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1. INTRODUCTION
Streaming applications are programs that process continuous data streams. These
applications have become ubiquitous due to increased automation in telecommuni-
cations, health-care, transportation, retail, science, security, emergency response, and
finance. As a result, various research communities have independently developed pro-
gramming models for streaming. While there are differences both at the language level
and at the system level, each of these communities ultimately represents streaming
applications as a graph of streams and operators, where each stream is a conceptually
infinite sequence of data items, and each operator conceptually has its own thread
of control. Since operators run concurrently, stream graphs inherently expose par-
allelism, but since many streaming applications require extreme performance, each
community has developed optimizations that go beyond this inherent parallelism. The
communities that have focused the most on streaming optimizations are digital signal
processing, operating systems and networks, complex even processing, and databases.

Unfortunately, while there is plenty of literature on streaming optimizations, the lit-
erature uses inconsistent terminology. For instance, what we refer to as an operator is
called operator in CQL [Arasu et al. 2006], filter in StreamIt [Thies et al. 2002], box in
Aurora and Borealis [Abadi et al. 2003; Abadi et al. 2005], stage in SEDA [Welsh et al.
2001], actor in Flextream [Hormati et al. 2009], and module in River [Arpaci-Dusseau
et al. 1999]. As another example for inconsistent terminology, push-down in databases
and hoisting in compilers are essentially the same optimization, and therefore, we ad-
vocate the more neutral term “operator reordering”. To establish common vocabulary,
we took inspiration from catalogs for design patterns [Gamma et al. 1995] and for
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Table I. The optimizations cataloged in this survey. Column “Graph” indicates
whether or not the optimization changes the topology of the stream graph. Column
“Semantics” indicates whether or not the optimization changes the semantics, i.e.,
the input/output behavior. Column “Dynamic” indicates whether the optimization
happens statically (before runtime) or dynamically (during runtime). Entries labeled
“(depends)” indicate that both alternatives are well-represented in the literature.

Section Optimization Graph Semantics Dynamic
2. Operator reordering changed unchanged (depends)
3. Redundancy elimination changed unchanged (depends)
4. Operator separation changed unchanged static
5. Fusion changed unchanged (depends)
6. Fission changed (depends) (depends)
7. Load balancing unchanged unchanged (depends)
8. Placement unchanged unchanged (depends)
9. State sharing unchanged unchanged static

10. Batching unchanged unchanged (depends)
11. Algorithm selection unchanged (depends) (depends)
12. Load shedding unchanged changed dynamic

refactorings [Fowler et al. 1999]. Those catalogs have done a great service to practi-
tioners and researchers alike by raising awareness and using consistent terminology.
This paper is a catalog of the stream processing optimizations listed in Table I.

Besides consistent terminology, another motivation for this paper is unstated as-
sumptions: certain communities take things for granted that other communities do
not. For example, while the StreamSQL community assumes that stream graphs are
forests (acyclic sets of trees), StreamIt assumes that stream graphs are possibly cyclic
single-entry, single-exit regions. We have observed stream graphs in practice that fit
neither mold. Additionally, several papers focus on one aspect of a problem, such as
formulating a mathematical model for the profitability trade-offs of an optimization,
while leaving other aspects unstated, such as the conditions under which the optimiza-
tion is safe. Furthermore, whereas some papers assume shared memory, other papers
assume a distributed system, where state sharing is difficult and communication is
more expensive, since it involves the network. This paper describes optimizations for
many different kinds of streaming systems, including shared-memory and distributed,
relational and synchronous, among other variations. For each optimization, this paper
explicitly lists both safety and profitability considerations.

The target audience of this paper includes end users, system implementers, and re-
searchers. For end users, this paper helps understand performance phenomenons, and
helps users to guide the automatic optimizer, or in the worst case, to hand-optimize
their applications. For system implementers, this paper suggests ideas for what op-
timizations the system may want to support, illustrates the engineering trade-offs,
and provides starting points for digging deeper into the literature. For researchers,
this paper helps judge the novelty of ideas, use consistent terminology, and anticipate
interactions of optimizations with each other and with other concerns.

Each section is structured as follows:

— Tag-line and figure, giving a quick intuition for what the optimization does.
— Example, describing a concrete real-world application, which illustrates what the

optimization does and motivates why it is useful. Taken together, the example sub-
sections for all the optimization paint a picture of the landscape of modern stream
processing domains and applications.

— Profitability, describing the conditions under which the optimization improves per-
formance. To illustrate the main trade-offs in a concrete and realistic manner, each
profitability subsection is based on a micro-benchmark. All experiments were done
on a real stream processing system, and each chart shows error bars indicating the



A Catalog of Stream Processing Optimizations A:3

standard deviation. The micro-benchmarks serve as an existence proof for a case
where the optimization improves performance. It can also serve as a blue-print for
testing the optimization in a new application or system.

— Safety, listing the conditions necessary for the optimization to preserve correctness.
Formally, the optimization is only safe if the conjunction of the conditions is true.
But beyond that, we intentionally kept the conditions informal to make them easier
to read, and to make it easier to state side conditions without having to introduce too
much notation.

— Variations, surveying the most influential and unique work on this optimization in
the literature. The interested reader can use this as a starting point for further study.

— Dynamism, identifying established approaches for applying the optimization stati-
cally or dynamically, i.e., before the application starts or during runtime.

Existing surveys on stream processing do not focus on optimizations [Stephens 1997;
Babcock et al. 2002; Johnston et al. 2004], and existing catalogs of optimizations do not
focus on stream processing. This paper provides both: it presents a catalog of stream
processing optimizations, and makes them approachable to users, implementers, and
researchers.

1.1. Background
This section clarifies terminology used in this paper. A streaming application is rep-
resented by a stream graph, which is a directed graph whose vertices are operators
and whose edges are streams. A streaming system is a runtime system that can exe-
cute stream graphs. In general, stream graphs might be cyclic, though some systems
only support acyclic graphs. Streaming systems implement streams as FIFO (first-in,
first-out) queues. Whereas a stream is a possibly infinite sequence of data items, at any
given point in time, a queue contains a finite sequence of in-flight data items. The data
item is the unit of communication in a streaming application. Different communities
have different notions of data items, including samples in digital signal processing,
tuples in databases, or events in complex event processing; this paper merely assumes
that data items can contain attributes, which are smaller units of data. Streaming
systems are designed for data in motion and computation at rest, meaning that data
items continuously flow through the edges and operators of the graph, whereas the
topology of the graph rarely changes. The most common cause for topology changes is
multi-tenancy, where a single streaming system runs multiple applications that come
and go.

An operator is a continuous stream transformer: each operator conceptually has its
own thread of control, and it transforms its input streams to its output streams. It
is up to the streaming system to determine when an operator fires; for instance, an
operator might have a firing each time a data item becomes available in one of its
input queues. Operators may or may not have state, which is data that the operator re-
members between firings. Depending on the streaming system, state might be shared
between operators. The selectivity of an operator is its data rate measured in output
data items per input data item. For example, an operator that produces one output
data item for every two input data items has a selectivity of 0.5. An operator with
fan-out, i.e., multiple output streams, is called a split, and an operator with fan-in,
i.e., multiple input streams, is called a merge. Most split or merge operators forward
data items unmodified, but a relational join is an example for a merge operator that
includes a non-trivial transformation.

It is often useful to use specific terminology for the various flavors of parallelism
among the operators in a stream graph. Fig. 1 illustrates these flavors. Pipeline paral-
lelism is the concurrent execution of a producer A with a consumer B. Task parallelism
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(a) Pipeline-parallel A ‖ B. (b) Task-parallel D ‖ E. (c) Data-parallel G ‖ G.

