
RC24794 (W0905-013) May 7, 2009
Computer Science

IBM Research Report

Efficient Memory Management for Long-Lived Objects

Ronny Morad1, Martin Hirzel2, Elliot K. Kolodner1, Mooly Sagiv3

1IBM Research Division
Haifa Research Laboratory

Mt. Carmel 31905
Haifa, Israel

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

USA

3Tel-Aviv University
Israel

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Efficient Memory Management for Long-Lived Objects

Ronny Morad
IBM Haifa Research Center

morad@il.ibm.com

Martin Hirzel
IBM Watson Research Center

hirzel@us.ibm.com

Elliot K. Kolodner
IBM Haifa Research Center

kolodner@il.ibm.com

Mooly Sagiv
Tel-Aviv University

msagiv@post.tau.ac.il

Abstract
Generational garbage collectors perform well for short-lived ob-
jects, but do not deal well with long-lived objects. Existing tech-
niques for long-lived objects, such as pretenuring, eliminate work
in the nursery; however, the collector still needs to deal with the
long-lived objects in the older generations. We introduce a novel
scheme employing regions that avoids both nursery and old gener-
ation costs.

Our scheme divides the heap into two sub-heaps: a garbage col-
lected heap and a region heap. Most objects are allocated in the
garbage collected heap, while long-lived objects are allocated in
regions. The scheme maintains reference counts to the regions, and
reclaims regions when their count drops to zero. The memory man-
agement mechanism is decoupled from the region selection policy.
Region selection policies may range from manual to fully auto-
matic. This paper presents a particular realization for our memory
management scheme over an Appel-style generational garbage col-
lector. This realization includes an automatic profile-based region
selection technique. Evaluating our algorithm using a garbage col-
lection simulator, it reduces copying by 10% on average when com-
pared to Appel in tight heaps.

Categories and Subject Descriptors D3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
Optimization

General Terms Performance, Measurement, Experimentation

Keywords Garbage Collection, Regions, Generations

1. Introduction
One of the key features of modern programming languages, such
as Java, C#, and Python, is automatic memory management. Using
automatic memory management the programmer only needs to
allocate objects, and their reclamation when no longer necessary
is performed by a garbage collector. This simplifies the design
and code of programs and eliminates many memory related bugs.
Garbage collectors interrupt the program execution occasionally in
order to reclaim space.

Generational copying garbage collectors achieve good per-
formance by dividing the heap into several spaces (usually two)
termed generations [31, 44]. New objects are allocated in the nurs-
ery; when there is no more space in it, a minor collection scans the
objects in the nursery and may promote surviving objects to the
older generation. When there is no more space in the older gener-
ation, a major collection scans all reachable objects. Generational
copying garbage collectors perform well, relying on the assump-
tion that most objects die young and do not even survive a minor
collection. However, long-lived objects may survive multiple major
collections and be copied or traced each time.

Pretenuring is a technique that reduces copying in the nursery
by directly allocating objects that are predicted to be long-lived

in the old generation [9, 21, 4]. This eliminates the first copy.
However, subsequent copies are still performed. Another technique
is to allocate objects that are predicted to live throughout an entire
program execution in a permanent space [9, 21, 4]. However, this
does not address the issue of objects that are long-lived but not
permanent. Such objects are likely to appear in a Web server: an
object may be allocated at the beginning of a web transaction and
live throughout the transaction.

We introduce a novel scheme employing regions that avoids
both nursery and old generation costs. The scheme combines a
generational garbage collector to handle the short-lived objects
with regions to improve the handling of long-lived objects and
achieve better overall performance. The scheme can work with a
variety of generational and old space collectors, not necessarily
copying collectors.

In our scheme the heap is divided into two sub-heaps: a garbage
collected heap and a region heap. Most objects are allocated in the
garbage collected heap while some objects are allocated in regions.
Reference counts are maintained to regions in order to know when
a region can be reclaimed. When a region is reclaimed then all the
space it occupies is reclaimed at once. There is no partial region
reclamation. This paper introduces two variations of the memory
manager algorithm: one in which the reference counts are accurate
after both major and minor collections, and a second in which
the reference counts are accurate only after major collections. The
former incurs some extra write barrier overhead, whereas the latter
incurs no extra write barrier overhead.

Our method can employ a variety of region selection methods.
One method is to let the programmer decide explicitly. Another
possibility is to employ static analysis to determine the regions.
Regions can also be assigned dynamically during program execu-
tion. For this work we developed a novel profile-based technique
for deciding which objects to allocate in regions.

This paper introduces a realization of the memory manage-
ment scheme based on an Appel-style generational garbage col-
lector [2]. Blackburn et al. found that Appel’s collector yields ex-
cellent throughput [6]. In the realization a region selector chooses
which objects to allocate directly in regions based on their nested
allocation site (also known as call-chain). The selector employs
profiling in order to gather information on the nested allocation
sites, and according to the information gathered it decides which
sites are suitable for regions. The selector uses traces with accurate
object death times generated by the Merlin algorithm [24].

Employing gcSim [26], a garbage collection simulator, we
check the potential performance of the realization of our scheme.
We use a medium size input for training (profiling and region selec-
tion) and a large size input for testing. The simulation results show
that in a tight heap configuration our scheme gains a significant
average improvement over the Appel collector: 10% less copying,
4.2% less scanning, 7.2% less major collections, and 6.3% less
minor collections. The responsiveness of our method not only did
not degrade, but even improved slightly. Using the same input for

1

training and testing, the results are even more significant: 22.3%
less copying, 7.6% less scanning, 18% less major collections, and
10.9% less minor collections.

In summary this paper makes two primary contributions:

1. A novel memory management scheme, based on combining
generational collection with regions, that deals with long-lived
objects.

2. An effective technique for automatic region selection.

The remainder of this paper is organized as follows. Section 2
gives background information on generational garbage collection,
region based memory management, and reference counting. Sec-
tion 3 describes our memory management scheme, and Section 4
presents a realization of our scheme, including our region selection
technique. Section 5 explains the experimental methodology, and
Section 6 gives the results. Section 7 compares our work to related
work, and Section 8 concludes.

2. Background
This paper is concerned with efficient automatic memory manage-
ment. Memory management is the runtime system component that
allows a program to allocate heap objects, for example, with “cons”
in Lisp, “malloc” in C, or “new” in Java [45]. Automatic memory
management means that the programmer does not need to explic-
itly “free” objects. This section briefly reviews some terminology
for later use; for in-depth surveys, see [29, 42].

Copying garbage collection implements automatic memory
management by copying survivors and discarding dead (i.e., un-
reachable) objects. It divides heap memory into two semispaces.
Only one semispace is active for allocation at a time, the other
semispace serves as copy reserve. Garbage collection starts when
the active semispace is full. It first identifies the root set, the set of
program variables that hold pointers to heap objects. The collector
copies all objects that are transitively reachable from the root set
to the copy reserve, and discards the originals. When the program
resumes, it uses the other semispace for allocation.

Most language runtime systems today use generational garbage
collectors, because they tend to yield the best throughput. Genera-
tional collectors segregate objects by age into generations [31, 44].
Younger generations are collected more often than older genera-
tions, which reduces overall collector work, because most objects
become unreachable while they are still young. For concreteness,
this paper discusses generational collectors with just two genera-
tions, and refers to them as young space and old space.

