
On the Usefulness of Type and Liveness
Accuracy for Garbage Collection
and Leak Detection

MARTIN HIRZEL, AMER DIWAN, and JOHANNES HENKEL
University of Colorado

The effectiveness of garbage collectors and leak detectors in identifying dead objects depends on
the accuracy of their reachability traversal. Accuracy has two orthogonal dimensions: (i) whether
the reachability traversal can distinguish between pointers and nonpointers (type accuracy), and
(ii) whether the reachability traversal can identify memory locations that will be dereferenced
in the future (liveness accuracy). This article presents an experimental study of the importance
of type and liveness accuracy for reachability traversals. We show that liveness accuracy re-
duces the reachable heap size by up to 62% for our benchmark programs. However, the simpler
liveness schemes (e.g., intraprocedural analysis of local variables) are largely ineffective for our
benchmark runs: one must analyze global variables using interprocedural analysis to obtain sig-
nificant benefits. Type accuracy has an insignificant impact on a garbage collector’s ability to find
unreachable objects in our benchmark runs. We report results for programs written in C, C++, and
Eiffel.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—memory
management (garbage collection)

General Terms: Experimentation, Languages, Measurement, Performance

Additional Key Words and Phrases: Conservative garbage collection, leak detection, liveness accu-
racy, program analysis, type accuracy

Earlier versions of some of the results in this article were presented in HIRZEL, M. AND DIWAN, A.
2000. On the type accuracy of garbage collection. In Proceedings of the International Symposium on
Memory Management (ISMM) (Oct.), pp. 1–12, and HIRZEL, M., DIWAN, A., AND HOSKING, A. 2001. On
the usefulness of liveness for garbage collection and leak detection. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP) (June), pp. 181–206.
This work was supported by the National Science Foundation (NFS) ITR grant CCR-0085792, an
NSF Career Award, and a Faculty Partnership Award from IBM.
Any opinions, findings, and conclusions or recommendations expressed in this material are the
authors’ and do not necessarily reflect those of the sponsers.
Authors’ address: Department of Computer Science, University of Colorado, Boulder, CO 80309,
E-mail: {hirzel;diwan;henkel}@cs.colorado.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies show this notice on the first page or initial screen of a
display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to repub-
lish, to post on servers, to redistribute to lists, or to use any component of this work in other
works requires prior specific permission and/or a fee. Permissions may be requested from Publi-
cations Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or
permissions@acm.org.
C© 2002 ACM 0164-0925/02/1100-0593 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002, Pages 593–624.



594 • M. Hirzel et al.

1. INTRODUCTION

Garbage collection (GC), or automatic storage reclamation, has many well-
known software engineering benefits [Wilson 1992]. It eliminates some mem-
ory management bugs, such as dangling pointers. Furthermore, unlike explicit
deallocation, GC improves modularity by eliminating memory management
philosophies from the interfaces between modules. It is therefore no surprise
that even though C and C++ do not mandate GC as part of the language defi-
nition, many C and C++ programmers use it for reclaiming memory or for leak
detection. It is also no surprise that many newer programming languages (e.g.,
Java [Gosling et al. 1996], Modula-3 [Nelson 1991], SML [Milner et al. 1990]) re-
quire garbage collection. This increased popularity of garbage collection makes
it more important than ever to fully understand the tradeoffs between different
garbage collection alternatives.

An ideal garbage collector or leak detector would identify all heap-allocated
objects1 that are not dynamically live. A dynamically-live heap object is one that
will be used in the future of the computation. More operationally, a dynamically-
live heap object is one that can be reached by following pointers that will be
dereferenced in the future of the computation (dynamically-live pointers). In
order to retain only dynamically-live objects, the ideal garbage collector must
exactly identify what memory locations contain dynamically-live pointers. Un-
fortunately, a real garbage collector or leak detector can not know what pointers
will be dereferenced in the future; thus it may use compiler support to identify
an approximation to dynamically-live pointers. The higher the accuracy of the
compiler support, the fewer objects will the garbage collector or leak detector
identify as dynamically live and the more effective will it be at reclaiming dead
objects.