Fig. 1. Pipeline, task, and data parallelism in stream graphs.

is the concurrent execution of different operators D and E that do not constitute a
pipeline. And data parallelism is the concurrent execution of multiple replicas of the
same operator G on different portions of the same data. The architecture community
refers to data parallelism as SIMD (single instruction, multiple data).

2. OPERATOR REORDERING (A.K.A. HOISTING, SINKING, ROTATION, PUSHDOWN)

Move more selective operators upstream to filter data early.

BA
q0 q1 q2 AB

q0 q1 q2

2.1. Example
Consider a healthcare application that continuously monitors patients, alerting physi-
cians when it detects that a patient requires immediate medical assistance. The input
stream contains patient identification and real-time vital signs. A first operator A en-
riches each data item with the full patient name and the result of the last exam by a
nurse. The next operator B is a selection operator, which only forwards data items with
alarming vital signs. In this ordering, many data items will be enriched by operator A
and will be sent on stream q1 only to be dropped by operator B. Hoisting B in front of A
eliminates this unnecessary overhead.

2.2. Profitability
Reordering is profitable if it moves selective operators before costly operators. The
selectivity of an operator is the number of output data items per input data item. For
example, an operator that drops 70% of all data items outputs only 30% and thus
has selectivity 0.3. The chart shows throughput given two operators A and B of equal
cost, where the selectivity of A is fixed at 0.5. If A comes before B, then independently
of the selectivity of B, A processes all data and B processes 50% of the data, so the
performance does not change. If B comes before A, then B processes all data, but the
amount of data processed by A depends on the selectivity of B, and overall throughput is
higher when B drops more data. The cross-over point is when both are equally selective.
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2.3. Safety
Operator reordering is safe if the following conditions hold:

— Ensure commutativity. The result of executing B before A must be the same as the
result of executing A before B. In other words, A and B must commute. A sufficient
condition for commutativity is if both A and B are stateless. However, there are also
cases where reordering is safe past stateful operators; for instance, in some cases, an
aggregation can be moved before a split.

— Ensure attribute availability. The second operator B must only rely on attributes of
the data item that are already available before the first operator A. In other words,
the set of attributes that B reads from a data item must be disjoint from the set of
attributes that A writes to a data item.

2.4. Variations
Algebraic reorderings. Operator reordering is popular in streaming systems built

around the relational model, such as the STREAM system [Arasu et al. 2006]. These
systems establish the safety of reordering based on the formal semantics of relational
operators, using algebraic equivalences between different operator orderings. Such
equivalences can be found in standard texts on database systems, such as [Garcia-
Molina et al. 2008]: besides moving selection operators early to reduce the number of
data items, another common optimization moves projection operators early to reduce
the size of each data item; and a related optimization picks a relative ordering of re-
lational join operators to minimize intermediate result sizes. Some streaming systems
reorder operators based on their own algebras that go beyond the relational model.
For example, Galax uses nested-relational algebra for XML processing [Ré et al. 2006],
and SASE uses a custom algebra for finding temporal patterns across sequences of data
items [Wu et al. 2006]. Finally, commutativity analysis on operator implementations
could be used to discover reorderings even without an operator-level algebra [Rinard
and Diniz 1996]. A practical consideration is whether or not to treat floating point
arithmetic as commutative.

Synergies with other optimizations. While operator reordering yields benefits on its own,
it also interacts with several of the streaming optimizations cataloged in the rest of
this paper. Redundancy elimination (Section 3) can be viewed as a special case of oper-
ator reordering, where a Split operator followed by redundant copies of an operator A is
reordered into a single copy of A followed by the Split. Operator separation (Section 4)
can be used to separate an operator B into two operators B1 and B2; this can enable a
reordering of one of the operators B1 with a neighboring operator A. After reordering
operators, they can end up near other operators where fusion (Section 5) becomes bene-
ficial; for instance, a selection operator can be fused with a Cartesian-product operator
into a relational join. Fission (Section 6) introduces parallel segments; when two paral-
lel segments are back-to-back, reordering the Merge and Split eliminates a serialization
bottle-neck, as in the Exchange operator in Volcano [Graefe 1990]. The following figure
illustrates this Split/Merge rotation:

Merge Split

Merge

Merge

Split

Split
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2.5. Dynamism
The optimal ordering of operators is often dependent on the input data. Therefore, it
is useful to be able to change the ordering at runtime. The Eddy operator enables a
dynamic version of the operator-reordering optimization with a static graph transfor-
mation [Avnur and Hellerstein 2000]. As shown in the figure below, an Eddy operator
is connected to every other operator in the pipeline, and dynamically routes data after
measuring which ordering would be the most profitable.

DCBA

A B

DC

Eddy

3. REDUNDANCY ELIMINATION (A.K.A. SUBGRAPH SHARING, MULTI-QUERY OPTIMIZATION)

Eliminate redundant computations.

Dup
Split

A C

A B

C

B

A
Dup
Split

3.1. Example
Consider two telecommunications applications, one of which continuously updates
billing information, and the other continuously monitors for network problems. Both
applications start with an operator A that deduplicates CDRs (call-data records) and
enriches them with caller information. The first application consists of operator A fol-
lowed by an operator B that filters out everything except long-distance calls, and calcu-
lates their costs. The second application consists of operator A followed by an operator
C that performs quality control based on dropped calls. Since operator A is common to
both applications, redundancy elimination can share it to save resources.

3.2. Profitability
Redundancy elimination is profitable if resources are limited and the cost of redun-
dant work is significant. The chart shows the performance of running two applications
together on a single core, one with operators A and B, the other with operators A and C.
The total cost of operators A, B, and C is held constant. However, without redundancy
elimination, throughput degrades when a large fraction of the cost belongs to operator
A, since this work is duplicated. In fact, when A does all the work, redundancy elimi-
nation improves throughput by a factor of two, because it runs A only once instead of
twice.
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3.3. Safety
Redundancy elimination is safe if the following conditions hold:

— Ensure same algorithm. The redundant operators must, indeed, perform an equiva-
lent computation. For example, if both of them compute an average, but one uses the
arithmetic mean and the other the geometric mean, they cannot be shared.

— Ensure available data. If the redundant operators A are stateful, then they must op-
erate on the exact same stream of input data. If they are stateless, then they must
operate on subsets of a common superset of input data. For example, if both input
streams are CDRs (call-data records), but from different geographies, then the oper-
ators can only be shared if they are stateless.

3.4. Variations
Multi-tenancy. Redundant subgraphs as described above often occur in streaming sys-

tems that are shared by many different streaming applications. Redundancies are
likely when many users launch applications composed from a small set of data sources
and built-in operators. While redundancy elimination could be viewed as just a special
case of operator reordering (Section 2), in fact the literature has taken it up as a fruit-
ful domain in its own right, leading to more comprehensive approaches. The RETE
algorithm is a seminal technique for sharing computation between a large number
of continuous applications [Forgy 1982]. NiagaraCQ implements sharing even when
operators differ in certain constants, by implementing the operators using relational
joins against the table of constants [Chen et al. 2000]. YFilter implements sharing be-
tween applications written in a subset of XPath, by compiling them all into a combined
NFA (non-deterministic finite automaton) [Diao et al. 2002].