Generational collectors maintain a remembered set of locations
(objects, slots, or small chunks of memory called cards) in the old
space that have pointers to objects in the young space. This enables
collecting the young space separately by traversing pointers starting
from the remembered set in addition to the root set, and ignoring
pointers to the old space. A write barrier adds old locations to the
remembered set when the program stores pointers to young objects
in them.

Section 3 presents a memory management scheme that can
make use of any garbage collector. As a proof of concept, Section 4
describes a realization based on Appel’s generational garbage col-
lector [2]. Appel’s collector uses a flexible size young generation:
instead of a fixed space allowance, the young generation can al-
ways use all available space that is not needed for old objects or as
copy reserve. This leads to less frequent collections and thus better
program performance.

In region based memory management, the program allocates
heap objects into regions individually, and reclaims all objects
in a region simultaneously when none of them are needed any-
more [42]. The advantage of this all-or-nothing policy is that there

is no overhead for allowing individual object reclamation. The dis-
advantage is that there can be a long time lag between the time that
an individual object becomes unreachable and the time when its
memory is freed along with the surrounding region.

Reference counting keeps track of the number of references
to each object during execution: every pointer write increases the
count for the new target, and decreases the count for the old (over-
written) target. Reference counting garbage collectors reclaim ob-
jects when their reference counts drop to zero [14], and thus unlike
other collectors, require no reachability traversal or copying. In its
most basic form, reference counting suffers from two problems: it
cannot reclaim cyclic garbage (since the objects in the cycle keep
each other’s reference counts positive), and it incurs a high over-
head (due to bookkeeping at each pointer store). The bookkeep-
ing overhead can be reduced by deferred reference counting ([15],
no bookkeeping for stack variables, which are modified most fre-
quently) and ulterior reference counting ([7], no bookkeeping for
young objects, which are modified more frequently than old ob-
jects). The current paper counts references for entire regions instead
of individual objects, collects cycles, and uses a technique similar
to ulterior reference counting to reduce overhead.

3. The Memory Management Scheme
We choose to describe the memory management scheme for a
collector with two generations, where objects surviving a minor
collection are immediately promoted to the old generation. The
scheme will also work for collectors that age objects in the young
generation before promoting them.

The scheme divides the heap into two spaces: the garbage col-
lected space and the region space. At allocation time, a region se-
lector determines whether to allocate a new object in the garbage
collected heap or in one of the regions. The division is flexible and
changes adaptively during execution. In particular, region size and
the total space allocated to regions can grow on demand as long as
enough space is left for the collector to complete its work. For ex-
ample, in a copying collector enough space should be reserved to
enable all reachable objects to be copied.

The memory manager maintains reference counts to each of
the regions. For efficiency, the reference counts do not include
references from the young space or from the root set, analogous to
ulterior reference counting [7]. The reference counts are updated by
the write barrier and during collections. The memory manager also
maintains a remembered set to the young space. The set includes
references from the old space and from the region space.

Figure 1 depicts a possible state of this scheme. The region
heap contains three regions: r0, r1, and r2. The rest of the space
is used by the garbaged collected heap. The remembered set holds
references to objects that point to the young space. Each region has
a reference count which does not include references from the young
space or from the root set.

When there is no room left in the young space, a minor collec-
tion is triggered. Surviving objects are promoted to the old space,
and the reference counts of the regions are adjusted accordingly.
When the collection is complete, it is safe to reclaim regions that
have a zero reference count and no references from the root set. The
space that was reclaimed is returned to the general heap and can be
reused for either the garbage collected space or the region space.
The next section shows how this can be done efficiently.

Figure 2 depicts a possible heap state right after a minor col-
lection. Region r0 can be safely reclaimed. Region r2 cannot be
reclaimed although it has a reference count of zero since a member
of the root set refers to it.

There is no partial region reclamation; the reclamation of re-
gions is performed according to an “all-or-nothing” policy. If the

2

gc heap region heap

r0 r1 r2young old

root set remembered set 0 3 0

reference counts

Figure 1. The memory management scheme. The region heap
contains three regions: r0, r1 and r2. The rest of the space is used by
the garbaged collected heap. The remembered set holds references
to objects that point to the young space. Each region has a reference
count which does not include references from the young space or
from the root set.

reference count of a region is more than zero, then the region is not
reclaimed, even though there may be unreachable objects in it.

gc heap region heap

r0 r1 r2young old

root set remembered set 0 3 0

reference counts

Figure 2. The heap right after a minor collection. Region r0 can
be safely reclaimed. Region r2 cannot be reclaimed although it has
a reference count of zero since a member of the root set refers to it.

When there is no more room in the old space, a major collection
is triggered. During a major collection all the reachable objects are
scanned, and the reference counts are recalculated for each of the
regions. The recalculation avoids the need to sweep the old space
after a major collection; this sweep would be needed to adjust
the reference counts from old space objects that became garbage.
When a major collection completes, the garbage collected heap
contains only reachable objects and there are accurate reference
counts for each of the regions. Similar to a minor collection, regions
with zero reference counts and no references from the global root
set (static variables and the stacks), can be safely reclaimed. Again,
the reclaimed space is returned to the general heap and can be
reused for either the garbage collected space or the region space.
The recalculation of reference counts during a major collection
ensures that cyclic garbage regions are also collected.

So far, we have outlined the first variant of the memory man-
agement algorithm. In a second variant, reference counts for the
regions are calculated only during major collections (i.e., they are

not maintained during normal program execution as the heap is mu-
tated). In this variant, regions can only be reclaimed safely after
major collections. This eliminates extra overhead on the write bar-
rier; however, it provides less opportunities for region reclamation.
We compare the two variants in our performance analysis.

3.1 Object Allocation

1: allocate(objParams):
2: region = selectRegion(objParams)
3: if region == null // garbage collected heap
4: gcHeap.allocate(objParams)
5: else // region heap

// try to allocate in the selected region
6: if !region.allocate(objParams)

// not successful. Initiate a garbage collection.
7: gcHeap.collectGarbage(objParmas.size)

// try to allocate again in the selected region
8: if !region.allocate(objParams)

// not successful. Give up.
9: terminate “Out of Memory”

Figure 3. Allocation pseudo-code.

Figure 3 shows pseudo-code for the allocation sequence. Its
input, objParams, denotes parameters known at allocation time,
relevant to allocation and region selection. They include the frame
pointer, thread id, object size, object type and nested allocation site.

Based on the input, the region selector chooses where to allocate
the object (Line 2). The region selection technique is pluggable
and is an independent part of the memory management scheme.
Section 4 introduces an effective profile-based technique for region
selection. If the region selector decides that this object is not part
of the region space, then the object is allocated in the garbage
collected space (Lines 3+4). If the region selector returns a region,
then an attempt is made to allocate that object in the region.

If the allocator fails to allocate the object in that region (Line 6),
because the region size cannot grow, then the memory manager
forces a garbage collection (Line 7). It also provides the collector
the size of the object so the collector can decide between a minor
and a major collection.

Following the collection, the allocator makes another attempt to
allocate the object in the region (Line 8) in the hope that enough
space was reclaimed. If it fails, then the memory manager termi-
nates with an insufficient memory error.

