert invocations that pushed
elements onto sB in the first place.

We remark that if query is called more frequently than the window
changes, it is useful to enhance the algorithm slightly: query can
cache its result to avoid redundant invocations of ‘. To enable this
optimization, insert or evict must invalidate that cache.

One drawback of the two-stacks implementation is that function
flip copies the entire data structure, including values. The next
section shows how to avoid that copy.

5. ABA ALGORITHM
This section presents an algorithm that improves upon the two-

stacks algorithm in the previous section in terms of memory effi-
ciency. Inspired by Okasaki’s notion of banker’s queue, the algo-
rithm is called ABA for Amortized Banker’s Aggregator. Similar to
the two-stacks algorithm, ABA achieves amortized Op1q invocations
of ‘ per invocation of query, insert, and evict. This is also done
by maintaining two stacks. However, they are maintained implic-
itly: ABA updates its data structure in-place and reuses memory to
avoid unnecessary copying. Concepts introduced in ABA will help
understand the DABA algorithm in the next section.

The ABA data structure is schematically depicted in Figure 6.
The idea is as follows: Imagine taking the two stacks from the
previous algorithm, rotating sF left and sB right, and joining the
bottoms. Instead of maintaining two stacks separately, the algorithm
can virtually maintain sublists lF and lB within a queue. Three
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Figure 6: ABA data structure.

1 fun query()

2 return Σ
‘
F ‘ Σ

‘
B

3 fun insert(v)
4 vals.pushBack(v)
5 aggs.pushBack(Σ‘B ‘ v)
6 fun evict()
7 if F “ B ^ B ‰ E
8 flip()
9 vals.popFront(), aggs.popFront()

10 fun Σ
‘
F

11 return (F “ B) ? 0̄ : aggs[F]

12 fun Σ
‘
B

13 return (B “ E) ? 0̄ : aggs[E - 1]
14 fun flip()
15 I Ð E - 1
16 aggs[I] Ð vals[I]
17 while I ‰ F
18 I Ð I - 1
19 aggs[I] Ð vals[I] ‘ aggs[I + 1]
20 B Ð E

Figure 7: ABA algorithm.

[0] [1] [2] [3] [4] [5] [6] [S]

Figure 8: Chunked-array queue: the front and back pointers are marked
with an arrow. S is the sentinel.
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flip( )

after flip( )
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Figure 9: ABA example execution trace.

pointers F, B, and E mark the front, back, and end of the queue,
respectively. These three pointers are always ordered

F ď B and B ď E.

ABA obeys the invariant that the ith oldest FIFO value is

vi “ valsrF ` is

The ‚́ and ‚́ notation in Figure 6 indicates that aggsr‚s holds
the monoidal sum of the values above the horizontal line ´. The
corresponding invariants are

@i P F . . . B´ 1 : aggsris “ valsris ‘ . . .‘ valsrB´ 1s
and @i P B . . . E ´ 1 : aggsris “ valsrBs ‘ . . .‘ valsris

Notice that these are the same invariants from the two-stacks
algorithm, recast for the implicit-stack setting.

Low-Overhead Queue: ABA relies on an underlying queue data
structure. An attractive option is a chunked-array queue, i.e., a
doubly-linked list of fixed-sized arrays, as illustrated in Figure 8.
Chunked-array queues implement pushBack and popFront in worst-
case Op1q time. Tuning the chunk size trades off allocation and
dereference overhead (small chunks) against internal fragmenta-
tion (large chunks). A pointer into the chunked-array queue is a
xchunk, indexy pair and supports increment, decrement, read, and
write all in worst-case Op1q time. By placing a sentinel directly past
the end of the queue, the pointer E to the end remains meaningful
after pushBack.

Figure 7 shows the ABA algorithm. It corresponds directly
to the two-stacks algorithm in Figure 5. Note that for a non-
commutative monoid, the order of arguments to ‘ matters (see
Line 5 vs. Line 19).

Example: Figure 9 gives an example of ABA in action, using the
same states (a) to (i) as the SWAG example in Figure 1. Just like

for the Two-Stacks algorithm, the most interesting step for ABA is
from (e) to (f) via flip (f1).

Theorem 5 If the window currently contains the values v0, . . . , vn´1,
ABA query returns v0 ‘ . . .‘ vn´1.

Proof. The algorithm in Figure 7 maintains the invariants de-
scribed earlier in this section. The theorem follows from those
invariants.

Theorem 6 Each invocation of ABA query, insert, or evictmakes
amortized Op1q invocations of ‘.

Proof. The only loop occurs in flip, and it can be amortized
by charging to the corresponding insert invocations that pushed
elements onto lB in the first place.

The same caching optimization for query in the two-stacks algo-
rithm can also be applied to query in ABA.

The only Opnq operation of ABA is flip, which only occurs oc-
casionally. Still, this is undesirable in latency-sensitive applications.
The next section shows how to deamortize the algorithm, gradually
carrying out the work of flip over time.