Other approaches for eliminating operators. Besides the sophisticated techniques for col-
lapsing similar or identical subgraphs, there are other, more mundane ways to remove
an operator from a stream graph. An optimizer can remove a no-op, i.e., an operator
that has no effect, such as a projection that keeps all attributes unmodified; for ex-
ample, no-op operators can arise from simple template-based compilers. An optimizer
can remove an idempotent operator, i.e., an operator that repeats the same effect as
another operator next to it, such as two selections in a row based on the same predi-
cate; for example, idempotent operators can end up next to each other after operator
reordering. Finally, an optimizer can remove a dead subgraph, i.e., a subgraph that
never produces any output; for example, a developer may chose to disable a subgraph
for debugging purposes, or a library may produce multiple outputs, some of which are
unused by a particular application.

3.5. Dynamism
A static compiler can detect and eliminate redundancies, no-ops, idempotent opera-
tors, and dead subgraphs in an application. However, the biggest gains come in the
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multi-tenancy case, where the system eliminates redundancies between large num-
bers of separate applications. In that case, applications are started and stopped inde-
pendently. When a new application starts, it should share any subgraphs belonging to
applications that are already running on the system. Likewise, when an existing appli-
cation stops, the system should purge any subgraphs that were only used by this one
application. These separate starts and stops necessitate dynamic shared sub-graph
detection, as done e.g. in [Pietzuch et al. 2006]. Some systems take this to its extreme,
by treating the addition or removal of applications as a first-class operation just like
the addition or removal of regular data items, e.g., in RETE [Forgy 1982].

4. OPERATOR SEPARATION (A.K.A. DECOUPLED SOFTWARE PIPELINING)

Separate operators into smaller computational steps.

A2A1A

4.1. Example
Consider a retail application that continuously watches public discussion forums to
discover when users express negative sentiments about a company’s products. The
application would contain a sentiment-extraction operator that analyzes natural-
language text to score its sentiment, and an operator A that filters data items by sen-
timent and by product. Since operator A has two filter conditions, it can be separated
into two operators A1 and A2. This is an enabling optimization: after separation, a
reordering optimization (Section 2) could hoist the product-selection A1 before the sen-
timent analysis, thus reducing the number of data items that the sentiment analysis
operator needs to process.

4.2. Profitability

X Shuffle A X A1 Shuffle A2

Operator separation is profitable if it leads to beneficial pipeline parallelism, or if it
enables other optimizations, particularly operator reordering. Consider an application
that consists of a first parallel segment X, a Shuffle operator, and a second parallel
segment with an aggregation operator A. The cost of the first segment is negligible, and
the cost of the second segment consists of a cost of 0.5 for Shuffle plus a cost of 0.5 for A.
Therefore, throughput is limited by the second segment. With operator separation and
reordering, the end of the first parallel segment performs a pre-aggregation A1 of cost
0.5 before the Shuffle. That increases the normalized cost of the first segment, but it
reduces the cost of the second segment based on the selectivity of the pre-aggregation.
When the selectivity approaches 1, that means that no data items are dropped, and the
second segment performs as much work as in the non-separated case. Due to pipeline
parallelism, the overall throughput of the application is bounded by the slower of the
two segments, which is why the throughput curves touch at selectivity 1.
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4.3. Safety
Operator separation is safe if the following condition holds:

— Ensure that the combination of the separated operators is equivalent to the original
operator. Given an input stream s, an operator B can be safely separated into opera-
tors B1 and B2 only if B2(B1(s)) = B(s). Establishing this equivalence in the general
case is tricky, but there are several special cases, particularly in the relational do-
main, where it is easier. If B is a selection operator, and the selection predicate uses
“and”, then B1 and B2 can be selections on the conjuncts. If B is a projection that as-
signs multiple attributes, then B1 and B2 can be projections that assign the attributes
separately. If B is an idempotent aggregation, then B1 and B2 can simply be the same
as B itself.

4.4. Variations
Separability by construction. The safety of separation can be established by algebraic

equivalences. Database textbooks list such equivalences for relational algebra [Garcia-
Molina et al. 2008], and some streaming systems that are based on the relational model
optimize based on them [Arasu et al. 2006]. Beyond this algebraic approach, MapRe-
duce can separate the Reduce stage to get a separate Combine operator [Dean and Ghe-
mawat 2004]. Similarly, Yu et al. [2009] describe how to automatically separate oper-
ators in DryadLINQ [Yu et al. 2008] based on a notion of decomposable functions: the
programmer can explicitly provide decomposable aggregation functions (such as aver-
age or sum), and the compiler can infer decomposability for expressions that call them
(such as a constructor that uses different aggregators for different attributes).

Separation by analysis. Separating arbitrary imperative code is a difficult analysis
problem. In the compiler community, this has become known as DSWP (decoupled soft-
ware pipelining [Ottoni et al. 2005]). In contrast to traditional SWP (software pipelin-
ing [Lam 1988]), which increases instruction-level parallelism in single-threaded code,
DSWP introduces separate threads for the pipeline stages. Ottoni et al. propose a static
compiler analysis for fine-grained DSWP [2005]. Thies et al. propose a dynamic analy-
sis for discovering coarse-grained pipelining, which guides users in manually separat-
ing operators [2007].

4.5. Dynamism
We are not aware of a dynamic version of this optimization.

5. FUSION (A.K.A. SUPERBOX SCHEDULING)

Avoid the overhead of data serialization and transport.
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q0 B
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5.1. Example
Consider a security application that continuously scrutinizes system logs to detect se-
curity breaches. The application contains an operator A that parses the log messages,
followed by a selection operator B that uses a simple heuristic to filter out log mes-
sages that are irrelevant for the security breach detection. The selection operator B is
light-weight compared to the cost of transferring a data item from A to B and firing B.
Fusing A and B prevents the unnecessary data transfer and operator firing. The fu-
sion removes the pipeline parallelism between A and B, but since B is light-weight, the
savings outweigh the lost benefits from pipeline parallelism.

5.2. Profitability
Fusion trades communication cost against pipeline parallelism. When two operators
are fused, the communication between them is cheaper. But without fusion, they could
have pipeline parallelism: the upstream operator can already work on the next data
item, while simultaneously, the downstream operator is still working on the previous
data item. The chart shows throughput given two operators of equal cost. The cost of
the operators is normalized to a communication cost of 1 for sending a data item be-
tween non-fused operators. When the operators are not fused, there are two cases: if
operator cost is lower than communcation cost, then throughput is bounded by com-
munication cost, else it is determined by operator cost. When the operators are fused,
performance is determined by operator cost alone. The break-even point is when the
cost per operator is half of the communication cost, because the fused operator is 2×
as expensive as each individual operator.
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5.3. Safety
Fusion is safe if the following conditions hold:

— Ensure resource kinds. The fused operators must only rely on resources, such as local
files or GPUs, that are all available on a single host.

— Ensure resource amounts. The total amount of resources required by the fused oper-
ators, such as disk space, must not exceed the resources of a single host.

— Avoid infinite recursion. If there is a cycle in the stream graph, for example for a
feedback-loop, data may flow around that cycle indefinitely. If the operators are fused
and implemented by function calls, this can cause a stack overflow.

5.4. Variations
Single-threaded fusion. A few systems use a single thread for all operators, with or

without fusion [Burchett et al. 2007]. But in most systems, fused operators use the
same thread, whereas non-fused operators use different threads and can therefore run
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in parallel. That is the case we refer to as single-threaded fusion. There are different
heuristics for deciding its profitability. StreamIt uses fusion to coarsen the granularity
of the graph to the target number of cores, based on static cost estimates [Gordon et al.
2002]. Aurora uses fusion to avoid scheduling overhead, picking a fixed schedule that
optimizes for throughput, latency, or memory overhead [Carney et al. 2003]. SPADE
and COLA fuse operators as much as possible, but only as long as the fused opera-
tor performs less work per time unit than the capacity of its host, based on profiling
information from a training run [Gedik et al. 2008; Khandekar et al. 2009].