3.2 Write Barrier

1: pointerUpdated(srcObj, oldTgtObj, tgtObj):
2: updateReferenceCounts(srcObj, oldTgtObj, tgtObj)
3: updateRemSet(srcObj, oldTgtObj, tgtObj)

4: updateReferenceCounts(srcObj, oldTgtObj, tgtObj):
// references from the young space are not counted

5: if !isYoung(srcObj)
// avoid counting self references to regions

6: if !updateToSameRegion(oldTgtObj, tgtObj)
7: if oldTgtObj 6= null and isRegion(oldTgtObj.space())
8: decreaseRC(oldTgtObj.space())
9: if tgtObj 6= null and isRegion(tgtObj.space())

10: increaseRC(tgtObj.space())

Figure 4. Write barrier pseudo-code.

Figure 4 shows pseudo-code for the write barrier sequence.
Line 3 calls the normal write barrier of the generational garbage
collector, which maintains the remembered set as described in

3

Section 2. Variation I of our memory manager requires extra work
for adjusting the reference counts of the regions (Lines 4–10). For
efficiency, it does not count references from the root set or from
the young space, similar to deferred and ulterior reference counting
respectively [15, 7]. Notice that in many cases either the old or new
target are null and therefore no work is required besides the null
check.

In the second variant of the scheme, the write barrier only
updates the remembered set and introduces no extra overhead for
maintaining region reference counts.

3.3 Minor Garbage Collection
The roots for minor collections are the global root set (static and
stack roots), as well as the remembered set, which holds references
from the old space and from the region space to the young space.

During a minor collection surviving objects are promoted to the
old space. The reference fields of these objects are scanned in order
to check whether there are regions that are referenced by these
fields, and their counts are updated accordingly.

When the collection of the young space is complete, there are
no objects remaining in it and the reference counts for the regions,
which count the number of references from the old space and
other regions, are accurate. The collector reclaims regions with
zero reference counts and no references from the root set. The
remembered sets are also discarded. Notice that if a region that
is freed points to another region, then the pointed region reference
count will not drop to zero at least until the next major collection,
where its reference count is recalculated.

3.4 Major Garbage Collection
During a major collection all reachable objects are scanned, and
reference counts are recalculated for the regions. The roots for a
major collection are the global root set (static and stack roots).

At the beginning of a major collection the reference counts
of the regions are reset. During the heap traversal, each time a
reference that points into a region is traversed, the reference count
of the region is incremented. Self references are not counted.

When the collection of the young and old spaces is complete,
the collector reclaims regions with zero reference counts and no
references from the root set. Such regions can be safely reclaimed.
Notice that cycles between unreachable objects in regions will not
be included in the reference counts, and thus, a region that has only
unreachable objects will be reclaimed. The remembered sets are
also discarded.

The recalculation of the reference counts incurs little extra over-
head as all of the reachable objects in the young and old spaces need
to be traced in any case. There is an extra cost to scan the reachable
objects in the regions, which is less than the cost to copy them.

3.5 Second Variant of the Memory Manager Algorithm
Until now we described the first variant of the memory manager
algorithm. The second variant does not maintain reference counts
to the regions during heap mutation. Thus, the write barrier does
not need to update reference counts and it is the same as for
the generational garbage collector. In this case regions cannot be
reclaimed after a minor collection. A major collection is the same
as for the first variant; the collector recalculates reference counts
and frees regions whose count is zero at the end of the heap
traversal.

The main advantage of the second variant is that it incurs no ad-
ditional overhead on the write barrier of the generational garbage
collector. However, there are less opportunities for reclaiming re-
gions since they can be collected only at major collections. Sec-
tion 6 evaluates the performance of both variations.

3.6 Correctness
Safety: Objects in regions are not reclaimed prematurely. A
region is reclaimed after a minor collection if its reference count
is zero and no roots point to the region. If the reference count is
zero, there are no pointers from the old generation and from other
regions. The only other origin of pointers to the region would be the
young generation, but that is empty right after a minor collection.

Liveness: If none of the objects in a region is reachable from the
roots, it will be reclaimed no later than at the next major garbage
collection. It will be reclaimed earlier if its reference count drops
to zero, but that may not happen, because there may be pointers
from dead objects in the old generation or in other regions that
keep the reference count above zero even if the entire region is
dead. But during a major garbage collection, all reference counts
are recomputed based on a traversal of live (reachable) objects only.
Therefore, if no object in the region is reachable, its reference count
is zero and it gets reclaimed.

4. Realization of the Memory Management
Scheme

This section describes a realization of the memory manager scheme
based on an Appel-style generational collector [2]. Prior work has
shown it is one of the best performing collectors [6]. First we
describe how we organize the heap. Then we introduce our region
selection technique and the heuristic on which it is based.

4.1 Heap Organization
We divide the heap into 4KB pages. The pool of pages is shared be-
tween the garbage collected heap and the region heap. The sharing
of the same pool of pages for both the garbage collected heap and
the region heap enables the efficient utilization of the heap, which
we describe below.

The garbage collected heap has a current allocation page. The
allocator for the garbage collected heap first tries to allocate on the
current page; if there is no room, then it asks for additional pages
from the pool to accommodate the object. Multiple pages may be
required for large objects, which are allocated on contiguous pages.
The last page requested becomes the current allocation page.

In order to be able to perform garbage collection successfully
a copy reserve is required. This means that for every page used in
the garbage collected heap there must be a corresponding free page
in the pool to allow copying. If allocating an object would result
in reducing the copy reserve below the level needed to complete a
garbage collection successfully, then a collection is initiated.

A similar procedure performs allocation on the region heap.
Each region has its own current allocation page. The regions grow
as long as the copy reserve allows for successful garbage collection.
If a region cannot grow because it would reduce the copy reserve
(of the garbage collected heap) below its limit, a garbage collection
is initiated. The regions do not need a copy reserve, since no
copying is performed in the region space. When the reference count
of a region drops to zero, the whole region is reclaimed, and its
pages are returned to the pool, effectively increasing the size of the
garbage collected heap.

4.2 The Region Selection Technique
Our region selection technique associates a region with a single
nested allocation site. A nested allocation site is the call-chain
that allocates an object. It is a sequence of method:offset, start-
ing from the deepest method (allocating method) up to the main
method. To avoid overfitting, we used a nested allocation site of size
three: method1:offset1, method2:offset2, method3:offset3, where
method1 is the allocating method. When a nested allocation site

4

is associated with a region, then all the objects that are allocated at
this nested allocation site are allocated to that region.

There are two stages to the technique. First an offline stage
profiles the application. The profiling collects relevant statistics,
which we detail below, regarding the nested allocation sites. Based
on these statistics, a heuristic selects the nested allocation sites to
be associated with regions. The second stage is the production run,
where the chosen sites allocate in regions.

4.2.1 Floating Garbage Ratio
The heuristic is based on a measure of floating garbage in the region
associated with a nested allocation site, which we call the floating
garbage ratio and explain below.

When an object is allocated in a region it consumes space equal
to its size. As time advances, more objects are allocated to the
region, and the space that the region consumes is equal to the sum
of the sizes of the objects that were allocated in that region. When
an object becomes unreachable, the object continues consuming
space until its region is freed. Thus, at any point in time, the
memory consumption of a region is equal to the amount of space
occupied by reachable objects plus the amount of space occupied
by unreachable objects. At the time the region is freed, its memory
consumption drops to zero.