6. DABA ALGORITHM
Building on algorithms from the previous sections, this section

describes an algorithm that supports each SWAG operation using
Op1q invocations of ‘ in the worst case. The algorithm is called
DABA for De-Amortized Banker’s Aggregator, a deamortized ver-
sion of ABA. We begin this section with an intuition for the ideas
behind DABA (Sections 6.1 and 6.2). Following that, we present
the invariants and the algorithm (Section 6.3), and conclude with
theorems about correctness and complexity of DABA (Section 6.4).
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Figure 10: DABA data structure.

6.1 DABA Data Structure
DABA takes ABA’s data structure and enhances it with ideas

to incrementally perform the flip operation, thereby reducing the
worst-case latency by smoothing it out over a number of operations.

A few new ideas are needed. We discuss them in turn, leading to
the data structure schematically depicted in Figure 10.

First, start reversing lB early. If the algorithm waited until lF is
empty, it would be too late, as it would require a loop to reverse lB.
Instead, DABA starts earlier, and does a little bit of reversal work
with each insert and evict. Observe that insert increases |lB| by
one, and evict decreases |lF | by one, so both functions decrease
|lF | ´ |lB| by one. Therefore, DABA starts the reversal when |lF | “

|lB|, and then does one unit of reversal work on each insert or
evict, so it completes the reversal exactly on time.

Second, when the reversal starts, turn the old lF and lB into virtual
sublists of the new lF . We name the new virtual sublists lL (left)
and lR (right). Since the reversal starts when the old lF and lB

have equal length, the new lL and lR start out with equal length too.
By arranging for lL and lR to shrink at the same pace, |lL| “ |lR|

remains true throughout. Recall that in ABA, lF and lB can be
viewed as two stacks rotated and juxtaposed at the bottoms. The
boundary between the two remains fixed through normal steps of
the algorithm, as illustrated in the example ABA trace in Figure 9.
Similarly in DABA, the same is true for lL and lR: as long as they
are still non-empty, while they are shrinking, the boundary between
them remains fixed.

Third, leave room within lF both before and after lL and lR. In
the front portion of lF , aggs holds partial sums up to the end of lF ,
making it possible to answer query with Σ‘F ‘ Σ‘B , just like in ABA.
Likewise, in the rear portion of lF , called lA (accumulator), aggs
also holds partial sums up to the end of lF .

Putting them all together, we have the data structure in Figure 10.
At the top-level, it consists of two virtual sublists lF and lB. Within
lF , there are three virtual sublists lL, lR, and lA. As before, the ‚́
and ‚́ notation indicates that aggsr‚s holds the monoidal sum of
the values above the horizontal line ´.

6.2 DABA Incremental Reversal
The incremental reversal starts with flip, which merely turns the

old lF and lB into the new lL and lR. Notice that flip, unlike before,
does not contain a loop. Figure 11 illustrates that since the contents
of aggs already have the desired layout, all this entails is assigning
three pointers: L Ð F, A Ð E, B Ð E.

After flip, the incremental reversal continues with shrinking
lL and lR. Figure 12 illustrates this. When shrinking lL, the first
element of lL becomes an element of the front portion of lF . It must
therefore be associated with the partial sum all the way to the B
pointer. That partial sum is the sum of the aggregates of the three
sublists lL, lR, and lA, which are already available:

aggs[L] Ð Σ
‘
L ‘ Σ

‘
R ‘ Σ

‘
A

L Ð L + 1

F

L

R

A

B E

vals

aggs

F

L R

A

B

E

vals

aggs

lBlF

lRlL

Figure 11: DABA flip.
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Figure 12: DABA shrinking lL and lR.
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Figure 13: DABA free ride.
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When shrinking lR, the last element of lR becomes the new first
element of lA. It must therefore extend the partial sum of lA by one
additional element:

aggs[A - 1] Ð vals[A - 1] ‘ Σ
‘
A

A Ð A - 1

After the incremental reversal finishes shrinking lL and lR, they
are empty, and what remains is the front portion of lF followed
immediately by lA. The top of Figure 13 shows this situation. At
this point, in all of lF , the aggregates shown as ‚́ go up to the
end of lF . That means that the algorithm can simply increment the
pointers L, R, and A without changing aggs. In other words, this last
phase of the incremental reversal is a free ride. In fact, it would even
be possible to jump ahead and move pointers L, R, and A all the
way to B in one fell swoop. However, incrementing them one step
at a time delays the next flip, thus avoiding prematurely starting
the next reversal.

6.3 DABA Invariants
Like ABA, DABA also obeys the invariant that the ith oldest value

in the FIFO is stored at

vi “ valsrF ` is

The pointers demarcating sublists are always ordered:

F ď L and L ď R and R ď A and A ď B and B ď E

The invariants defining the contents of aggs formalize what Fig-
ure 10 shows intuitively with the ‚́ and ‚́ notations:

@i P F . . . L´ 1 : aggsris “ valsris ‘ . . .‘ valsrB´ 1s
and @i P L . . .R´ 1 : aggsris “ valsris ‘ . . .‘ valsrR´ 1s
and @i P R . . . A´ 1 : aggsris “ valsrRs ‘ . . .‘ valsris
and @i P A . . . B´ 1 : aggsris “ valsris ‘ . . .‘ valsrB´ 1s
and @i P B . . . E ´ 1 : aggsris “ valsrBs ‘ . . .‘ valsris

Finally, DABA has invariants on the sizes of sublists, which are
central for the deamortization to work correctly:

´

|lF | “ 0 and |lB| “ 0
¯

or
´

|lL| ` |lR| ` |lA| ` 1 “ |lF | ´ |lB| and |lL| “ |lR|

¯

The invariants treat the empty and non-empty cases separately.
In the empty case (|lF | “ 0 and |lB| “ 0), only insert can change
the data structure, since evict on an empty window is not allowed.
After insert, the window has size 1, and it is trivial to arrange
for that single element to be in lF by pointer manipulation without
needing the monoid’s ‘ operator.