There are two dimensions of accuracy: the extent to which the garbage collec-
tor can distinguish pointers from non-pointers (type accuracy) and the extent
to which the garbage collector can identify live pointers (liveness accuracy).
Although these two dimensions of accuracy are orthogonal, prior work has con-
sidered liveness accuracy only as an extension to type accuracy. Since type
accuracy is only possible for programs written in type-safe languages, garbage
collectors and leak detectors for unsafe languages (such as C and C++) could
not yet benefit from liveness accuracy. Moreover, prior work has considered only
simple liveness accuracy: liveness of scalar local variables using intraprocedu-
ral analysis. In this work, we treat the two dimensions of accuracy orthogonally
and explore them both individually and in many combinations. Our work yields
valuable insights into how to build and use garbage collectors and leak detectors
for both safe and unsafe languages.

We use a novel run-time analysis to conduct this study. The run-time analysis
examines a trace of a program execution to extract an optimistic approximation
for different levels of liveness and type information. We provide this information
to a modified Boehm–Demers–Weiser garbage collector [Boehm et al. 2002],
which uses liveness and type accuracy information during garbage collection.

1We use the term object to include any kind of contiguously allocated data record, such as C structs
and arrays as well as objects in the sense of object-oriented programming.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



Usefulness of Type and Liveness Accuracy for GC • 595

We show that our approach most likely computes a tight approximation by
comparing the results for two different runs of our benchmarks. Our approach
allows us to experiment with a wider range of accuracy schemes more easily
than the alternative approach of implementing and comparing many accuracy
schemes in a compiler. Our approach also allows us to conduct our experiments
easily on programs written in many programming languages and executed on
many architectures, and thus increases the applicability of our results. We
report results for C, C++, and Eiffel programs.

Our results demonstrate that liveness accuracy significantly improves a
garbage collector or leak detector’s ability to identify garbage objects. Our most
accurate liveness scheme, which is interprocedural and analyzes records and
arrays, reduces the reachable heap size by up to 62% for our benchmark pro-
grams compared to a garbage collector that does not use liveness or type infor-
mation. We show that our most accurate liveness scheme enables the garbage
collector to free objects in a timely fashion compared to explicit deallocation.
Type accuracy, on the other hand, does not enable a garbage collector to collect
many more objects for our benchmark runs. However, this does not mean that
type accuracy is useless for garbage collection; to the contrary, type accuracy
is necessary for copying garbage collection. We find that simple liveness anal-
yses (e.g., intraprocedural analysis of local variables [Agesen et al. 1998]) are
largely ineffective for our benchmark runs. In order to get a significant benefit
one must use a more aggressive liveness analysis that is interprocedural and
can analyze global variables. We validate our results using two runs of several
benchmark programs.

The remainder of the article is organized as follows: Section 2 defines ter-
minology. Section 3 further motivates this work. Section 4 describes our algo-
rithms for computing type and liveness information. Section 5 describes our ex-
perimental methodology. Section 6 presents the experimental results. Section 7
discusses the usefulness of our approach in debugging garbage collectors and
leak detectors. Section 8 reviews prior work in the area. Section 9 concludes
the article.

2. BACKGROUND

A garbage collector or leak detector identifies unreachable objects using a reach-
ability traversal starting from local and global variables of the program.2 All
objects not reached in the reachability traversal are dead and can be freed. In
order to identify the greatest number of dead objects, only live pointers, that is,
pointers that will be dereferenced in the future, must be traversed. Unfortu-
nately, without knowledge of the future of the computation it is impossible to
identify live pointers accurately. Thus, reachability traversals use conservative
approximations to the set of live pointers. In other words, a realistic reacha-
bility traversal may treat a nonpointer or a nonlive pointer as a live pointer,
and may therefore fail to find all dead objects. The accuracy of a reachability
traversal is its ability to accurately identify live pointers.

2For simplicity, we only discuss tracing nongenerational collectors.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



596 • M. Hirzel et al.

p1: int anint = random(. . .);
p2: int ptr = (int)(malloc(. . .));
p3: 〈code using ∗ptr〉
p4: ptr = null;
p5: . . .