The memory consumption of a region can be drawn as a graph
where the y-axis is the memory consumption in bytes, and the x-
axis is the program execution time measured in bytes allocated
since the start of the program. There are three relevant graphs:
one for the memory consumption of the reachable objects, the
second for the memory consumption of the unreachable objects,
and the third for the sum of the consumption of the reachable and
unreachable objects (the total consumption of the region).

We define RB as the space-time product of reachable bytes in
a region; it is the area beneath the graph of reachable objects. We
define AB as the space-time product of the allocated bytes (sum of
the reachable and unreachable) in a region; it is the area beneath
the graph of the allocated objects. The floating garbage ratio of a
region, called FGR, is computed as (AB −RB)/AB.

Figure 5 shows possible memory consumption graphs for a
prospective region and illustrates the concepts. The RB for the
region is 6.5 kb2. The AB for the region is 10.5 kb2. The FGR is
38%.

Space
[kb]

Time
[kb]

reachable: 6.5 (kb)2

re
gion: 1

0.5
 (k

b)2

Figure 5. Floating garbage. The floating garbage ratio is 38%.

The RB and the AB for all nested allocation sites are calculated
in linear time in a single pass over a Merlin trace [24]. A Merlin
trace is a trace that contains the exact times when all objects first
become unreachable, which is the earliest time at which they can
be deallocated.

4.2.2 The Heuristic
Our goal is to select nested allocation sites that will perform better
when they are managed in regions rather than by the garbage
collector. We observe that regions perform best when their floating
garbage ratio is zero. A floating garbage ratio of zero means that
all the objects in a region die together, and the region is freed
as soon as its objects die. We also observe that we should avoid
allocating short-lived objects in regions as these are the objects that
a generational collector handles best.

The above arguments lead to the following criteria for choosing
a nested allocation site for allocation in a region:

1. The floating garbage ratio for the region associated with the
site should be as small as possible, in particular smaller than
fgr threshold.

2. The objects allocated at the site should be long-lived, in par-
ticular, the average lifetime of the objects allocated is greater
than lifetime threshold. Some nested allocation sites may allo-
cate objects with very different lifetimes. Thus, we only select
sites with a low standard deviation in the object lifetime, in par-
ticular less than stddev threshold.

3. The site should allocate as much space as possible. Choosing
all the nested allocation sites that meet the first two criteria
might require too many regions. Since the heap is divided into
pages, it might become too fragmented. Thus, among all regions
that meet the first two criteria, we select those that allocate the
largest amount of space. We select no more than region num
regions.

The particular values of the constants that we used in our exper-
iments are:

1. fgr threshold = 0.01. This value avoids missing nested allo-
cation sites that have a negligible yet positive floating garbage
ratio.

2. lifetime threshold = 0.3 ∗ (high watermark), where the high -
watermark is the largest reachable heap during the execution.
The value 0.3 ∗ (high watermark) has the same order of mag-
nitude as a semispace of a young generation, and hence, is a
reasonable distinguisher for old objects.

3. stddev threshold = 0.3 ∗ (average lifetime), where aver-
age lifetime is the average lifetime of the objects allocated at a
site. Picking a low value compared to the average lifetime leads
to homogeneous intra-region longevity.

4. region num = 10. Usually, most benefit comes from a handful
of nested allocation sites. Each region corresponds to one nested
allocation site, and 10 regions are enough to get the benefit yet
few enough that fragmentation is not a concern.

5. Methodology
The methodology of this paper consists of the following steps:
generate a training trace for each benchmark using a small input;
select regions based on the training trace; generate a measurement
trace using a larger input; and simulate the garbage collectors on
the measurement trace to collect performance metrics.

The traces come from a trace generator implemented in ver-
sion 2.2.0 of Jikes RVM, an open-source Java virtual machine [1].
Traces are chronological recordings of object allocations, pointer
updates, and object deaths. Allocations and pointer updates enable
garbage collection simulation, and object deaths enable simulator
validation and region selection. The death time of an object is the
exact time when the object becomes unreachable as computed by
the Merlin algorithm [24]. The trace generator was originally de-
veloped to evaluate connectivity-based garbage collection [26], and

5

Program Suite Input Input Total allocation High Turn-
(training) (measured) objects MB water over

jess jvm98 -s10 -s100 11,750,329 359.6 1.5 232.3
ipsixql Colorado 1 2 3 2 8,816,975 261.0 3.2 81.3
jack jvm98 -s10 -s100 13,528,967 395.5 5.0 79.6
bh Olden -b 50 -s 10 -b 500 -s 10 1,106,090 33.8 0.5 70.9
javac jvm98 -s10 -s100 18,518,049 530.1 9.0 58.7
pseudojbb jbb 1 warehouse, 7,000 trans. 1 warehouse, 70,000 trans. 18,606,121 502.8 26.7 18.8
mtrt jvm98 -s10 -s100 6,868,468 163.4 8.7 18.8
compress jvm98 -s10 -s100 9,608 105.3 6.7 15.7
health Olden -l 5 -t 50 -s 1 -l 5 -t 500 -s 1 1,778,253 37.7 2.6 14.7
xalan Colorado 1 2 3 2 7,054,505 390.4 32.7 12.0
db jvm98 -s10 -s100 3,763,760 90.8 8.6 10.5
mpegaudio jvm98 -s10 -s100 25,102 1.0 0.5 2.3
null (none) – – 1,488 0.1 0.0 2.9

Table 1. Traces used in this evaluation.

we augment it to record nested allocation sites instead of just flat
allocation sites.

We implement our memory management scheme inside of the
gcSim garbage collection simulator.1 It consists of implementations
of various collectors, supported by models of the root set, the heap,
and individual objects and a block manager (the heap is organized
as a number of fixed-sized blocks).

Jikes RVM is written mostly in Java, and runtime system com-
ponents, such as the optimizing JIT compiler, allocate Java objects
in addition to the objects allocated by the benchmark itself. The
traces come from runs of Jikes RVM with adaptive optimization
system enabled, and start after one benchmark execution has com-
pleted, so the compiler causes little additional allocation. The tracer
denotes all objects reachable at the beginning of the second run as
boot image objects. The simulator places boot image objects in a
special region that is not part of the garbage collected heap. Boot
image objects are part of the remembered set for minor garbage col-
lections. Major garbage collections traverse but do not copy boot
image objects. Region reference counts include pointers from boot
image objects.

Table 1 describes the traces from our benchmark programs,
which come from a variety of benchmark suites (SPECjvm982,
SPECjbb20003, Colorado4, and Olden5). The “null” benchmark
consists of the empty main method; it is not interesting in and
of itself, but it puts results for other benchmarks into perspective.
Columns “Input (training/measured)” show the command line ar-
guments for the two traces that we collect for each benchmark. Two
benchmarks (null and mpegaudio) allocate very little memory, so
the results section excludes these benchmarks.

Columns “Total allocation”, “High watermark”, and “Turnover”
characterize the measurement traces excluding the boot image. To-
tal allocation is the sum of all allocations in the trace, high water-
mark is the maximum amount of reachable data at any time during
the trace, and turnover is the ratio of total allocation over high wa-
termark. The garbage collection simulator bounds the heap size to
a multiple of max live (for example, 3×), and therefore, programs
with higher turnover exert more garbage collection pressure. The
rows are sorted by decreasing turnover, putting the most interesting
benchmarks at the top.