The non-empty case is governed by two invariants:
‚ |lL| ` |lR| ` |lA| ` 1 “ |lF | ´ |lB|

The left side of this equation is the number of incremental
reversal steps required to shrink the sublists of lF until they
are empty, plus one element in the front portion of lF to offer
easy access to Σ‘F . The right side of this equation is the
number of available steps until the next reversal must start,
corresponding to the first idea in Section 6.1.

‚ |lL| “ |lR|

As discussed in the second idea of Section 6.1, lL and lR start
out with the same size and then shrink at the same pace.

Figure 14 shows the entire DABA algorithm. Both insert and
evict must call fixup to make progress on incremental reversal.
Lines 21-22 handle the case where the window was empty before
insert and now has exactly one element in lB, and places that ele-
ment into lF . Lines 24-25 start the incremental reversal with a flip,

1 fun query()

2 return Σ
‘
F ‘ Σ

‘
B

3 fun insert(v)
4 vals.pushBack(v)
5 aggs.pushBack(Σ‘B ‘ v)
6 fixup()
7 fun evict()
8 vals.popFront(), aggs.popFront()
9 fixup()

10 fun Σ
‘
F

11 return (F “ B) ? 0̄ : aggs[F]

12 fun Σ
‘
B

13 return (B “ E) ? 0̄ : aggs[E - 1]

14 fun Σ
‘
L

15 return (L “ R) ? 0̄ : aggs[L]

16 fun Σ
‘
R

17 return (R “ A) ? 0̄ : aggs[A - 1]

18 fun Σ
‘
A

19 return (A “ B) ? 0̄ : aggs[A]
20 fun fixup()
21 if F “ B
22 B Ð E, A Ð E, R Ð E, L Ð E
23 else
24 if L “ B
25 flip()
26 if L “ R // free ride, lL and lR are empty
27 A Ð A + 1, R Ð R + 1, L Ð L + 1
28 else // shrink lL and lR
29 aggs[L] Ð Σ

‘
L ‘ Σ

‘
R ‘ Σ

‘
A

30 L Ð L + 1

31 aggs[A - 1] Ð vals[A - 1] ‘ Σ
‘
A

32 A Ð A - 1
33 fun flip()
34 L Ð F, A Ð E, B Ð E

Figure 14: DABA algorithm.
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evict
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before flip( )

after flip( )
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Figure 15: DABA example execution trace.
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1 fun insert(v)
2 t|lF | “ 0^ |lB| “ 0_ |lL| ` |lR| ` |lA| ` 1 “ |lF | ´ |lB| ^ |lL| “ |lR|u // precondition of insert: invariants from Section 6.3
3 vals.pushBack(v)
4 aggs.pushBack(Σ‘B ‘ v)
5 t|lF | “ 0^ |lB| “ 1_ |lL| ` |lR| ` |lA| “ |lF | ´ |lB| ^ |lL| “ |lR|u // lB grew by 1
6 fixup()
7 t|lF | “ 0^ |lB| “ 0_ |lL| ` |lR| ` |lA| ` 1 “ |lF | ´ |lB| ^ |lL| “ |lR|u // fixup repaired the invariants, see Line 38
8 fun evict()
9 t|lL| ` |lR| ` |lA| ` 1 “ |lF | ´ |lB| ^ |lL| “ |lR|u // precondition of evict: invariants from Section 6.3, except that lF cannot be empty