Fig. 1. Type accuracy example.

Table I. Pointers in Three Hardware Platforms

Type SPARC Solaris Pentium Linux Alpha UNIX

void * 0xef5c0aa0 0x08360000 0x0000000140080000
char[] \239 \ \10 \160 \8 6 \0 \0 \0 \0 \0 \1 @ \8 \0 \0
int −279180640 137756672 1 1074266112
long −279180640 137756672 5369233408
float −6.809955E+28 5.476863E-34 2.652495E-315 2.125

There are two dimensions to accuracy: type accuracy and liveness accuracy.
Type accuracy determines whether or not the reachability traversal can distin-
guish pointers from nonpointers. Liveness accuracy determines whether or not
the reachability traversal can identify variables whose value will be derefer-
enced in the future. Both dimensions require compiler support.

Figure 1 illustrates the usefulness of type accuracy. Let us suppose the vari-
ables anint and ptr hold the same value (bit pattern) at program point p3 even
though one is a pointer and the other is an integer. If a reachability traversal
is not type accurate, it will find that the object allocated at p2 is reachable at
point p5 since anint “points to” it. If, instead, the traversal was type accurate,
it would not treat anint as a pointer and could reclaim the object allocated at
p2 (garbage collection) or report a leak to the programmer (leak detection).

Table I describes what pointers look like in three different hardware
platforms3: SPARC Enterprise 3500 running Solaris 2, Pentium running Linux
2.2 kernel, and Alpha running Digital UNIX 4.0D. For each of these hardware
platforms, the table shows the value of the lowest address returned by the al-
locator for the Boehm–Demers–Weiser collector [Boehm et al. 2002] during a
run of a benchmark program (bc).4 The table also shows what that address
translates to when interpreted as a string, int, long, or float. In other words,
this table shows, for three hardware platforms, the kind of values a string, int,
long, or float must have in order for it to be misidentified as a pointer by a con-
servative garbage collector. That the “int” and “float” rows for Alpha contain
two values each because Alpha pointers occupy 64 bits whereas an int or float
only requires 32 bits.

From this table, we see that the string interpretation of the pointer yields
nonsensical strings for all three hardware platforms. Therefore, we think that
it is unlikely that a conservative garbage collector will mistake a text string for
a pointer. When pointers are interpreted as integers, we see that on the Alpha

3When we refer to hardware platform we mean not just the architecture but also the operating
system and the standard libraries on the machine.
4These addresses are not the same as the lowest addresses returned by system malloc: the BDW col-
lector tries to place objects at high addresses to avoid unnecessary retention due to its conservatism.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



Usefulness of Type and Liveness Accuracy for GC • 597

p6: Tree ∗ast = parse();
p7: CFG ∗cfg = translate(ast);
p8: 〈code that does not use ast〉

Fig. 2. Liveness accuracy example.

two adjacent integers must have appropriate values in order to be interpreted
as a pointer. Thus, it is unlikely that integers will be mistaken for pointers on
the Alpha.5 On the other hand, pointers map to only a single (though large
magnitude) integer on the Pentium and SPARC; thus, it is more likely that
a conservative garbage collector will retain dead objects on these hardware
platforms.

Figure 2 illustrates the usefulness of liveness accuracy. Let us suppose parse
returns an abstract syntax tree and that after p6 ast holds the only pointer to
the tree. Let us suppose that the variable ast is not dereferenced at or after
program point p8 (in other words, it is dead). A reachability traversal that does
not use liveness information will not detect that the data structure returned
by parse is garbage at program point p8. On the other hand, a reachability
traversal that uses liveness information will find that ast is dead at program
point p8 and will reclaim the tree returned by parse (garbage collection) or
report it as a leak to the programmer (leak detection).

A major hindrance to both type and liveness accuracy is that they require
significant compiler support. For type accuracy, compilers must preserve type
information through all compiler passes and communicate the type information
to the reachability traversal [Diwan et al. 1991]. For liveness accuracy, compil-
ers must conduct a liveness analysis and communicate the liveness information
to the reachability traversal. Unlike type information, compilers do not need to
preserve liveness information through their passes if they conduct the liveness
analysis just before code generation.