Optimizations enabled by fusion. Fusion often opens up opportunities for traditional com-
piler optimizations to speed up the code. For instance, in StreamIt, fusion is followed by
constant propagation, scalar replacement, register allocation, and instruction schedul-
ing across operator boundaries [Gordon et al. 2002]. In relational systems, fusing two
projections into a single projection means that the fused operator needs to allocate
only one data item, not two. Fusion can also open up opportunities for algorithm selec-
tion (see Section 11). For instance, when SASE fuses a sequence-scan operator with a
window operator, it combines them such that the sequence scan produces fewer inter-
mediate results to begin with [Wu et al. 2006].

Multi-threaded fusion. Instead of combining the fused operators in the same thread of
control, fusion may just combine them in the same address space, but separate threads
of control. That yields the benefits of reduced communication cost, without giving up
pipeline parallelism. The fused operators communicate data items through a shared
buffer. In the general case, use of a shared buffer implies copying data items. However,
in the cases of operators that do not mutate their data items or operators that can
synchronize their access to the buffer, this copying overhead can be eliminated.

5.5. Dynamism
Fusion is most commonly done statically. However, the Flextream system performs
dynamic fusion by halting the application, re-compiling the code with the new fusion
decisions, and then resuming the application [Hormati et al. 2009]. This enables Flex-
tream to adapt to changes in available resources, for instance, when the same host is
shared with a different application. Selo et al. mention an even more dynamic fusion
scheme as future work in their paper on transport operators [2010]. The idea is to de-
cide at runtime whether to route a data item to a fused operator in the same process,
or to a version of that same operator in a different process.

6. FISSION (A.K.A. PARTITIONING, DATA PARALLELISM, REPLICATION)

Parallelize computations.

A
q0 q1

A

A

A

Split Merge
q0 q1

6.1. Example
Consider a scientific application that continuously extracts astronomical information
from the raw data produced by radio telescopes. Each input data item contains a ma-
trix, and the central operator in the application is a convolution operator A that per-
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forms an expensive, but stateless, computation on each matrix. The fission optimiza-
tion replicates operator A to parallelize it over multiple cores, and brackets the parallel
segment by Split and Merge operators to scatter and gather the streams.

6.2. Profitability
Fission is profitable if the replicated operator is costly enough to be a bottle-neck for the
application, and if the benefits of parallelization outweigh the overheads introduced by
fission. Split incurs overhead, because it must decide which replica of operator A to send
each data item to. Merge may also incur overhead if it must put the streams back in the
correct order. These overheads must be lower than the cost of the replicated operator A
itself in order for fission to be profitable. The chart shows throughput for fission. Each
curve is specified by its p/s/o ratio, which stands for parallel/sequential/overhead. In
other words, p is the cost of A itself, s is the cost of any sequential part of the graph
that is not replicated, and o is the overhead of Split and Merge. When p/s/o is 1/1/0,
the parallel part and the sequential part have the same cost, so no matter how much
fission speeds up the parallel part, the overall time remains the same due to pipeline
parallelism. When p/s/o is 1/0/1, then fission has to overcome an initial overhead equal
to the cost of A, and therefore only turns a profit above two cores. Finally, a p/s/o of
1/0/0 enables fission to turn a profit right away.
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6.3. Safety
Fission is safe if the following conditions hold:

— If there is state, keep it disjoint, or synchronize it. Stateless operators are trivially safe;
they can be duplicated much in the same way that SIMD instructions can operate on
multiple data items at once. Operators with partitioned state can benefit from fission,
if the operator is duplicated strictly on partitioning boundaries. Partitioned state is
when an operator maintains disjoint state based on a particular key attribute of each
data item. Such operators are, in effect, multiple operators already. Applying fission
to such operators makes them separate in actuality as well. Finally, if operators share
the same address space after fission, they can share state as long as they perform
proper synchronization to avoid race conditions.

— If ordering is required, merge in order. Ordering is a subtle constraint, because it
is not the operator itself that determines whether ordering matters. Rather, it is the
downstream operators that consume the operator’s data items. If an operation is com-
mutative across data items, then the order in which the data items are processed is
irrelevant. If downstream operators must see data items in a particular order but the
operator itself is commutative, then the transformation must ensure that the output
data is combined in the same order that the input data was partitioned. There are
various approaches for re-establishing the right order, if required. CQL uses logical
timestamps [Arasu et al. 2006]. StreamIt uses round-robin or duplication [Gordon
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et al. 2006]. And MapReduce, instead of re-establishing the old order, uses a dis-
tributed “sort” stage [Dean and Ghemawat 2004].

— Obey licensing constraints. If the software in an operator is only licensed for a single
host, fission must not place replicas on multiple hosts.

6.4. Variations
Fission for large batch jobs. Large batch jobs can be viewed as a special case of stream

processing where the computation is arranged as a data-flow graph, and operators pro-
cess data in a single pass, but streams are finite. In other words, streams are an im-
plementation techniques for relational databases, and fission for this style of database
dates back at least to Volcano [Graefe 1990] and Gamma [Dewitt et al. 1990]. This
form of fission applies to stateful operators, as long as the state is grouped by keys.
It may at first appear strange to simply refer to fission as “parallelization”, since by
default, stream graphs already have inherent parallelism, with one thread of control
per operator. However, as DeWitt and Gray explain, the number of operators in the
graph before fission may not be sufficient for the number of cores [1992]. In contrast,
fission offers much larger scaling opportunities. That is why, more recently, this form
of fission by keys for large batch jobs has been the center-piece of MapReduce [Dean
and Ghemawat 2004] and Dryad [Isard et al. 2007]. As discussed in Section 2, fission is
commonly combined with a reordering of split and merge operators at the boundaries
between parallel segments.

Fission for infinite streams. Continuous streaming applications have conceptually infi-
nite streams. A good example for fission of infinite streams is StreamIt [Gordon et al.
2006]. StreamIt addresses the safety question of fission by only replicating operators
that are either stateless, or whose operator state is a read-only sliding window, which
can be replicated along with the operator itself. In terms of profitability, the StreamIt
experience shows that fission is preferable to pipeline and task parallelism, because it
balances load more evenly. Besides StreamIt, there is other work on fission for infinite
streams, which is discussed below under dynamism. In most systems, the streaming
language is designed explicitly for fission, making it easy for the compiler to establish
safety. When the language is not designed for fission, safety must be established either
by static or by dynamic dependence analysis. An example for a static analysis that
discovers fission opportunities is parallel-stage decoupled software pipelining [Raman
et al. 2008]. An example for a dynamic analysis that discovers fission opportunities is
[Thies et al. 2007].

6.5. Dynamism
To make the profitability decision for fission dynamic, we need to dynamically adjust
the width of the parallel segment, in other words, the number of replicated parallel
operators. SEDA does that by using a thread-pool controller, which keeps the size of
the thread pool below a maximum, but may adjust to a smaller number of threads
to improve locality [Welsh et al. 2001]. MapReduce dynamically adjusts the number
of workers dedicated to the map task [Dean and Ghemawat 2004]. And “elastic oper-
ators” adjust the number of parallel threads based on trial-and-error with observed
profitability [Schneider et al. 2009].

To make the safety decision for fission dynamic, we need to dynamically resolve con-
flicts on state and ordering. Brito et al. use STM (software transactional memory),
where simultaneous updates to the same state are allowed speculatively, with roll-
back if needed [2008]. The ordering is guaranteed by ensuring that transactions are
only allowed to commit in order.
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7. LOAD BALANCING

Distribute workload evenly across resources.