10 vals.popFront(), aggs.popFront()
11 t|lL| ` |lR| ` |lA| “ |lF | ´ |lB| ^ |lL| “ |lR|u // lF shrunk by 1
12 fixup()
13 t|lF | “ 0^ |lB| “ 0_ |lL| ` |lR| ` |lA| ` 1 “ |lF | ´ |lB| ^ |lL| “ |lR|u // fixup repaired the invariants, see Line 38
14 fun fixup()
15 t|lF | “ 0^ |lB| “ 1_ |lL| ` |lR| ` |lA| “ |lF | ´ |lB| ^ |lL| “ |lR|u // disjunction of assertions before calls in Lines 5 and 11
16 if F “ B
17 t|lF | “ 0^ |lB| “ 1u // only the first disjunct of the assertion in Line 15 can hold, the single window element is in lB
18 B Ð E, A Ð E, R Ð E, L Ð E
19 t|lL| ` |lR| ` |lA| ` 1 “ |lF | ^ |lB| “ 0^ |lL| “ 0^ |lR| “ 0u // the single window element is now in the front portion of lF
20 else
21 t|lL| ` |lR| ` |lA| “ |lF | ´ |lB| ^ |lL| “ |lR|u // only the second disjunct of the assertion in Line 15 can hold
22 if L “ B
23 t|lL| ` |lR| ` |lA| “ 0^ |lF | “ |lB| ^ |lL| “ 0^ |lR| “ 0u // see “before”-picture of Figure 11 (flip)
24 flip()
25 t|lL| ` |lR| ` |lA| “ |lF | ^ |lB| “ 0^ |lL| “ |lR|u // see postcondition of flip in Line 42 and “after”-picture of Figure 11 (flip)
26 if L “ R
27 t|lL| ` |lR| ` |lA| “ |lF | ´ |lB| ^ |lL| “ 0^ |lR| “ 0^ |lA| ą 0u // see “before”-picture of Figure 13 (free ride)
28 A Ð A + 1, R Ð R + 1, L Ð L + 1
29 t|lL| ` |lR| ` |lA| ` 1 “ |lF | ´ |lB| ^ |lL| “ 0^ |lR| “ 0u // lA shrunk by 1, see “after”-picture of Figure 13 (free ride)
30 else
31 t|lL| ` |lR| ` |lA| “ |lF | ´ |lB| ^ |lL| “ |lR| ^ |lL| ą 0u // see “before”-picture of Figure 12 (shrinking lL and lR)
32 aggs[L] Ð Σ

‘
L ‘ Σ

‘
R ‘ Σ

‘
A

33 L Ð L + 1
34 t|lL| ` |lR| ` |lA| ` 1 “ |lF | ´ |lB| ^ |lL| ` 1 “ |lR|u // lL shrunk by 1
35 aggs[A - 1] Ð vals[A - 1] ‘ Σ

‘
A

36 A Ð A - 1
37 t|lL| ` |lR| ` |lA| ` 1 “ |lF | ´ |lB| ^ |lL| “ |lR|u // lR shrunk by 1, see “after”-picture of Figure 12 (shrinking lL and lR)
38 t|lF | “ 0^ |lB| “ 0_ |lL| ` |lR| ` |lA| ` 1 “ |lF | ´ |lB| ^ |lL| “ |lR|u // disjunction of Lines 19, 29, and 37; invariants from Section 6.3 hold again
39 fun flip()
40 t|lL| ` |lR| ` |lA| “ 0^ |lF | “ |lB| ^ |lL| “ 0^ |lR| “ 0u // assertion before call in Line 23, see “before”-picture of Figure 11
41 L Ð F, A Ð E, B Ð E
42 t|lL| ` |lR| ` |lA| “ |lF | ^ |lB| “ 0^ |lL| “ |lR|u // see “after”-picture of Figure 11

Figure 16: Hoare-logic proof for DABA size invariants.

illustrated abstractly in Figure 11 and concretely in Step (f1)Ñ(f2)
of Figure 15. Lines 26-27 implement the free ride, illustrated ab-
stractly in Figure 13 and concretely in several steps in Figure 15
(Steps (b)Ñ(c), (c)Ñ(d), (d)Ñ(e), (g)Ñ(h), and (h)Ñ(i)). Finally,
Lines 28-32 implement the shrinking of lL and lR, illustrated ab-
stractly in Figure 12 and concretely in several steps in Figure 15
(Steps (a)Ñ(b), (f2)Ñ(f), and (f)Ñ(g)).

6.4 DABA Theorems
Theorem 7 If the window currently contains the values v0, . . . , vn´1,
DABA query returns v0 ‘ . . .‘ vn´1.

Proof. The theorem follows from the invariants in Section 6.3.
Most of these invariants follow directly from how the code manipu-
lates pointers together with the corresponding aggs contents. Fig-
ure 16 shows a Hoare-logic proof for the size invariants. That proof
relies on a corollary of the size invariants, notably, that in the non-
empty case (i.e., when  p|lF | “ 0^ |lB| “ 0q), the `1 in the size
invariants guarantees |lF | ą |lL| ` |lR| ` |lA| and |lF | ą |lB|.

Theorem 8 Each invocation of DABA query, insert, or evict
makes at most Op1q invocations of ‘.

Proof. The algorithm contains no loops or recursion.

The same caching optimization for query in the two-stacks algo-
rithm can also be applied to query in DABA. Furthermore, there is
an additional caching opportunity in DABA for eliminating one of
the invocations of ‘ from fixup. Specifically, Line 29 of Figure 14
computes Σ‘L ‘ Σ‘R ‘ Σ‘A . But this line only gets used while lL

and lR are shrinking, and during that phase, the pointers R and B
do not change. Since R and B do not change, Σ‘R ‘ Σ‘A does not
change either, and can be cached. Figure 17 shows the variant of
DABA with caching. Line 30 sets cachedRplusA to Σ‘R , and since
lA is empty at that point, that is the same as Σ‘R ‘ Σ‘A . Line 24
uses cachedRplusA. There is no need to explicitly track whether the
cache is valid, because it is always valid in Line 24 while R and B
remain fixed.