3. MOTIVATION

Prior work has focused almost exclusively on one aspect of accuracy—the abil-
ity to distinguish pointers from nonpointers—and has considered liveness only
as an afterthought. By separating the two aspects of accuracy, we can iden-
tify accuracy strategies that are different from any that have been proposed
before and are worth exploring. For example, consider the problem of garbage
collecting C programs. Prior work has simply noted that C is unsafe and thus
the garbage collector must be conservative (type inaccurate). Although this is
true with respect to the pointer/nonpointer dimension of accuracy, it is not true
with respect to the liveness dimension. A collector for C and C++ programs that
considers all variables with appropriate values to be pointers would improve
(both in efficiency and effectiveness) if it knew which variables are live; vari-
ables that are not live need not be considered as pointers at garbage collection
time even if they appear to be pointers from their value.

Table II enumerates a few of the possible variations in each of the two di-
mensions of accuracy. We partition liveness accuracy into three sub-dimensions:

5Except if integers are used to implement nonnumeric data like bit vectors.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



598 • M. Hirzel et al.

Table II. Some Combinations of Type and Liveness Accuracy

Type Accuracy
Liveness Accuracy none partial full
none ∗ ∗∗ §
intraprocedural stack scalars (a) †

scalars + records
scalars + records + arrays

stack + globals scalars
scalars + records
scalars + records + arrays

interprocedural stack scalars
scalars + records
scalars + records + arrays

stack + globals scalars (b)
scalars + records
scalars + records + arrays

∗See Boehm et al. [1991].
∗∗See Bartlett [1988] and Colnet et al. [1998].
§See Appel [1990], Hudson et al. [1991], and Ungar [1984].
†See Agesen et al. [1998], Alpern et al. [2000], Diwan et al. [1992], and Tarditi et al. [1996].

(i) whether the analysis is intraprocedural or interprocedural; (ii) whether the
analysis computes liveness for stack variables or also for global variables; and
(iii) whether the analysis analyzes only scalar variables or also array elements
and record fields (aggregates). If prior work has proposed a particular combi-
nation of accuracy, the table also references some of the relevant prior work.
If many papers have proposed a particular combination, we cite only a few of
the relevant papers in the table.

From this table we see that many of the possibilities are unexplored in
the literature. Several of the unexplored combinations have significant po-
tential for advancing the state of the art in leak detection and garbage col-
lection. For example, consider the accuracy combination marked (a) which
uses weak liveness information but no type information. This scheme could
be useful for improving the effectiveness of leak-detectors and garbage collec-
tors for type-unsafe languages such as C and C++. Schemes (a) can also be
useful for type-safe languages if we do not need a copying garbage collector.
Scheme (b) can be useful for type-safe languages if we want to improve an
existing type-accurate collector without adding significant complexity to the
compiler.

This article attempts to better understand the usefulness of different kinds
of accuracy so that authors of garbage collectors and leak detectors can make
more informed decisions.

4. ALGORITHMS FOR LIVENESS AND TYPE INFORMATION

Section 4.1 gives the intuition behind our analyses for computing liveness and
type information. Section 4.2 describes the framework in which we conduct
our analyses. Sections 4.3 and 4.4 give details of the analyses for type and
liveness information, respectively. Section 4.5 discusses the limitations of our
approach.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



Usefulness of Type and Liveness Accuracy for GC • 599

Fig. 3. Framework.

4.1 Intuition Behind Our Approach

To make our study widely applicable and useful, we wanted to explore the
impact of a broad range of liveness and type accuracy schemes for programs
written in many different styles and languages.6 Since even a single accuracy
scheme is difficult to implement [Diwan et al. 1992], it was clearly infeasible to
implement numerous accuracy schemes for several languages. Thus, we use a
different approach. Rather than modifying compilers to compute type and live-
ness information, we analyze traces of program runs to compute the informa-
tion. Our trace analysis for type information is analogous to a flow and context
insensitive type inference in a compiler. Our trace analysis for liveness informa-
tion is analogous to a flow and context sensitive liveness analysis in a compiler.