A1

A2

A3

Split

A1

A2

A3

Split

7.1. Example
Consider a security application that continuously checks that outgoing messages from
a hospital do not reveal confidential patient information. The application uses natural-
language processing algorithms to check whether outgoing messages contain text that
could reveal confidential information, such as social security numbers or medical con-
ditions, to unauthorized people. Assume that the operator A that does this is expensive,
and therefore, the fission optimization (see Section 6) has been applied to create paral-
lel replicas A1, A2, and A3. When one of the replicas is busy with a message that takes
a long time to process, but another replica is idle, this optimization sends the next
message to the idle replica so it gets processed quickly. In other words, when the load
is unevenly distributed, the optimization balances it to improve overall performance.

7.2. Profitability
Load balancing is profitable if it compensates for skew in resource utilization. The
chart shows the results of an experiment consisting of a Split operator that sends data
to three replicated operators. There are two variants of the experiment: in one vari-
ant, the Split operator sends its data items to downstream operators using round-robin
scheduling, i.e., not balanced. In the second variant, the Split operator sends its data
items to whichever downstream operator is free, i.e., balanced. The chart compares the
throughput as a function of the skew, i.e., the variation in the amount of time it takes
to process each data item (either due to changes in the data item size or load of the
downstream operator’s CPU).
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7.3. Safety
Load balancing is safe if the following conditions hold:

— Avoid starvation. The work assignment must ensure that every data item eventually
gets processed.

— Ensure each worker is qualified. If load balancing is done after fission, each replica
must be capable of processing each data item. That means replicas must be either
stateless or have access to a common shared state.
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— Establish placement safety. If load balancing is done while placing operators, the
safety conditions from Section 8 must be met.

7.4. Variations
Balancing load while placing operators. StreamIt uses fusion (Section 5) and fission (Sec-

tion 6) to balance load at compile-time, by adjusting the granularity of the stream
graph to match the target number and capacity of cores [Gordon et al. 2002]. Xing et
al. use operator migration to balance load at runtime, by placing operators on different
hosts if they tend to experience load spikes at the same time, and vice versa [2005].
While Xing et al. focus only on computation cost, Wolf et al. use operator placement at
job-submission time to balance both computation cost and communication cost [2008].
After placing operators on hosts, their load can be further balanced via priorities
[Amini et al. 2006].

Balancing load while assigning work to operators. Instead of balancing load by deciding how
to arrange the operators, an alternative approach is to first use fission (Section 6) to
replicate operators, and then balance load by deciding how much streaming data each
replica needs to process. The distributed queue component in River [Arpaci-Dusseau
et al. 1999] offers two approaches for this: in the push-based approach, the producer
keeps track of consumer queue lengths, and uses a randomized credit-based scheme
for routing decisions, whereas in the pull-based approach, consumers request data
when they are ready. Another example for the push-based approach is the use of back-
pressure for load balancing in System S [Amini et al. 2006]. The pull-based approach
works best for batch processing and is used in MapReduce [Dean and Ghemawat 2004];
in contrast, the MapReduce Online paper argues that the push-based approach works
better for streaming [Condie et al. 2010]. In MapReduce, as in other systems with
fission by keys, the load balance depends on the quality of the hash function and the
skew in the data. Work stealing is an approach for re-arranging work even after it has
been pushed or pulled to operators [Blumofe et al. 1995].

7.5. Dynamism
Roughly speaking, the placement-based variants of load balancing tend to be static,
whereas the work-based variants of load balancing are dynamic. Placement has the
advantage that it does not necessarily require fission. Placement can be made dynamic
too, but that has issues: operator migration causes performance hick-ups; if load spikes
are sudden, changing the placement may take too long; and migrating a stateful oper-
ator is an engineering challenge.

8. PLACEMENT (A.K.A. LAYOUT)

Assign operators to hosts and cores.
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8.1. Example
Consider a telecommunications application that continuously computes billing infor-
mation for long-distance calls. The input stream consists of call-data records (CDRs).
The example has three operators: operator A cleans incoming CDRs, operator B selects
long-distance calls, and operator C computes and records billing information for the
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selected calls. In general, the stream graph might contain more operators, such as D
and E. We assume that operators A and C are both expensive, and therefore, it makes
sense to place them on different hosts. On the other hand, operator B is cheap, but it
reduces the data volume substantially. Therefore, it should be placed on the same host
as A, because that reduces the communication cost, by eliminating data that would
otherwise have to be sent between hosts.

8.2. Profitability
Placement trades communication cost against resource utilization. When multiple op-
erators are placed on the same host, they compete for common resources, such as disk,
memory, or CPU. The chart is based on a scenario where two operators compete for
disk only. In other words, each operator accesses a file each time it fires. The two op-
erators access different files, but since there is only one disk, they compete for the I/O
subsystem. The host is a multi-core machine, so the operators do not compete for CPU.
When communication cost is low, the throughput is higher when the operators are on
separate hosts because they can each access separate disks and the cost of commu-
nicating across hosts is marginal. When communication costs are high, the benefit of
accessing separate disks is overcome by the expense of communicating across hosts,
and it becomes more profitable to share the same disk even with contention.
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8.3. Safety
Placement is safe if the following conditions hold:

— Ensure resource kinds. Placement is safe if each host has the right resources for all
the operators placed on it. For example, certain operators might involve code com-
piled for an FPGA, and must therefore only be placed on hosts with FPGAs.

— Ensure resource amounts. The total amount of resources required by the fused oper-
ators, such as FPGA capacity, must not exceed the resources of a single host.

— Obey licensing and security restrictions. Besides resource constraints, placement can
also be restricted by licensing (where a software package can only be installed on
a certain number of hosts) and security (where certain operators can only run on
trusted hosts).

— If placement is dynamic, move only relocatable operators. Dynamic placement re-
quires operator migration, i.e., moving an operator from one host to another. Doing
this safely requires moving the operator’s state, and ensuring that the switch-over
is clean without data loss. Depending on the system, this may only be possible for
certain operators, for instance, operators without state.

8.4. Variations
Placement for load balancing. Section 7 discussed placement algorithms that focus pri-

marily on load balancing [Xing et al. 2005; Amini et al. 2006].
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Placement for other constraints. While load balancing is usually at least part of the con-
sideration for placement, often other constraints complicate the problem. Pietzuch
et al. present a decentralized placement algorithm for a geographically distributed
streaming system, where some operators are geographically pinned [Pietzuch et al.
2006]. SODA performs placement for load balancing while also taking into account
constraints arising from resource matching, licensing, and security [Wolf et al. 2008].
SPADE allows the programmer to guide placement by specifying host pools [Gedik et al.
2008]. When StreamIt is compiled to a communication-exposed architecture, place-
ment considers not just load balancing, but also communication hops in the grid of
cores, and the compiler generates custom communication code [Gordon et al. 2002].

8.5. Dynamism
The majority of the placement decisions are usually made statically, either during com-
pilation or at job submission time. However, some placement algorithms continue to
be active after the job starts, to adapt to changes in load or resource availability. Those
algorithms assume that the system provides a mechanism for migrating operators be-
tween hosts [Xing et al. 2005; Pietzuch et al. 2006].

9. STATE SHARING (A.K.A. DOUBLE-BUFFERING, SYNOPSIS SHARING)

Optimize for space by avoiding unnecessary copies of data.

BA BA

9.1. Example
Consider a financial application that continuously computes the volume-weighted av-
erage price (VWAP) of stocks for both a full day and a half day. This application will
have to maintain large windows for each aggregation—enough so that their memory
requirements may be substantial fractions of a single host. However, if the only differ-
ence between the aggregations is their time granularity, then they can share the same
aggregation window, thereby reducing the total amount of memory required for both
operators.