Theorem 9 DABA with caching invokes ‘ at most one time per
query, three times per insert, and two times per evict. Further-
more, for non-empty windows, DABA with caching invokes ‘ on
average two times per insert and one time per evict.

Proof. The worst-case numbers can be seen directly from the
highlighted invocations of ‘ in Figure 17. To see the average-
case numbers, consider the sequence of operations from a flip
to the next. Immediately following flip, lR is non-empty and lA

is empty. As long as lR is non-empty, each subsequent insert or
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1 fun query()
2 if not validCachedFplusB

3 cachedFplusB Ð Σ
‘
F ‘ Σ

‘
B

4 validCachedFplusB Ð true
5 return cachedFplusB
6 fun insert(v)
7 validCachedFplusB Ð false
8 vals.pushBack(v)
9 aggs.pushBack(Σ‘B ‘ v)

10 fixup()
11 fun evict()
12 validCachedFplusB Ð false
13 vals.popFront(), aggs.popFront()
14 fixup()
15 fun fixup()
16 if F “ B
17 B Ð E, A Ð E, R Ð E, L Ð E
18 else
19 if L “ B
20 flip()
21 if L “ R
22 A Ð A + 1, R Ð R + 1, L Ð L + 1
23 else

24 aggs[L] Ð Σ
‘
L ‘ cachedRplusA

25 L Ð L + 1

26 aggs[A - 1] Ð vals[A - 1] ‘ Σ
‘
A

27 A Ð A - 1
28 fun flip()
29 L Ð F, A Ð E, B Ð E

30 cachedRplusA = Σ
‘
R

Figure 17: Caching for DABA algorithm.

evict operation executes Lines 24-27 of Figure 17, shrinking lR by
one and invoking ‘ twice. When lR is empty, lA has exactly the
size that lR had at the previous flip. Each subsequent insert or
evict operation executes Line 22 of Figure 17, shrinking lA by one
without invoking ‘. The next flip happens when lA is empty. That
means that there was an equal number of steps shrinking lR as lA,
and thus, an equal number of steps where fixup invoked ‘ twice
as steps where fixup invoked no ‘ at all. This averages out to one
‘-invocation per fixup, and thus, two ‘-invocation per insert and
one ‘-invocation per evict.

Variable-Sized Windows: DABA supports variable-sized windows.
Note that Theorems 7, 8, and 9 hold irrespective of the order of
insertions or evictions. Furthermore, DABA uses in-place update
and simple data structures; the only memory allocation occurs when
the underlying chunked-array queue grows by a chunk. Finally,
DABA requires merely a monoid, whose binary operation ‘ must
be associative but does not need to be commutative or invertible.

This section presented DABA along with a formal evaluation of
its algorithmic complexity. But given that it is a constant-time algo-
rithm, in practice, that constant matters. That can ultimately only be
evaluated empirically, which is the subject of the next section.

7. EXPERIMENTAL EVALUATION
Our experimental evaluation has three main purposes: to de-

termine when Two-Stacks, ABA, and DABA are profitable when
compared to recalculating an aggregation function over a window
from scratch; to verify that our Op1q theoretical result holds up in
practice; and to explore their performance trade-offs in practice.

We implemented the algorithms and aggregation functions in
C++11, outside of existing streaming platforms. For a particular
window size n, our benchmark driver checks if the size of the SWAG

Function Window Size Break-Even Point

Reactive Two-Stacks ABA DABA

Sum 1,024 48 8 64
Max 704 28 4 64
ArithmeticMean 1,024 48 28 112
GeometricMean 704 32 16 64
MinCount 512 28 16 64
SampleStdDev 704 28 16 64
ArgMax 704 28 28 48
Bloom 28 16 28 28
Collect never never never never

Table 1: Approximate break-even points. Each entry in the table is the size
of the window where that aggregation algorithm started being profitable with
that aggregation function, as compared to recalculating the entire window
from scratch.

is equal to n and evicts one item if it is; inserts a new data item
into the SWAG; and if the size of the sliding-window aggregation
(SWAG) is equal to n, queries the result. After an initial ramp-up
period where the size of the SWAG grows to n, each iteration of the
driver will issue an evict, insert and query to the SWAG.

In our experiments, we use up to six different SWAGs: Two-
Stacks, ABA, DABA with and without the caching optimization, our
implementation of the Reactive Aggregator [21], and recalculating
the window from scratch. Reactive serves as our comparison against
current state-of-the-art; all operations on it are amortized Oplog nq.
Recalculating the window from scratch is our performance baseline.
For the rest of this section, we will refer to recalculating the window
from scratch as Recalc.

We chose a representative sample of aggregation functions for
our experiments. They range from functions that can be computed
with a single instruction (Sum, Max), to functions that take many
thousands of instructions (Bloom), and functions that are inherently
linear (Collect). Details of these functions are provided later.

The compiler we use is g++, version 4.8.3, with the optimization
level -O3. The operating system is CentOS 7.1, running Linux kernel
version 3.10.0. The processor is an Intel Xeon 5160 at 3.0 GHz.