Our approach is easier than actually implementing different kinds of accu-
racy since at run time, when we write our traces, we have perfect aliasing and
control flow information. Moreover, at run time we do not have to worry about
preserving any information through later optimization passes. The remainder
of Section 4 describes the algorithms in detail and discusses their limitations.
Details of the algorithm are not necessary for understanding the rest of the
article and thus Sections 4.2, 4.3, and 4.4 may be skipped.

4.2 Framework

Figure 3 describes our experimental framework. We convert C, C++, and
Eiffel programs to the SUIF-1 intermediate representation [Stanford Univer-
sity 2002; Wilson et al. 1994]. We then instrument the SUIF representation
to make calls to a run-time trace generation library, link and run the program
(Run-1). Run-1 outputs a trace which we analyze to compute and output type
and liveness information. Then, we link the same instrumented program with
empty stubs instead of the trace generation library and with a modified Boehm–
Demers–Weiser (BDW) garbage collector [Boehm et al. 2002]. The garbage col-
lector in Run-2 uses the liveness and type information from the trace analysis
to identify live pointers.

6This article presents results for programs written in three languages—C, C++ and Eiffel. Also,
our benchmark suite includes programs written both with and without garbage collection.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



600 • M. Hirzel et al.

Table III. Trace Events

Event Example Description

assign(lhs,rhs1, . . . , rhsn) x = y + z Assigns a value computed from locations rhs1 . . . rhsn
to lhs. We use this pattern for assignments, parameter
passing, and for returning values from procedures.

addr-assign(lhs) x = & y Assigns an address to lhs. This is really a special
case of assign that is particularly useful for the type
analysis.

use(rhs) . . . ∗x . . . Use of location rhs. A pointer dereference is a use.
Also passing a parameter to an external function is a
use of the parameter.

call(call-site, callee) → f (. . .) Call to a procedure. We use assign events to represent
parameter passing.

return() → f (. . .) Return from a procedure. We use assign events to rep-
resent the return of values. (For a longjmp, we gener-
ate several return-events.)

allocation(lhs) p = malloc(. . .) Allocate a heap object and assign pointer to lhs.

Table III gives the most important events in a trace. The trace also contains
other events that we omit for brevity: for example, the trace also contains events
that give information about all local and global variables. The trace makes
all assignments explicit: it represents implicit assignments due to parameter
passing and return as explicit assignments. Events use location descriptors
to represent memory locations (e.g., lhs in an assign). A location descriptor
uniquely identifies a location in a heap object, global variable, or activation
record. For example, if there are two invocations of a procedure containing a
variable v, we will create two location descriptors for the variable.

Since registers are not visible at the SUIF level, our trace refers only to
memory locations. To correctly handle this limitation, we force all variables
to reside in memory; registers serve only as scratch space and never contain
pointers to objects that are not also reachable from pointers in memory.

Our methodology assumes that the two runs are identical with respect to
variable allocation (heap, global, or stack), have the same object layout, and
the same stack layout. To ensure these properties, we use exactly the same
binaries for the two runs but link them to different libraries.

4.3 Approach for Type Accuracy

To obtain type information, we analyze the trace in a single forward pass.7

Table IV describes the actions our analysis takes on each kind of trace event.
In order to make our type analysis realistic and comparable to a type analysis

in a compiler, we weaken it in two ways. First, the type analysis uses variables
rather than location descriptors for the stack variables. In other words, it does
not distinguish between different instances of a stack variable. Second, the type
analysis yields flow and context insensitive results. In other words, if a variable
contains a pointer at one point in the execution, then we assume that it may
contain a pointer whenever the variable is in scope in the execution.

7Actually our implementation does this analysis online rather than using the trace.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



Usefulness of Type and Liveness Accuracy for GC • 601

Table IV. Type Analysis

Event Action

assign(lhs, rhs1, . . . , rhsn) isPointer(lhs)← isPointer(rhs1) or . . . or isPointer(rhsn)
addr-assign(lhs) isPointer(lhs)← true
use(rhs) ignored
call(call-site, callee) ignored
return() ignored
allocation(lhs) isPointer(lhs)← true

The type analysis outputs a table for each call and allocation in the program.
The entries in these tables identify stack variables and location descriptors for
global and heap locations that contain pointers.