1 http://www-plan.cs.colorado.edu/hirzel/gcSim/
2 http://www.specbench.org/osg/jvm98
3 http://www.specbench.org/osg/jbb2000
4 http://www-plan.cs.colorado.edu/henkel/projects/
colorado_bench/
5 http://www-ali.cs.umass.edu/˜cahoon/olden

Using a simulator to evaluate our memory management scheme
has advantages over a full implementation: it allows us to abstract
from implementation details, it allows us to compare our scheme
to other collectors in a controlled environment, and it allows us to
experiment with different variations on our scheme and to evaluate
their performance before committing to a full-fledged implementa-
tion. There are also drawbacks to not using a full implementation in
a Java virtual machine. The most important is that simulation can
not give us concrete timing numbers. Another drawback is that we
have no cache-level locality numbers. However, previous work has
shown that simulators can be useful for GC research [37, 16, 26].

6. Results
Using the simulator we analyze the performance of the realization
of our memory management scheme. We compare it to an Appel-
style collector both on overall garbage collection performance and
responsiveness, analyze its sensitivity to heap size, and check its
sensitivity to the input used on the training runs.

6.1 Comparison to Appel
We compare the two variants of our algorithm to an Appel-style
collector. Variation I reclaims regions both after major and mi-
nor collections, and Variation II reclaims regions only after major
collections. The metrics for comparison are the number of bytes
copied, the number of bytes scanned, and the number of major and
minor collections. These metrics have a strong correlation to col-
lector performance; copying and scanning are the primary costs for
a copying collector and there is also a non-negligible fixed cost for
each major and minor collection. Copying is more expensive than
scanning, and therefore the bytes copied result should have a bigger
weight when evaluating performance.

We compare using a tight heap size: 2.3 times the high water-
mark of reachable memory for each benchmark. A tight heap size is
most interesting because the time that a program spends in garbage
collection is bigger, and any improvement obtained is more signif-
icant.

Table 2 shows the results for each benchmark: the number of
megabytes copied and scanned with Appel, and the percentage
improvement over Appel using our memory manager. The last line
of the table shows the average percentage improvements.

Table 3 shows the number of major and minor collections, and
the percentage improvement for each. The last line of the table also
shows the average percentage improvements.

These results show that on average our realization performs bet-
ter than Appel on all four metrics. Surprisingly, Variation II, which
has less opportunity to free regions (only on major collections) per-
forms slightly better than Variation I on average. In particular Vari-

6

http://www-plan.cs.colorado.edu/hirzel/gcSim/
http://www.specbench.org/osg/jvm98
http://www.specbench.org/osg/jbb2000
http://www-plan.cs.colorado.edu/henkel/projects/colorado_bench/
http://www-plan.cs.colorado.edu/henkel/projects/colorado_bench/
http://www-ali.cs.umass.edu/~cahoon/olden

Program Appel Variation I Variation II
copied scanned copied scanned copied scanned

jess 52.3 127.0 36.9% 11.2% 39.0% 21.7%
ipsixql 284.8 97.4 7.8% 3.9% 7.8% 4.9%
jack 73.6 43.6 13.3% 10.2% 13.9% 9.2%
bh 11.7 22.0 17.0% 4.9% 15.0% -4.1%
javac 370.6 145.6 7.1% 1.3% 7.1% 3.7%
pseudojbb 457.9 58.0 1.0% -2.0% 1.0% -0.8%
mtrt 49.0 24.0 7.6% 10.2% 7.7% 11.2%
compress 98.9 4.0 8.3% 2.5% 8.3% 2.5%
health 8.7 8.5 2.3% -4.0% 1.7% -6.1%
xalan 473.1 36.1 0.0% -0.7% 0.0% 0.0%
db 106.1 43.9 9.7% 3.7% 9.7% 4.4%
Average 10.1% 3.7% 10.1% 4.2%

Table 2. Copying and scanning at heap size 2.3×.

Program Appel Variation I Variation II
major minor major minor major minor

jess 29 1,713 31.0% 8.9% 34.5% 21.1%
ipsixql 77 327 6.5% 0.6% 6.5% 4.0%
jack 12 430 8.3% 11.6% 8.3% 9.3%
bh 21 280 14.3% 3.6% 14.3% -9.3%
javac 35 533 5.7% -9.4% 5.7% 1.5%
pseudojbb 14 228 0.0% -10.1% 0.0% -4.4%
mtrt 4 178 0.0% 25.8% 0.0% 28.1%
compress 13 16 0.0% 25.0% 0.0% 25.0%
health 2 73 0.0% -5.5% 0.0% -9.6%
xalan 13 116 0.0% -3.4% 0.0% 2.6%
db 10 146 10.0% -2.7% 10.0% 1.4%
Average 6.9% 4.0% 7.2% 6.3%

Table 3. Number of garbage collections at heap size 2.3×.

ation II performs 10% less copying and 4.2% less scanning than
Appel on average. It also reduces the number of major collections
by 7.2% and the number of minor collections by 6.3% relative to
Appel.

Though our algorithm works better on average, the improve-
ment is uneven. Some programs, like jess, improve significantly
(39% copying, 22% scanning), while others such as pseudojbb
don’t seem to improve at all (1% copying, -1% scanning). The per-
formance results on pseudojbb seem to be related to the stability of
the behavior of the nested allocation sites between the training in-
put and the measuring input in pseudojbb. The results for pseudojbb
when the input for the training run is the same as the measurement
run (self prediction results that we present in section 6.4) show a
significant improvement.

6.2 Responsiveness
We also compare the responsiveness of our realization to Appel.
We measure responsiveness by the maximum amount of copying
and scanning in a single collection cycle.

Table 4 shows the results for Appel, Variation I, and Variation
II for a heap size of 2.3. The results show that on average both
variants reduce the maximum copying when compared to Appel,
but increase the maximum scanning. Given that copying is more
expensive than scanning and for all of the benchmarks, except bh,
there are also many more bytes copied than scanned, we believe
that on average our method is at least as responsive as Appel and
likely slightly better. Notice that there is a big variation in the
results between the benchmarks: some, like jess, are much more
responsive with our algorithm, and some, like bh and pseudojbb
are less responsive.

Program Appel Variation I Variation II
copied scanned copied scanned copied scanned

jess 1.6 1.2 30.2% -13.6% 25.7% -13.6%
ipsixql 3.1 1.3 5.4% -0.5% 5.0% -0.5%
jack 4.8 1.5 33.9% -0.7% 30.3% -0.7%
bh 0.4 1.1 -5.1% -0.2% -11.1% -0.2%
javac 8.7 3.5 2.6% -0.1% 2.5% -0.1%
pseudojbb 25.1 1.8 -1.6% -37.1% -1.6% -38.8%
mtrt 8.0 2.3 13.8% -7.2% 13.5% -7.2%
compress 6.4 1.0 0.0% -0.0% 0.0% -0.0%
health 2.1 1.0 0.9% 0.2% 1.8% 0.2%
xalan 32.2 2.1 0.0% -2.5% 0.0% -3.1%
db 7.7 2.2 4.8% 27.4% 4.8% 23.6%
Average 7.7% -3.1% 6.5% -3.7%

Table 4. Maximum amount of copying and scanning for a single
collection cycle.