7.1 Break-Even Points
Table 1 answers the question, at what window size do Two-Stacks,

ABA and DABA become profitable compared to Recalc? While
we have proved that these SWAGs handle all operations in Op1q
time, in practice, constants matter. Table 1 shows that in practice,
the break-even point is small enough for all aggregation functions,
except Collect, to always use them over Recalc.

The break-even experiments look at average execution time, so
Two-Stacks and ABA, with amortized Op1q time, outperform DABA.
ABA outperforms Two-Stacks because it uses the same fundamen-
tal idea but replaces two actual stacks with pointers into a single
structure, which avoids unnecessary copying of data.

Reactive performs Oplog nq invocations of ‘, and it must main-
tain a tree structure, so its break-even points are between 10–100ˆ
higher than Two-Stacks, ABA and DABA. The one exception is
Bloom, which is a much more expensive function.

The break-even points for some of the functions are perhaps
surprising—Sum is much less expensive than Bloom, so a natural
intuition is that the break-even point for Sum should be much higher.
But for ABA, this is not the case. Note that these break-even points
are not compared against each other, but compared against an opti-
mized Recalc version of the function. The absolute cost of Sum is
still much lower than that for Bloom, which we will explore more in
the following experiments. Further, note that in practice, the cost
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Figure 18: Top: Throughput experiments. The x-axis is the window size in number of data items in the SWAG, and the y-axis is throughput per million data
items per second. Bottom: Latency experiments. Each graph is a single run with a window of 214 data items. The x-axis is the number of rounds of evict,
insert, query into the experiment, up to 1 million rounds. The y-axis is the number of processor cycles to execute that round.

of ‘ involves not just the inherent computation itself, but also the
cost of creating and returning temporary objects of type Agg. In
the case of Sum, Agg is an integer. For Bloom, it is a bit-vector
of size 214. Hence, for ABA, the entire cost of ‘ is similar to the
cost of manipulating the F, B, and E pointers. DABA needs to do
more work on each invocation than both Two-Stacks and ABA, so
its break-even points are necessarily higher.

The one exception is Collect, which is a special case. Collect
returns the entire window as a list of size n; it is inherently Opnq. The
Recalc version of Collect allocates one list and inserts n elements,
taking Opnq time. For Two-Stacks, ABA, and DABA,‘must create
a new temporary list on each invocation, and copy the elements from
each operand, taking Opnq time. That means all of these algorithms
are linear-time, with Recalc having the lowest overheads in total.

7.2 Throughput
Our throughput experiments, top of Figure 18, explore a wide

range of window sizes for three aggregation functions. We choose
Sum, GeometricMean and Bloom to represent functions that are
cheap, medium, and expensive.

In all three experiments, we stopped collecting data for Recalc
after a window size of 210; it clearly has Opnq behavior, and its
throughput correspondingly trends towards 0.

The general trend is that Two-Stacks and ABA have the best
throughput for all window sizes. DABA requires more bookkeeping
than both Two-Stacks and ABA, so despite still having Op1q behav-
ior, its higher constant makes a measurable difference in sustained
throughput. Reactive, which is the worst asymptotically after Re-
calc, is consistently outperformed by Two-Stacks, ABA, and DABA
except for the window sizes less than 28 with Bloom.

For Sum and GeometricMean, ABA and DABA have the curious
behavior that their performance improves up to a window size of 28.
This unintuitive result is caused by the fact that the number of calls
to flip scales down as the window size increases. Only Op1{nq of
window operations invoke flip, so the overall algorithmic complex-

ity including flip is Op1 ` 1{nq. Whether this behavior is clearly
visible in the throughput graph depends on how costly ‘ is com-
pared to simple pointer manipulation. For Sum and GeometricMean,
the manipulation of the list pointers is comparable to the cost of ‘.
For Bloom, ‘ is substantially more expensive than manipulating the
list pointers, so this effect is not noticeable.

For DABA, we experiment with the caching optimization both on
and off. When the cost of copying a cached Agg result is comparable
to the cost of ‘, the optimization only makes a marginal difference.
When ‘ is more expensive, such as with Bloom, the optimization
makes a modest but consistent difference in throughput.

All three functions show some degradation in performance with
window sizes that approach 220, which is not predicted by the theo-
retical result of Op1q performance. However, that result only counts
invocations of ‘, and does not include the effects of the memory
hierarchy. This drop in performance is entirely explained by hav-
ing to manage more memory. For example, a run of ABA with
GeometricMean at window size of 220 has about 3ˆ the number of
page faults, 2ˆ the number of stalled cycles and 276ˆ the number
of cache misses as a run at a window size of 210, all while having
about the same number of total instructions. This pattern continues
with Bloom. Sum’s performance degradation happens much later
because its Agg type is smaller; one 32-bit integer compared to
GeometricMean’s 64-bit float and 64-bit integer. This performance
degradation is unavoidable: managing large window sizes will even-
tually cause the memory system performance to dominate the cost
of a small number of ‘ invocations.