9.2. Profitability
State sharing is profitable if it reduces stalls due to cache misses, by decreasing the
memory footprint and/or avoiding redundant accesses to the same data. The chart
shows the results of an experiment with two aggregation operators, both acting on the
same stream of data. The difference between the aggregations is their granularity:
the window in one of the aggregations is a fraction of the size of the window in the
other aggregation. Since the state required for the smaller window is a subset of that
required for the larger one, both operators can use the same memory. Even as the size
of the smaller aggregation window increases, state sharing remains profitable because
the aggregation window is traversed only once.
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9.3. Safety
State sharing is safe if the following conditions hold:

— Provide common access to state. The operators that share the state have common
access to it. Typically, this is accomplished by fusion, putting them in the same
operating-system process.

— Avoid race conditions. State sharing must prevent race conditions, either by ensuring
that the data is immutable, or by properly synchronizing accesses.

— Manage memory safely. The memory for the shared state is managed properly. It is
neither reclaimed too early, nor is it allowed to grow without bounds, i.e., leak.

9.4. Variations
Shared queue. In this variant, the producer can write a new item into a queue at the

same time that the consumer reads an old item. To avoid interference and extra data
copies, the queue must have a capacity of at least two data items; therefore, this vari-
ant is sometimes called double-buffering. Note that the operators themselves can be
stateless. Sermulins et al. show how to further optimize a shared queue, by making
it local and computing all offsets at compile-time, so that it can be implemented by
scalar variables instead of an array [Sermulins et al. 2005]. Once this is done, tradi-
tional compiler optimizations can improve the code even further, by allocating queue
entries to registers.

Shared window. In this variant, multiple consumers can peek into the same window.
Even though operators with windows are technically stateful, this is a simple case of
state that is easy to share [Gordon et al. 2006]. CQL implements windows by non-
shared array of pointers to shared data items, such that a single data item might be
pointed to from multiple windows and even queues [Arasu et al. 2006].

Shared operator state:. This variant deals with operators that have non-trivial state,
not just simple windows. It imposes the most challenging requirements on synchro-
nization and memory management. For example, the operators may use STM (software
transactional memory) to manage shared data representing a table or a graph [Brito
et al. 2008].

9.5. Dynamism
We are not aware of a dynamic version of this optimization: the decision whether or not
state can be shared is made statically. However, there is some variation in how much
of the synchronization and memory management is decided at runtime. StreamIt uses
a fully-static approach, where a static schedule prescribes exactly what data can be
accessed by which operator at a particular time [Sermulins et al. 2005]. Brito et al.’s
work is more dynamic, where access to shared state is reconciled by STM (software
transactional memory) [2008].
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10. BATCHING (A.K.A. TRAIN SCHEDULING, EXECUTION SCALING)

Process multiple data items in a single batch.

A A'

10.1. Example
Consider a healthcare application that repeatedly fires an FFT (Fast Fourier Trans-
form) operator for medical imaging. Efficient FFT implementations contain enough
code such that instruction cache locality becomes an issue. If the FFT is used as an
operator in a larger application together with other operators, batching can amortize
the cost of bringing the FFT in cache over multiple data items. In other words, each
time the FFT operator fires, it processes a batch of data items in a loop. This will in-
crease latency, because data items are held until the batch fills up. But depending on
the application, this latency can be tolerated if it leads to higher fidelity otherwise.

10.2. Profitability
Batching trades throughput against latency. Batching can improve throughput by
amortizing operator-firing costs over more data items. Such amortizable costs include
calls that might be deeply nested; warm-up costs, in particular, for the instruction
cache; and scheduling costs, possibly involving a context switch. On the other hand,
batching leads to worse latency, because a data item will not be processed as soon as
it is available, but only later, when its entire batch is available. The figure shows this
trade-off for batch sizes from 1 to 10 data items. For throughput, higher is better; ini-
tially, there is a large improvement in throughput, but the throughput curve levels
out when the per-batch cost has been amortized. For latency, lower is better; latency
increases linearly with batch size, getting worse the larger the batch is.
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10.3. Safety
Batching is safe if the following conditions hold:

— Avoid deadlocks. Batching is only safe if it does not cause deadlocks, which might
happen when the stream-graph is cyclic, or when the batched operator shares a lock
with downstream operators.

— Satisfy deadlines. Certain applications have hard real-time constraints, others have
quality-of-service (QoS) constraints involving latency. In either case, batching must
take care to keep latency within acceptable levels.

10.4. Variations
Batching is a streaming optimization that plays well into the hands of more traditional
(not necessarily streaming) compiler optimizations. In particular, batching gives rise
to loops, and the compiler may optimize these loops with unrolling or with software
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pipelining [Lam 1988]. The compiler for a streaming language may even combine the
techniques directly [Sermulins et al. 2005].

10.5. Dynamism
The main control variable in batching is the batch size, i.e., the number of data
items per batch. The batch size can be controlled either statically or dynamically. On
the static side, execution scaling [Sermulins et al. 2005] is a batching algorithm for
StreamIt that trades the i-cache benefits of batching against the d-cache cost of re-
quiring larger buffers. On the dynamic side, train scheduling [Carney et al. 2003] is
a batching algorithm for Aurora that amortizes context-switching costs when sharing
few cores among many operators, leaving the batch size open. And SEDA [Welsh et al.
2001] uses a batching controller that dynamically finds the largest batch size that still
exhibits acceptable latency, making the system react to changing load conditions.

11. ALGORITHM SELECTION (A.K.A. TRANSLATION TO PHYSICAL QUERY PLAN)

Use a faster algorithm for implementing an operator.

Aα Aβ

11.1. Example
Consider a transportation application that, for tolling purposes, continuously moni-
tors which vehicles are currently on congested road segments. The application has
two input streams: one stream sends, at regular intervals, a table of all congested
road segments, and the other stream sends location updates that map vehicles to road
segments. A too-obvious implementation would implement every relational join as a
nested-loop join Aα. However, in this case, the join checks the equality of road segment
identifiers. Therefore, a better join algorithm, such as a hash-join Aβ, can be chosen.

11.2. Profitability
Algorithm selection is profitable if it replaces a costly operator with a cheaper operator.
In some cases, neither algorithm is better in all circumstances. For example, algorithm
Aα may be faster for small inputs and Aβ may be faster for large inputs. In other cases,
the algorithms optimize for different metrics. For example, algorithm Aα may be faster
but algorithm Aβ may use less memory. Finally, there are cases with trade-offs between
performance and generality: algorithm Aα may be faster, but algorithm Aβ may be more
general. The chart compares throughput of a nested loop join vs. a hash join. At small
window sizes, the performance difference is in the noise, whereas at large window
sizes, the hash join clearly performs better. On the other hand, hash joins are less
general, since their join condition must be an equality, not an arbitrary predicate.
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11.3. Safety
Algorithm selection is safe if the following condition holds:

— Ensure same behavior. Both operators must behave the same for the given inputs. If
algorithm Aα is less general than algorithm Aβ, then choosing the operator with Aα

instead of Aβ is only safe if Aα is general enough for the particular usage. For example,
hash join is less general than nested-loop join, and can only be chosen when the join
condition is an equality.