6.3 Using Different Heap Sizes
We compare how sensitive the results are to heap size. We measure
the same metrics as before, adding measurements for 3 and 5 times
the high watermark.

Tables 5 and 6 show the results for heap size 3×, and Tables 7
and 8 show the results for heap size 5×.

Program Appel Variation I Variation II
copied scanned copied scanned copied scanned

jess 29.0 81.2 27.2% 28.1% 27.0% 19.5%
ipsixql 193.0 64.2 4.8% 1.9% 4.8% 2.0%
jack 62.6 35.7 13.9% 10.3% 13.7% 11.5%
bh 8.6 17.8 12.6% 14.6% 12.8% 17.4%
javac 209.9 82.2 4.8% 0.2% 4.8% -2.2%
pseudojbb 268.3 38.2 0.5% -0.3% 0.5% 0.6%
mtrt 25.6 16.8 6.0% 17.7% 6.6% 18.9%
compress 119.8 3.8 1.1% -0.0% 1.1% -0.0%
health 6.6 6.8 1.6% 8.4% 1.5% 8.4%
xalan 263.9 17.9 0.0% -0.9% 0.0% -0.7%
db 60.8 30.5 4.2% 0.2% 4.3% 0.1%
Average 7.9% 7.6% 7.9% 7.2%

Table 5. Copying and scanning at heap size 3×.

Program Appel Variation I Variation II
major minor major minor major minor

jess 12 1,115 25.0% 31.3% 25.0% 20.4%
ipsixql 40 202 5.0% 0.5% 5.0% 1.0%
jack 8 338 12.5% 8.6% 12.5% 10.7%
bh 12 232 16.7% 18.1% 16.7% 22.0%
javac 15 266 6.7% -8.6% 6.7% -21.1%
pseudojbb 6 128 0.0% 0.0% 0.0% 4.7%
mtrt 1 145 0.0% 35.9% 0.0% 37.9%
compress 13 6 0.0% 0.0% 0.0% 0.0%
health 1 42 0.0% -4.8% 0.0% -4.8%
xalan 5 53 0.0% -5.7% 0.0% -5.7%
db 4 51 0.0% -35.3% 0.0% -9.8%
Average 6.6% 4.0% 6.6% 5.6%

Table 6. Number of garbage collections at heap size 3×.

Both variations of our algorithm perform better in tighter heaps.
This is because there are more collections in tighter heaps. Even in
large heaps our algorithm continues to perform better than Appel
on average. For the heap size 5 times the high watermark Variation
II performs on average 3.7% less copying and 3.5% less scanning
than Appel. It also performs on average 3% less major collections
and 3.6% less minor collections. Also, Variation II continues to

7

Program Appel Variation I Variation II
copied scanned copied scanned copied scanned

jess 14.8 35.0 12.8% -0.3% 7.6% 21.9%
ipsixql 109.4 35.6 1.9% 0.2% 1.9% -0.5%
jack 49.3 21.1 4.5% 0.7% 4.3% -0.6%
bh 6.2 12.4 11.9% 16.0% 10.3% 29.4%
javac 106.0 41.8 0.6% -1.4% 0.7% -1.1%
pseudojbb 157.6 23.8 0.4% -0.0% 0.4% 1.9%
mtrt 12.3 4.7 -5.7% -11.7% -5.7% -11.7%
compress 86.8 2.7 10.5% -4.5% 10.5% -4.5%
health 4.1 3.3 1.0% -1.2% 1.0% -1.2%
xalan 198.9 13.4 -0.0% -1.5% -0.0% -1.0%
db 34.5 23.2 1.3% -1.1% 1.3% -1.1%
Average 4.3% 0.2% 3.7% 3.5%

Table 7. Copying and scanning at heap size 5×.

Program Appel Variation I Variation II
major minor major minor major minor

jess 3 452 0.0% -1.1% 0.0% 27.7%
ipsixql 13 98 0.0% 2.0% 0.0% -2.0%
jack 3 159 0.0% 2.5% 0.0% 0.0%
bh 5 156 20.0% 20.5% 20.0% 40.4%
javac 4 104 0.0% -5.8% 0.0% -3.8%
pseudojbb 2 52 0.0% 0.0% 0.0% 9.6%
mtrt 0 13 % -7.7% % -7.7%
compress 5 6 0.0% -16.7% 0.0% -16.7%
health 0 8 % 0.0% % 0.0%
xalan 2 26 0.0% -15.4% 0.0% -7.7%
db 1 18 0.0% -5.6% 0.0% -5.6%
Average 3.0% -2.1% 3.0% 3.6%

Table 8. Number of garbage collections at heap size 5×.

perform better than variation I on average, although the differences
for the bigger heaps become smaller.

In a study performed by Hertz et al. [23] garbage collectors
perform better with large heap sizes, in which collections are less
frequent. However, sometimes a program already occupies most of
the memory of the machine, and a large heap is not an option. In
tight heaps a significant portion of the execution time may be due to
garbage collection. Therefore, our method might exhibit significant
runtime improvements in smaller heaps.

6.4 Self Prediction vs. True Prediction
The previous results are based on true prediction, in other words,
they use a medium size input for training and selecting the regions,
and a larger input for measuring the metrics. This is in contrast to
self prediction, which uses the same input both for training and for
measuring the metrics. Self prediction is expected to yield better
results, because the system is trained correctly, but is only realistic
in online scenarios where the system is, in fact, training on its
current inputs. We perform this comparison for Variation II using a
heap size factor of 2.3, and show the results in Tables 9 and 10.

The results show a very significant improvement for self pre-
diction. Self prediction performs 22.3% less copying and 7.6% less
scanning on average than Appel. Compare this to 10.1% and 4.2%
for true prediction. Self prediction also reduces the number of ma-
jor collections by 18% and the number of minor collections by
10.9% relative to Appel. Compare this to 7.2% and 6.3% for true
prediction.

Region selection is more accurate for self prediction. This sug-
gests that we can further improve our region selection technique,
for example, by using additional parameters for the heuristic, or by
employing an adaptive method that selects the regions at runtime

Program Appel Variation I Variation II
copied scanned copied scanned copied scanned

jess 52.3 127.0 39.0% 21.7% 42.9% 17.2%
ipsixql 284.8 97.4 7.8% 4.9% 7.8% 3.7%
jack 73.6 43.6 13.9% 9.2% 11.7% 9.1%
bh 11.7 22.0 15.0% -4.1% 16.8% -17.0%
javac 370.6 145.6 7.1% 3.7% 15.7% 5.3%
pseudojbb 457.9 58.0 1.0% -0.8% 24.2% 10.1%
mtrt 49.0 24.0 7.7% 11.2% 25.2% 14.8%
compress 98.9 4.0 8.3% 2.5% 8.2% 2.4%
health 8.7 8.5 1.7% -6.1% 6.0% -5.0%
xalan 473.1 36.1 0.0% 0.0% 8.1% 8.4%
db 106.1 43.9 9.7% 4.4% 79.0% 35.0%
Average 10.1% 4.2% 22.3% 7.6%

Table 9. Copying and scanning with self prediction.