4.4 Approach for Liveness

To obtain liveness information, we analyze the trace in reverse, much like a
traditional backward-flow liveness analysis in a compiler. The analysis working
backwards reflects the fact that liveness depends on the future, not the past, of
the computation.

Like in a traditional data-flow liveness analysis, there are two main events in
our run-time analysis: uses and definitions. Uses, such as pointer dereferences,
make a memory location live at points immediately before the use. Definitions,
such as assignments, make the defined memory location dead just before the
definition. The run-time analysis is parametrized so that it can simulate a range
of realistic static analyses.

Our algorithm maintains three data structures: currentlyLive, live-
nessToOutput, and homeCallSite. For each location descriptor `, the value of
currentlyLive(`) indicates whether it is live at the current point in the analysis.
The data structure livenessToOutput collects liveness information that will be
output at the end of the program. For a stack variable, we need to know all
the static call sites within the enclosing procedure where the variable is live.
Thus, for a stack variable s, the value livenessToOutput(s) ≡ {cs1, . . . , csn} is the
set of static call sites (in the enclosing procedure) where s is live.8 Analogously
to stack variables, for global locations we can keep track of all static call sites
in the program where the global is live. However, it is more compact to keep
track of this information only at the allocation sites. Thus, for a global location
descriptor g, the value livenessToOutput(g ) ≡ {p1, . . . , pm} is the set of dynamic
allocation sites where g is live. Note that the information we output for globals
is slightly more accurate than that for stack variables because we output dy-
namic allocation sites for globals and static call sites for stack locations. We do
this in order to keep the output of the analysis manageable. For each stack lo-
cation descriptor, homeCallSite(x) gives the return PC for the activation record
instance containing x.

8This means that we provide the garbage collector only with context-insensitive liveness informa-
tion for stack variables. While our analysis is context-sensitive and could have produced context sen-
sitive output, we decided against this because no existing garbage collectors use context-sensitive
GC tables.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



602 • M. Hirzel et al.

Table V. Liveness Analysis

Event Action

assign(lhs, rhs1, . . . , rhsn) If isLive(lhs) ≡ true, set currentlyLive(rhs1), . . . ,
currentlyLive(rhsn) to true. If none of the rhsi refers to the
same location as lhs, set currentlyLive(lhs) to false.

addr-assign(lhs) currentlyLive(lhs)← false
use(rhs) currentlyLive(rhs)← true.
call(call-site, callee) For external calls, set currentlyLive(`) to true for each

externally visible location descriptor `. Regardless of whether or
not the call is to an external routine, for each stack location s with
isLive(s) ≡ true add homeCallSite(s) to livenessToOutput of the
variable corresponding to s.

return() Initialize data structures.
allocation(lhs) For each global location g with isLive(g ) ≡ true, add dynamic

allocation site to livenessToOutput(g ). For each stack location s
with isLive(s) ≡ true add homeCallSite(s) to livenessToOutput of
the variable corresponding to s. Set currentlyLive(rhs) to false.

int a;
int ∗∗b;
void g (){

1: return;
}
void f (){

int ∗c; /∗ uninitialized ∗/
if(. . .){

2: b = &c;
3: f ();

else{
4: ∗b = &a;
5: g ();
6: . . . ∗∗b . . . ;

}
7: return;

}
Fig. 4. Recursive call example.

Our analysis never directly reads the currentlyLive flags, but instead uses
the function isLive, which defaults to

proc isLive(`) { return currentlyLive(`); }
In Section 4.4.1, we describe how isLive helps to obtain selective liveness.

Table V gives the actions that the liveness analysis performs on each event.
The actions for assign and use are similar to the corresponding transfer func-
tions of a compile-time liveness analysis. The intuition here is that ` must be
live prior to any potential dereference of the value it contains; that is, a use,
assign to another live location, or call of an external function that sees `.