7.3 Latency
All prior experiments focused on average performance, which hid

the fact that Two-Stacks and ABA are amortized Op1q, not worst-
case Op1q. DABA, however, is worst-case Op1q. We expect that
periodically some calls to both Two-Stacks and ABA will be Opnq,
whereas DABA should always be Op1q, keeping its latency low and
well-controlled even in the worst case.
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Function Average Latency in Cycles

Two-Stacks ABA DABA

Sum 183, σ=1,428 172, σ=142 210, σ=56
Max 188, σ=1,467 160, σ=184 209, σ=58
ArithmeticMean 194, σ=1,170 171, σ=294 227, σ=69
GeometricMean 206, σ=1,169 185, σ=306 244, σ=84
SampleStdDev 218, σ=1,323 199, σ=359 255, σ=86
ArgMax 197, σ=2,047 163, σ=249 218, σ=64
Bloom 6,771, σ=338,700 7,253, σ=213,800 9,762, σ=7,957

Table 2: Average latencies and standard deviations (σ), in processor cycles,
for 214 data item window over 1 million rounds of insert, evict, query.

The bottom of Figure 18 shows exactly this behavior. We use the
same three aggregation functions, Sum, GeometricMean and Bloom.
Each graph represents a latency time-series for a single run with a
window size of 214 data items. The x-axis is the number of evict,
insert, query rounds into the experiment, and the y-axis is the cost
in processor cycles to execute that round.

All three graphs show periodic latency spikes for Two-Stacks and
ABA, where an interaction with the SWAG incurred an Opnq cost.
The DABA costs are all tightly bound at the bottom of the graphs.
(DABA results are present for Bloom, but the cost for Two-Stacks
and ABA relative to DABA makes DABA’s results nearly invisible.)

The latency spikes for Two-Stacks and ABA are so high, and so
frequent, that it can be difficult to reconcile the high latency in the
bottom of Figure 18 with the high throughput in the top. Table 2
provides the explanation. While Two-Stacks and ABA have lower
average latency than DABA, DABA’s standard deviation for its
latency is around 3–25ˆ lower.

7.4 Result Summary and Discussion
As shown in the break-even and throughput experiments, Two-

Stacks, ABA and DABA are a significant improvement over current
state-of-the art, represented by Reactive. The latency experiments
demonstrate that the tight latency bound implied by DABA’s theo-
retic Op1q cost bears out in practice.

The primary contribution of this paper is DABA’s worst-case
Op1q guarantee. However, the experiments provide greater texture,
showing that the theoretically weaker algorithms, Two-Stacks and
ABA, still have merit in practice. Two-Stacks is simple to describe,
understand and implement, yet is still an improvement over current
state-of-the-art. ABA has worse bounds on its latency than DABA,
but has higher throughput in practice. Finally, we verified DABA’s
tight latency bounds in practice, which makes it well-suited for
environments with strict latency requirements.

8. RELATED WORK
The inspiration for DABA came from Okasaki’s work on purely

functional queues [18]. Purely functional data structures are imple-
mented without any destructive modifications. Okasaki showed how
to maintain a queue, as well as a deque, in worst-case constant time.
Even though Okasaki’s paper did not discuss aggregation, it gave us
reasons to believe in the feasibility of sliding-window aggregation
in worst-case constant time. Furthermore, whereas Okasaki’s work
relies heavily upon fine-grained memory allocation and lazy evalua-
tion, DABA foregoes those features, achieving lower performance
overhead by using destructive modifications instead.

As before, we will denote by n the window size.
A basic algorithm for sliding-window aggregation is subtract-on-

evict, shown in Figure 19. It maintains a queue vals of values and
a single variable agg. It requires Op1q invocations of ‘ for each
SWAG function in the worst case. It requires Opnq space. Subtract-

1 fun query()
2 return agg
3 fun insert(v)
4 vals.pushBack(v)
5 agg Ð agg ‘ v
6 fun evict()
7 v Ð vals.popFront()
8 agg Ð agg ‘ invpvq

Figure 19: Subtract-on-evict algo-
rithm.

1 fun query()
2 agg Ð 0̄
3 for each v in vals
4 agg Ð agg ‘ v
5 return agg
6 fun insert(v)
7 vals.pushBack(v)
8 fun evict()
9 vals.popFront()

Figure 20: Recalculate-from-
scratch algorithm.

on-evict only works when the ‘ operator is invertible, whereas
DABA has no such restrictions.

Another basic approach to sliding-window aggregation is recalcu-
late-from-scratch, shown in Figure 20. It maintains a queue vals
of values that can be walked from front to back. It requires Opnq
invocations of ‘ for query and Opnq space for vals. Like DABA, it
is general, since it does not require‘ to be invertible or commutative.
But the Opnq query is only acceptable for small n.

Since subtract-on-evict is too restrictive and recalculate-from-
scratch is too slow, there have been several papers on general but
fast sliding-window aggregation. Most of them use some form of
aggregation trees [3, 4, 15, 21, 23]. The leaves hold input values,
and parent nodes combine the aggregates of their children. When the
tree is balanced, it can support the SWAG functions with Oplog nq
invocations of ‘. The difficulty is keeping the tree balanced while
keeping the overhead low, especially in the presence of variable-
sized windows. Like DABA, state-of-the-art tree-based algorithms
for sliding window aggregation can handle non-invertible and non-
commutative ‘ operators. However, DABA improves upon their
time complexity, from logarithmic to worst-case constant.