Program Appel Variation I Variation II
major minor major minor major minor

jess 29 1,713 34.5% 21.1% 37.9% 15.1%
ipsixql 77 327 6.5% 4.0% 6.5% -1.5%
jack 12 430 8.3% 9.3% 8.3% 10.7%
bh 21 280 14.3% -9.3% 9.5% -26.4%
javac 35 533 5.7% 1.5% 11.4% -9.0%
pseudojbb 14 228 0.0% -4.4% 21.4% 3.1%
mtrt 4 178 0.0% 28.1% 25.0% 17.4%
compress 13 16 0.0% 25.0% 0.0% 25.0%
health 2 73 0.0% -9.6% 0.0% 12.3%
xalan 13 116 0.0% 2.6% 7.7% 4.3%
db 10 146 10.0% 1.4% 70.0% 68.5%
Average 7.2% 6.3% 18.0% 10.9%

Table 10. Number of garbage collections with self prediction.

according to parameters also measured at runtime. A combination
of offline training and online adaptation may also perform better.

7. Related work
Section 7.1 surveys research on region memory management, Sec-
tion 7.2 discusses work related to our memory manager, and Sec-
tion 7.3 discusses work related to our region selector.

7.1 Memory Management with Regions
In region based memory management, the program allocates heap
objects into regions individually, and reclaims all objects in a region
simultaneously when none of them are needed anymore.

The original work on regions used region inference, a static
analysis that decides which objects go into which regions and when
to reclaim regions [40, 42, 43]. There are region inference algo-
rithms for ML [41], Java [10], and even C [30]. Similar to our
scheme, region inference yields automatic memory management,
where the programmer does not need to reclaim memory by hand.
Unfortunately, region inference is not always precise enough to free
regions in a timely manner, leading to wasted memory. Program-
mers can work around this problem by profiling memory usage
and making their program more region friendly, but then, they lose
some of the benefit of automatic memory management. In contrast,
our technique is fully automatic and does not depend on precise
static analysis.

An alternative approach to region inference is manually speci-
fied regions, where the programmer decides by hand which objects
go into which regions and when to reclaim regions [17, 11, 18].
This approach puts a large burden on the programmer. To find mis-
takes, the programmer can elect to use manually specified regions
with reference counts, in which case region deletion is ignored if

8

the region’s count is non-zero. That means that cycles between un-
reachable objects in regions will never be reclaimed. In contrast,
our technique does not require programmer annotations, and uses
garbage collection in addition to reference counts to reclaim mem-
ory completely and efficiently.

Some prior work combines regions with garbage collection. In
RTSJ (the real-time specification for Java), programmers manu-
ally specify regions for some objects, and the remaining objects
are garbage collected [8]. Similarly, Cyclone gives programmers
the choice of manually placing some objects in statically scoped
regions and others in the “heap-region”, which is garbage col-
lected [19]. Our approach differs from RTSJ and from Cyclone in
that we do not require any programmer annotation. Hallenberg, Els-
man, and Tofte put all objects into regions, and perform a complete
copy of all reachable objects in regions to reclaim the memory of
unreachable objects [20]. In contrast, our approach enables partial
garbage collections, and puts some objects into the generational
heap instead of in regions.

Qian and Hendren present an adaptive region-based allocator
for Java. They use a write barrier to track which objects escape
the method that allocated them. If none of the objects from an
allocation site escape, they are kept in a region which is reclaimed
when the method returns. This scheme is perhaps the most similar
to ours: it requires no static analysis and no programmer annotation,
and combines profile-directed regions with garbage collection. The
main difference is that while Qian and Hendren use regions for
short-lived objects, our memory manager focuses on long-lived
objects. We achieve that by decoupling the heuristics for region
selection from the mechanism for region reclamation.

7.2 Efficient Memory Management for Long-Lived Objects
Generational garbage collection [31, 44] derives its good perfor-
mance from short-lived objects, but is less efficient for long-lived
objects. Our scheme tackles this issue with regions; this section
discusses alternative optimizations for long-lived objects.

Older-first garbage collection finds an “age window” in which
garbage collection is most effective, and uses a write barrier to al-
low a partial garbage collection of just the objects in that window,
excluding both younger and older objects [12, 37, 36]. This pre-
vents wasted work when young objects need some time before most
of them die. However, for many programs, the young generation is
already large enough that young objects have enough time to die, so
the heap layout constraints and write-barrier overhead of older-first
collection do not pay off. In contrast, we use generational garbage
collection for those objects for which it works well. For long-lived
objects in regions, our approach spends as little effort as possible
while still reclaiming them promptly.

Pretenuring is an addition to standard generational garbage col-
lection that allocates objects that are predicted to live long directly
into the old generation [9, 21, 4]. Like our technique, pretenuring
is profile-directed and focuses on long-lived objects. However, with
pretenuring, long-lived objects exert more pressure on the old gen-
eration. If the garbage collector uses copying for the old generation,
the pretenured objects require additional space for copy-reserve,
and it takes additional time to copy them. If the garbage collector
uses mark-sweep for the old generation, the pretenured objects re-
quire time and space for free-list and sweeping. A hybrid causes a
mixture of these costs [32]. Blackburn et al. compared the perfor-
mance of copying vs. mark-sweep for old objects in a generational
collector [5]. They concluded that copying tends to increase col-
lector time due to copy reserve, but decrease mutator time due to
improved locality. Our region-based scheme requires no copy re-
serve for the regions, yet objects in regions have allocation-order
locality.

7.3 Lifetime Characterization and Modeling
This paper introduces a region selector that uses heuristics on
the lifetime characteristics from a training run with the Merlin
tracer [24]. This approach follows a long tradition of using empiri-
cal object lifetime measurements to drive manual optimizations or
recommend new algorithms [22, 3, 39, 33, 16, 34, 35, 25, 27, 28].
While our approach benefits from the insight of these studies, it
uses lifetime profiles in a more direct manner by automatically se-
lecting regions for the production run.

Another approach to lifetime modeling is to find combinations
of radioactive decay models that resemble object survival charac-
teristics [38, 13]. This technique strives at gaining insights from
mathematical models, whereas the current paper uses simpler mod-
els and judges their quality by how much they improve perfor-
mance.

8. Conclusions
This paper offers a novel memory management scheme that deals
efficiently with long-lived objects. The scheme divides the heap
into two sub-heaps: a garbage collected heap and a region heap.
Most objects are allocated in the garbage collected heap, while
some long-lived objects are allocated in the region heap. The
scheme is general and can be realized with a variety of garbage col-
lectors and region selection mechanisms. In particular, the region
selection mechanism may vary from manual to fully automatic.
The paper introduces an effective automatic profile-based region
selector. The region selector measures various metrics on nested
allocation sites in order to choose which sites to allocate in regions.
We present a realization of the memory management scheme over
an Appel-style generational garbage collector and using our novel
region selector.

We evaluated our scheme by using a garbage collection simula-
tor. Our experiments show that on a suite of benchmarks run in a
tight heap configuration our scheme gains a significant average im-
provement: 10% less copying, 4.2% less scanning, 7.2% less ma-
jor collections, and 6.3% less minor collections. The responsive-
ness of our method not only did not degrade, but even improved
slightly. Using self-prediction (measuring the scheme on the same
trace used to select the regions) the average improvement is even
more significant: 22.3% less copying, 7.6% less scanning, 18% less
major collections, and 10.9% fewer minor collections.

References
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D.

Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell,
V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño virtual machine. IBM
Systems Journal, 2000.