The actions for calls and allocations make sure that the liveness analysis
is context sensitive and also update the livenessToOutput table. For example,
consider a run of the code segment in Figure 4 where f calls itself recursively
just once. Consider the most recent invocation of f (which must be in the else

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



Usefulness of Type and Liveness Accuracy for GC • 603

Table VI. Processing a Trace of the Example Program

Event Comment (Line) Analysis action

return() f returns to main (7)
return() f returns to f (7)
use(c1) deref of ∗b ≡ c1 (6) currentlyLive(c1)← true
use(b) deref of b (6) currentlyLive(b)← true
return() g returns to f (1)
call(5, g ) f calls g (5) add homeCallSite(c1) to livenessToOutput(c)
addr-assign(c1) assign to ∗b ≡ c1 (4) currentlyLive(c1)← false
use(b) deref of b (4) currentlyLive(b)← true
call(3, f ) recursive call to f (3) no locals live, nothing happens!
addr-assign(b) assign to b (2) currentlyLive(b)← false
call(· · · , f ) main calls f

proc isLive(`){
if(` ∈ Stack and ` ∈ ScalarVars)

then return currentlyLive(`);
else return true;

}

Fig. 5. isLive when computing liveness for scalars in stack.

branch, since in this example, f recurses just once). The expression ∗∗b deref-
erences the variable c but from the previous call to f . Thus, c from the previous
invocation of f is live at the recursive call to f . However, even though ∗∗b
dereferences c, it does not dereference the most recent instance of c and thus,
c is not live at the call to g .

Let us consider what happens when we apply our method to the execution
of the code in Figure 4. Table VI shows an event trace (in reverse order) of
the above program along with the actions our liveness analysis will take. For
some events (such as returns), we do not list any actions since these events serve
to simply initialize auxiliary data structures. During the trace generation, we
create two location descriptors for stack variable c: c1 for the first instantiation
of f and c2 for the second instantiation of f . Note, however, that our algorithm
adds to the livenessToOutput(c) on behalf of c1 and not on behalf of c2. This is
correct and accurate since c2 is not dereferenced (or assigned to a variable that
is dereferenced) in this run.

4.4.1 Selective Liveness. We consider three dimensions that determine the
accuracy of liveness: (i) the region of memory for which we have liveness infor-
mation (stack, heap, and globals), (ii) whether we compute liveness only for
scalar variables or also for record fields and array elements (i.e., scalar, record,
or record and array (aggregates)), and (iii) whether we compute liveness infor-
mation intraprocedurally or interprocedurally. We now describe how we vary
the above dimensions in the algorithm from Section 4.4.

By changing the implementation of isLive we can select the accuracy level
of the first two dimensions. For example, to compute liveness information for
scalars in the stack we use the implementation of isLive in Figure 5. In other
words, we assume those regions of memory and kinds of variables where we
do not want liveness information to be always live. When computing liveness

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



604 • M. Hirzel et al.

information for arrays and records, we treat arrays and records effectively as
a collection of scalar variables, with each instance of an array or record giving
rise to new instances of their component variables.

By changing what calls are to external routines, we can select the precision of
the third dimension. For example, if we wish to mimic intraprocedural analysis,
then we consider all calls as being to external routines. The action for the
call()-event in Table V will therefore make all externally visible locations (heap
locations, global locations, or stack locations whose address gets taken) live at
all calls. For interprocedural analysis, all calls are to nonexternal routines. We
handle library routines by providing stubs that mimic their behavior.

4.5 Limitations

The two main limitations of our approach particularly with respect to liveness
accuracy are: (i) it is a limit study and thus not guaranteed to expose the real-
izable potential of liveness, and (ii) our instrumentation may perturb program
behavior and thus influence our results. The remainder of this section discusses
these two limitations in detail.

Our results are an upper bound on the usefulness of liveness information
because our analysis has perfect alias information, and because a location may
not be live in a particular run, even though there exists a run where it is live.
To reduce the possibility of having large errors of this sort, we ran a selection
of our benchmarks on two inputs and compared the results across the inputs.
Section 6.5 presents these results. Also, we spent significant time manually
inspecting the output of our liveness analysis when it yielded a significant
benefit. While our manual inspection was not exhaustive (or anywhere close),
we found no situations where the results of our liveness analysis were specific
only to a particular run.