An orthogonal approach for speeding up sliding-window aggre-
gation is to reduce the granularity of the window [12, 13]. The idea
is to evict not individual values but batches. For instance, evict
at a 1-hour granularity in a 1-day window. Then, the algorithm
can pre-aggregate values that will be evicted together, thus saving
not just time but also space. This means that the effective window
size is reduced from n (the number of values) to b (the number of
batches). It can be applied together with recalculate-from-scratch
to make it Opbq, or with tree-based aggregation to make it Oplog bq,
or with DABA, in which case the time complexity of Op1q remains
unchanged, but the space complexity improves to Opbq.

Finally, some literature on sliding-window aggregation focuses
on sharing [3, 12]. When a system maintains multiple aggregations
over the same stream that differ only in minor details (e.g., the size
of the window), sharing can maintain all of them together while
using less time or space than when they are maintained separately.
Section 9 discusses opportunities for sharing with DABA.

9. DISCUSSION
This paper has focused on giving efficient algorithms for one

incremental streaming aggregation over one FIFO window. Two-
stacks and ABA achieve that with amortized constant cost, and
DABA achieves that with worst-case constant cost. However, some
use cases call for several streaming aggregations differing only in
the window size or the monoid. The question is, whether this can
be accomplished with less time by sharing computations or with
less space by sharing data structures. Furthermore, some use cases
call for windows that are not strictly FIFO, because data items carry
timestamps inconsistent with their arrival order. The question is,
whether the window can still be aggregated and evicted correctly.
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Sharing: It helps to observe that once a value is inserted into vals,
it remains unchanged until it gets evicted. That means, two aggrega-
tions over the same window size but with different monoids can share
a single vals queue. They merely need to maintain separate aggs
queues. If the monoids are closely related, they can share even more.
For instance, an arithmetic-mean aggregation can reuse the aggs
queue of a sum if sum is also being computed. Next, we consider the
case of different window sizes but with the same monoid. In this case,
it is possible to maintain the vals queue for the largest window only,
and share it. Furthermore, if there are only a few different window
sizes, they can share even more. For instance, to aggregate both a
1-day window and a 2-day window, keep two DABAs, young and
old. Insert new data items into young. When a datum becomes 1 day
old, evict it from young and insert it into old. Finally, the sharing
techniques above can be combined to handle different window sizes
with different monoids. More elaborate sharing is left to future work,
and may take inspiration from the literature [3, 12].

Non-FIFO Windows: DABA can be applied together with tech-
niques from the literature on out-of-order streaming aggregation.
Assuming there is a latency bound on how late data items arrive,
we suggest a variation on Srivastava and Widom’s approach [20].
The idea is to aggregate data younger than the latency bound in a
balanced tree ordered by timestamp, and data older than the latency
bound in DABA. A data item that reaches the latency bound is
evicted from the tree and inserted into DABA. Assuming there are
independent data sources that are internally FIFO but can have large
and unbounded drift with respect to each other, we suggest a varia-
tion on Krishnamurthy et al.’s approach [11]. For this case, we shall
assume that the monoid is not just associative but also commutative—
a reasonable assumption since the aggregation needs to be order-
agnostic. We can keep the aggregation over each source in its own
independent DABA. Then, we can combine all the DABAs using
a balanced tree, whose leaves are individual DABAs and whose
root yields the overall aggregation. More elaborate handling of
non-FIFO windows is left to future work, and may take inspiration
from the literature [11, 14, 20].

To summarize, DABA enables some simple forms of sharing, and
could be combined naturally with some prior work on out-of-order
stream processing.

10. CONCLUSION
This paper presented DABA, a new algorithm for incremental

sliding-window aggregation. DABA can maintain aggregation for
any monoid, using its binary associative operator ‘ to aggregate the
window contents. Intuitively, it works as follows. DABA maintains
partial monoidal sums over sublists of the values in the window,
such that query can easily derive the complete monoidal sum any
time. DABA ensures that upon an insert, the partial sum for the
newly-inserted slot is easy to compute. It also ensures that upon an
evict, the partial sum for the next-to-oldest slot is easy to compute.
Most importantly, DABA incrementally fixes the sublist boundaries
during insert and evict to avoid ever having to perform a large
number of steps during a window update.

DABA has several desirable properties: it only requires an asso-
ciative monoid (no need for commutativity nor invertibility). DABA
is the first sliding-window aggregation algorithm that only requires
Op1q invocations of ‘ for each insert, evict, or query invoca-
tion, irrespective of the current window size. More specifically,
the worst-case is three invocations of ‘. DABA uses Opnq space,
where n is the window size. DABA supports dynamically-sized win-
dows, where the window size fluctuates throughout the execution,
for instance, due to a variable inter-arrival rate of stream data items.

DABA is built on a simple flat data structure, thus avoiding memory-
copy or allocation churn, as well as avoiding excessive pointer
chasing. Our experiments demonstrate that an implementation of
DABA performs well compared to other incremental sliding-window
aggregation algorithms.
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