[2] A. W. Appel. Simple generational garbage collection and fast
allocation. Software – Practice and Experience (SPE), 1989.

[3] D. A. Barrett and B. G. Zorn. Using lifetime predictors to improve
memory allocation performance. In Programming Language Design
and Implementation (PLDI), 1993.

[4] S. Blackburn, S. Singhai, M. Hertz, K. S. McKinley, and J. E. B.
Moss. Pretenuring for Java. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2001.

[5] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities:
The performance impact of garbage collection. In Measurement and
Modeling of Computer Systems (SIGMETRICS), 2004.

[6] S. M. Blackburn, R. Jones, K. S. McKinley, and J. E. B. Moss. Belt-
way: Getting around garbage collection gridlock. In Programming
Language Design and Implementation (PLDI), 2002.

9

[7] S. M. Blackburn and K. S. McKinley. Ulterior reference counting:
Fast garbage collection without a long wait. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA),
2003.

[8] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, D. Hardin, and
M. Turnbull. The Real-Time Specification for Java. Addison-Wesley,
2000.

[9] P. Cheng, R. Harper, and P. Lee. Generational stack collection and
profile-driven pretenuring. In Programming Language Design and
Implementation (PLDI), 1998.

[10] S. Cherem and R. Rugina. Region analysis and transformation for
Java programs. In International Symposium on Memory Management
(ISMM), 2004.

[11] M. V. Christiansen and P. Velschow. Region-based memory
management in Java. Master’s thesis, Department of Computer
Science (DIKU), University of Copenhagen, 1998.

[12] W. D. Clinger and L. T. Hansen. Generational garbage collection and
the radioactive decay model. In Programming Language Design and
Implementation (PLDI), 1997.

[13] W. D. Clinger and F. V. Rojas. Linear combinations of radioactive
decay models for generational garbage collection. Science of
Computer Programming, 2006.

[14] G. E. Collins. A method for overlapping and erasure of lists.
Communications of the ACM (CACM), 1960.

[15] L. P. Deutsch and D. G. Bobrow. An efficient, incremental, automatic
garbage collector. Communications of the ACM (CACM), 1976.

[16] S. Dieckmann and U. Hölzle. A study of allocation behavior of the
SPECjvm98 Java benchmarks. In European Conference for Object-
Oriented Programming (ECOOP), 1999.

[17] D. Gay and A. Aiken. Memory management with explicit regions. In
Programming Language Design and Implementation (PLDI), 1998.

[18] D. Gay and A. Aiken. Language support for regions. In Programming
Language Design and Implementation (PLDI), 2001.

[19] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based memory management in Cyclone. In Programming
Language Design and Implementation (PLDI), 2002.

[20] N. Hallenberg, M. Elsman, and M. Tofte. Combining region inference
and garbage collection. In Programming Language Design and
Implementation (PLDI), 2002.

[21] T. Harris. Dynamic adaptive pre-tenuring. In International
Symposium on Memory Management (ISMM), 2000.

[22] B. Hayes. Using key object opportunism to collect old objects. In
Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 1991.

[23] M. Hertz and E. D. Berger. Quantifying the performance of garbage
collection vs. explicit memory management. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA),
2005.

[24] M. Hertz, S. M. Blackburn, J. E. B. Moss, K. S. McKinley, and
D. Stefanović. Generating object lifetime traces with Merlin.
Transactions on Programming Languages and Systems (TOPLAS),
2006.

[25] M. Hirzel, A. Diwan, and J. Henkel. On the usefulness of type
and liveness accuracy for garbage collection and leak detection.
Transactions on Programming Languages and Systems (TOPLAS),
2002.

[26] M. Hirzel, A. Diwan, and M. Hertz. Connectivity-based garbage
collection. In Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2003.

[27] M. Hirzel, J. Henkel, A. Diwan, and M. Hind. Understanding the
connectivity of heap objects. In International Symposium on Memory
Management (ISMM), 2002.

[28] H. Inoue. Anomaly Detection in Dynamic Execution Environments.

PhD thesis, University of New Mexico, 2005.

[29] R. Jones and R. Lins. Garbage collection: Algorithms for automatic
dynamic memory management. John Wiley & Son Ltd., 1996.

[30] C. Lattner and V. Adve. Automatic pool allocation: Improving
performance by controlling data structure layout on the heap. In
Programming Language Design and Implementation (PLDI), 2005.

[31] H. Lieberman and C. Hewitt. A real-time garbage collector based on
the lifetimes of objects. Communications of the ACM (CACM), 1983.

[32] P. McGachey and A. L. Hosking. Reducing generational copy reserve
overhead with fallback compaction. In International Symposium on
Memory Management (ISMM), 2006.

[33] N. Röjemo and C. Runciman. Lag, drag, void, and use — heap
profiling and space-efficient compilation revisited. In International
Conference on Functional Programming (ICFP), 1996.

[34] R. Shaham, E. K. Kolodner, and M. Sagiv. On the effectiveness of
GC in Java. In International Symposium on Memory Management
(ISMM), 2000.

[35] R. Shaham, E. K. Kolodner, and M. Sagiv. Heap profiling for space-
efficient Java. In Programming Language Design and Implementation
(PLDI), 2001.

[36] D. Stefanović, M. Hertz, S. M. Blackburn, K. S. McKinley, and
J. E. B. Moss. Older-first garbage collection in practice: Evaluation in
a Java virtual machine. In Workshop on Memory System Performance
(MSP), 2002.

[37] D. Stefanović, K. S. McKinley, and J. E. B. Moss. Age-based garbage
collection. In Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 1999.

[38] D. Stefanović, K. S. McKinley, and J. E. B. Moss. On models for
object lifetime distributions. In International Symposium on Memory
Management (ISMM), 2000.

[39] D. Stefanović and J. E. B. Moss. Characterization of object behaviour
in Standard ML of New Jersey. In LISP and Functional Programming,
1994.

[40] M. Tofte. A brief introduction to regions. In International Symposium
on Memory Management (ISMM), 1998.

[41] M. Tofte and L. Birkedal. A region inference algorithm. Transactions
on Programming Languages and Systems (TOPLAS), 1998.

[42] M. Tofte, L. Birkedal, M. Elsman, and N. Hallenberg. A retrospective
on region-based memory management. Higher-Order and Symbolic
Computation, 2004.

[43] M. Tofte and J.-P. Talpin. Region-based memory management.
Information and Computation, 1997.

[44] D. Ungar. Generation scavenging: A non-disruptive high performance
storage reclamation algorithm. In Software Engineering Symposium
on Practical Software Development Environments (SESPSDE), 1984.

[45] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic
storage allocation: A survey and critical review. In International
Workshop on Memory Management, 1995.

10

	Introduction
	Background
	The Memory Management Scheme
	Object Allocation
	Write Barrier
	Minor Garbage Collection
	Major Garbage Collection
	Second Variant of the Memory Manager Algorithm
	Correctness

	Realization of the Memory Management Scheme
	Heap Organization
	The Region Selection Technique
	Floating Garbage Ratio
	The Heuristic

	Methodology
	Results
	Comparison to Appel
	Responsiveness
	Using Different Heap Sizes
	Self Prediction vs. True Prediction

	Related work
	Memory Management with Regions
	Efficient Memory Management for Long-Lived Objects
	Lifetime Characterization and Modeling

	Conclusions