11.4. Variations
Physical query plans. The motivating example for this section, where the choice is be-

tween a nested-loop join and a hash join, is common in database systems. Compilers
for databases typically first translate an application (or query) into a graph (or plan)
of logical operators, and then translate that to a graph (or plan) of physical opera-
tors [Garcia-Molina et al. 2008]. The algorithm selection happens during the transla-
tion from logical to physical operators. Join operators in particular have many imple-
mentation choices; for instance, an index lookup join may speed up join conditions like
a > 5 with a B-tree. When join conditions get more complex, deciding the best strat-
egy becomes more difficult. A related approach is SASE, where the algorithmic choice
is between weaving certain operators into sequence construction vs. keeping them as
separate pipeline stages [Wu et al. 2006].

Auto-tuners. Outside of streaming systems, there are several successful software
packages that perform “empirical optimization”. The idea is that in order to tune it-
self to a specific hardware platform, the software package automatically runs a set of
performance experiments during installation to select the best-performing algorithms
and parameters. Prominent examples include FFTW [Frigo and Johnson 1998], SPIRAL
[Xiong et al. 2001], and ATLAS [Whaley et al. 2001]. Yotov et al. compare this empirical
optimization approach to more traditional, model-based compiler optimizations [Yotov
et al. 2003].

Different semantics. Algorithm selection can be used as a simple form of load shedding.
While most approaches to load shedding work by dropping data items (as described in
Section 12), load shedding by algorithm selection merely switches to a cheaper imple-
mentation. Unlike the other variations of algorithm selection, this is, by definition, not
safe, because the algorithms are not equivalent. This choice can happen either at job
admission time [Wolf et al. 2008], or dynamically, as described below.

11.5. Dynamism
When algorithm selection is used to react to runtime conditions, it must be dynamic.
For instance, as mentioned above, algorithm selection can be used to implement dy-
namic load shedding. In SEDA, each operator can decide its own policy for overload,
and one alternative is to provide degraded service, i.e., algorithm selection [Welsh
et al. 2001]. In Borealis, operators have control inputs, for instance, to select a dif-
ferent algorithm variant for the operator [Abadi et al. 2005]. To implement dynamic
algorithm selection, the compiler statically provisions both variants of the algorithm,
and the runtime system dynamically picks one or the other as needed.

12. LOAD SHEDDING (A.K.A. ADMISSION CONTROL, GRACEFUL DEGRADATION)

Degrade gracefully when overloaded.

A Shedder A
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12.1. Example
Consider an emergency management application that provides logistics information to
police and fire companies as well as to the general public. Under normal conditions, the
system can easily keep up with the load, and display information to everyone who asks.
However, when a large disaster strikes, the load can increase by orders of magnitude,
and exceed the capacity of the system. Without load shedding, the requests would pile
up, and nobody would get timely responses. Instead, it is preferable to shed some of
the load by only providing complete and accurate replies to requests from police or fire
companies, and degrading accuracy for everyone else.

12.2. Profitability
Load shedding improves throughput at the cost of reducing accuracy. Consider an ag-
gregator that constructs a histogram by counting each data item as belonging to a
“bucket”. The selectivity of an operator is the number of output data items per input
data item. When there is no load shedding, i.e., when selectivity is 1, the histogram
has perfect accuracy, i.e., an accuracy of 1. On the other hand, if the load-shedder only
forwards one out of every thousand data items, i.e., when selectivity is 0.001, the his-
togram has a lower accuracy. The chart measures accuracy as 1 minus error, where
the error is the Pythagorean distance between the actual histogram and the expected
histogram.
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12.3. Safety
Unlike the other optimizations in this paper, load shedding is, by definition, not safe.
While the other optimizations try to compute the same result as in the unoptimized
case, load shedding computes a different, approximate, result; the quality of service of
the application will degrade. However, depending on the particular application, this
drop in quality may be acceptable. Some applications deal with inherently imprecise
data to begin with: for example, sensor readings from the physical world have lim-
ited precision. Other applications produce outputs where correctness is not a clear-cut
issue: for example, advertisement placement and prioritization. Finally, there are ap-
plications that are inherently resilient to imprecision: for example, iterative page-rank
computation uses a convergence check.

12.4. Variations
Load shedding in network applications. Network stacks and web servers are vulnerable

to load spikes, and load shedding has been a prime motivator for implementing them
as graphs of streams and operators. The Scout operating system uses paths in drop
data items early if it can be predicted that they will miss their deadline by the time
they make their way through a path of streaming operators [Mosberger and Peterson
1996]. The Click router puts load shedders into their own separate operators to mod-
ularize the application [Morris et al. 1999]. And in the SEDA architecture for event-
based servers, each operator can elect between different approaches for dealing with



A Catalog of Stream Processing Optimizations A:23

overload, by back-pressure, load shedding, or even algorithm selection (see Section 11)
[Welsh et al. 2001].

Load shedding in relational systems. Papers on load shedders for both Aurora and
STREAM observe that in general, shedders should be as close to sources as possible,
but in the presence of subgraph sharing (see Section 3), shedders may need to be de-
layed until just after the shared portion [Tatbul et al. 2003; Babcock et al. 2004]. Gedik
et al. propose going one step further, by moving the load shedders out of the streaming
system entirely and onto the sensors that produce the data in the first place [2008].

12.5. Dynamism
This optimization is always applied dynamically.

13. DISCUSSION
The previous sections surveyed the major streaming optimizations one by one. A big-
ger picture emerges when making observations across individual optimizations. This
section discusses these observations, puts them in context, and proposes avenues for
future research on streaming optimizations.

13.1. How to specify streaming applications
Not only is there a large number of streaming languages, there are several language
families and other approaches for implementing streaming applications. The program-
ming model is relevant for optimizations, since it influences how and where they apply.
The following list of programming models is ordered from low-level to high-level. For
conciseness, we only list one representative example for each.

— Non-streaming language. This is the lowest-level approach, where the application is
written in a traditional language like C or Fortran, and the compiler must do all the
work of extracting streams, like in decoupled software pipelining [Ottoni et al. 2005].

— Annotated non-streaming language. This approach adds pragmas to indicate streams
in a traditional language like C or Fortran. An example is Brook [Buck et al. 2004].

— Framework in object-oriented language. In this approach, an operator is specified as
a subclass of a class with abstract event-handling methods. Examples are common
in the systems community, e.g., SEDA [Welsh et al. 2001].

— Graph, specified textually. Some streaming languages allow the user to specify the
stream graph directly in terms of operators and streams. An example is SPADE
[Gedik et al. 2008].

— Graph, specified visually. Instead of specifying the stream graph textually in a lan-
guage, some systems, such as Aurora, provide a visual environment for that instead
[Abadi et al. 2003].

— Graph, composed with combinators. Some streaming languages support graph con-
struction only with a small set of built-in combinators. For example, StreamIt pro-
vides three combinators: pipeline, split-join, and feedback loop [Gordon et al. 2006].

— Queries written in SQL dialect. The databases community has developed dialects of
SQL for streaming, for example, CQL [Arasu et al. 2006].

— Rules written in Datalog dialect. There are also dialects of logic languages for stream-
ing, for example, Overlog [Loo et al. 2005].

— Patterns compiled to automatons. The complex event processing (CEP) community
has developed pattern languages, which can be compiled into state machines for de-
tecting events on streams. An example is SASE [Wu et al. 2006].

— Tag-based planner. This is the highest-level approach, where the user merely selects
tags, and the system synthesizes an application, as in Mario [Riabov et al. 2008].
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Traditional compiler analyses

Operator separation

Operator reordering

Fission

Load balancing

Redundancy elimination
Fusion

Placement

Batching
State sharing

Traditional compiler optimizations

Fig. 2. Interactions of streaming optimizations with each other and with traditional compilers. An edge
from X to Y indicates that X can help to enable Y.

As a rule of thumb, the advantages of low-level approaches are generality (pretty
much any application can be expressed) and predictability (the program will perform
as the author expects). On the other hand, the advantages of high-level approaches
are usability (certain applications can be expressed concisely) and optimizability (the
safety conditions are easy to discover). Of course, this rule of thumb is over-simplified,
since generality, predictability, usability, and optimizability depend on more factors
than whether the programming model is low-level or high-level.

Avenues for future work. For low-level stream programming models, research is
needed to make them easier to use and optimize, for example, by providing power-
ful analyses. For high-level stream programming models, research is needed to make
them more general, and to make it easier for users to understand the performance
characteristic of their application after optimization. Given the diversity of streaming
languages, another direction for future work is in intermediate languages that would
allow the same optimization to apply to multiple languages.

13.2. How streaming optimizations enable each other
Figure 2 sketches the most important ways in which stream processing optimizations
enable each other. We defer the discussion of interactions with traditional compiler
analyses and optimizations to the next subsection. Among the streaming optimiza-
tions, the primary enablers are operator separation and operator reordering. Both also
have benefits on their own, but much of their power comes from facilitating other op-
timizations. There is a circular enablement between operator reordering and fission:
operator reordering enables more effective fission by bringing operators together that
can be part of the same parallel segment, whereas fission enables reordering of the
split and merge operators that fission inserts. In addition, fission makes it easier to
balance load, because it introduces data parallelism, which tends to be more homoge-
neous and malleable than pipeline or task parallelism. A streaming system that im-
plements multiple of these optimizations is well advised to apply them in some order
consistent with the direction of the edges in Figure 2.

Avenues for future work. Phase ordering is an interesting problem when there are
variants of optimizations with complex interactions. Furthermore, while there is liter-
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ature with cost models for individual optimizations, extending those to work on multi-
ple optimizations is challenging.

13.3. How streaming optimizations interact with traditional compilers
By traditional compiler, we refer to compilers for languages like Fortran, C, C++, or
Java. These languages do not have streaming constructs, and rely heavily on func-
tions, loops, arrays, objects, and similar shared-memory control constructs and data
structures. Traditional compilers excel at optimizing code written in that style.

The top-most part of Figure 2 sketches the most important ways in which traditional
compiler analyses can enable streaming optimizations. Specifically:

— Operator reordering can be enabled by commutativity analysis [Rinard and Diniz
1996].

— Operator separation can be supported by compiler analysis for decoupled software
pipelining (DSWP) [Ottoni et al. 2005].

— Fission can be supported by compiler analysis for parallel-stage DSWP [Ottoni et al.
2005].

— Load balancing can be supported by worst-case execution time (WCET) analysis [Lim
et al. 1995].

That does not mean that without compiler analysis, these optimizations are impos-
sible. To the contrary, many streaming systems apply the optimizations successfully,
by using a programming model that is high-level enough to establish certain safety
properties by construction.

At the other end, the bottom-most part of Figure 2 sketches the most important
ways in which streaming optimizations have been used to enable traditional compiler
optimizations. Specifically:

— Fusion enables function inlining, and that in turn is a core enabler for many other
compiler optimizations.

— State sharing enables scalar replacement [Sermulins et al. 2005].
— Batching enables loop unrolling and/or software pipelining [Lam 1988].

In each case, the streaming optimization increases the amount of information avail-
able to the traditional compiler. Note, however, that this in itself does not automati-
cally lead to improved optimization. Some engineering is usually needed to ensure that
the traditional compiler will indeed take advantage of its optimization opportunities
[Mosberger et al. 1996].

Avenues for future work. One fruitful area for research would be new compiler anal-
yses to help enable streaming optimizations in more general cases. Another area of
research is making sure the compiler actually follows up on information given to it by
the streaming language and its optimizations.

13.4. Dynamic optimization for streaming systems
Several streaming optimizations have both static and dynamic variants. Table I sum-
marizes this, and each optimization section has a subsection on dynamism. In general,
the advantages of static optimization are that they can afford to be more expensive; it
is easier to make them more comprehensive; and it is easier for them to interact with
traditional compilers. On the other hand, the advantages of dynamic optimization are
that they are more autonomous; they have access to more information to support prof-
itability decisions; they can react to changes in resources or load; and they can even
speculate on safety, as long as they have a safe fall-back mechanism. The literature
lists some intermediate approaches, which optimize either at submission time, or pe-



A:26 M. Hirzel et al.

riodically re-run a static optimizer at runtime, as in Flextream [Hormati et al. 2009].
This is in contrast to the fully dynamic approach, where the application is transformed
for maximum runtime flexibilities, as in Eddies [Avnur and Hellerstein 2000].

Avenues for future work. There are several open problems in supporting more dy-
namic optimizations. One is low-overhead profiling and simple cost models to support
profitability trade-offs. Another is the runtime support for dynamic optimization, for
instance, efficient and safe migration of stateful operators.

13.5. Assumptions, stated or otherwise
Stream processing has become popular in several independent research research com-
munities, and these communities have different assumptions that influence the shape
and feasibility of streaming optimizations.

Even, predictable, and balanced load. Pretty much all static optimizations make this
assumption. On the other hand, other communities, such as the systems community,
assume to the contrary that load can fluctuate widely. In fact, that is a primary moti-
vation for two of the optimizations: load balancing and load shedding.

Centralized system. Many optimizations assume shared memory and/or a shared
clock, and are thus not directly applicable to distributed streaming systems. Authors
of distributed systems tend to emphasize distribution, but it does not always occur to
authors of centralized systems to state the centralized assumptions.

Fault tolerance. Many optimizations are orthogonal to whether or not the system is
fault tolerant. However, for some optimizations, making them fault tolerant requires
significant additional effort. An example is the Flux operator, which makes fission fault
tolerant [Shah et al. 2004].

Avenues for future work. For any optimization that explicitly states or silently makes
restrictive assumptions, coming up with a way to overcome the restrictions can be a re-
warding research project. Examples include getting a centralized optimization to work
(and scale!) in a distributed system, or removing the dependence on fault-tolerance
from an optimization.

13.6. Metrics for streaming optimization profitability
There are many ways to measure whether a streaming optimization was profitable, in-
cluding throughput, latency, quality of service (QoS), power, and network utilization.
The goals are frequently in-line with each other: many optimizations that improve
throughput will also improve the other metrics. For that reason, most of this survey
focuses on throughput. Notable exceptions include the trade-off between throughput
and latency seen in batching, fission, and operator separation; the trade-off between
throughput and QoS or accuracy in load shedding; and the trade-off between through-
put and power in fission. As a concrete example for such trade-offs, slack refers to the
permissible wiggle-room for degrading latency up to a deadline, which can be exploited
by a controller to optimize throughput [Welsh et al. 2001].

Avenues for future work. For performance evaluation, standard benchmarks would
be a great service to the streaming optimization community. Existing benchmarking
work includes the Stanford stream query repository [Arasu et al. 2006], the BiCEP
benchmarks [Mendes et al. 2009], and the StreamIt benchmarks [Thies and Amaras-
inghe 2010], but more work is needed. Another direction for future research is multi-
metric optimizers.
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14. CONCLUSION
This paper presents a catalog of optimizations for stream processing. It consolidates
the extensive prior optimizations work, and also provides a practical guide for users
and implementors. The challenge in organizing such a catalog is to provide a frame-
work in which to understand the optimizations. To that end, this paper is structured
in a similar style to catalogs of design patterns or refactoring. This survey establishes
a common terminology across the various research communities that have embraced
stream processing. This enables members from the different communities to easily un-
derstand and apply the optimizations, and lays a foundation for continued research in
streaming optimizations.
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