The methodology that we use to obtain our data influences the results itself
because we force all local variables to live on the stack, even when they could
otherwise have been allocated in registers. Register allocation in a conventional
compiler may use its own liveness analysis and may reuse the register assigned
to a variable if that variable is dead. Thus, at garbage collection time the dead
pointer is not around anymore. In other words, the compiler is passing liveness
information to the garbage collector implicitly by modifying the code rather than
explicitly. Since register allocators typically use only intraprocedural liveness
analysis of scalars, this effect will be at most as strong as our intraprocedural
liveness scheme for scalars on the stack.

5. EXPERIMENTAL METHODOLOGY

Section 5.1 describes the different levels of accuracy we consider in this
paper. Section 5.2 describes the metrics we use to measure the usefulness of
accuracy. Section 5.3 describes our benchmark programs.

5.1 Accuracy Levels in This Article

Table VII shows the schemes for which we report results in this paper along
with abbreviations for the schemes. The entries in the table are pairs, where

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



Usefulness of Type and Liveness Accuracy for GC • 605

Table VII. Schemes Evaluated

Type Accuracy
Liveness Accuracy none full
none (N , N ) (T, N )
intraprocedural stack scalars (N , iscalar

s ) (T, iscalar
s )

scalars + records (N , irecord
s ) (T, irecord

s )
scalars + records + arrays (N , iaggr

s ) (T, iaggr
s )

stack + globals scalars (N , iscalar
sg ) (T, iscalar

sg )
scalars + records (N , irecord

sg ) (T, irecord
sg )

scalars + records + arrays (N , iaggr
sg ) (T, iaggr

sg )
interprocedural stack scalars (N , Iscalar

s ) (T, Iscalar
s )

scalars + records (N , Irecord
s ) (T, Irecord

s )
scalars + records + arrays (N , Iaggr

s ) (T, Iaggr
s )

stack + globals scalars (N , Iscalar
sg ) (T, Iscalar

sg )
scalars + records (N , Irecord

sg ) (T, Irecord
sg )

scalars + records + arrays (N , Iaggr
sg )

(
T, Iaggr

sg
)

the first element gives the level of type accuracy ((N , ·) are schemes with no
type accuracy and (T, ·) are schemes with full type accuracy) and the second el-
ement gives the level of liveness accuracy. The “intraprocedural” configurations
(·, i·· ) assume the worst case for all externally visible variables (globals and lo-
cals whose address has been taken) while the “interprocedural” configurations
(·, I ·· ) analyze across procedure boundaries for externally visible variables. The
“scalars” configurations compute liveness information only for scalar variables,
the “records” configurations for scalar and record fields, and the “aggregate”
configurations for scalars, record fields, and array elements. The “stack” con-
figurations (·, ··s) compute liveness information only for stack variables whereas
the “stack and globals” (·, ··sg ) configurations compute it for locations on the stack
and for statically allocated variables. While the abbreviations from Table VII
identify accuracy levels, we will sometimes use them to mean the number of
bytes occupied by reachable objects when using that accuracy level.

In addition to the above configurations, we experimented with partial type
accuracy, that is, type information for different regions of memory (stack, heap,
globals). We found these configurations to be of negligible value; thus, we omit
their results in the remainder of the article.

Note that we do not consider liveness for the heap. To see why, let us imagine
what it would mean in our context. If we had accurate liveness information for
heap-allocated aggregates, we might, for example, know that even though a
heap slot contains a pointer, the slot will not be dereferenced in the future. But
getting this information poses at least two challenges. It would be hard to com-
pute heap liveness with an analysis, and it would be hard to use heap liveness
in a garbage collector. To compute heap liveness would require a strong pointer
analysis, which is often prohibitively expensive. Furthermore, a strong pointer
analysis may create many instances of each allocation site and the information
may therefore get to be very large. This would be difficult to communicate to,
let alone use in, a garbage collector. With our trace-based approach, we could
of course have obtained heap liveness information, but given the difficulties

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



606 • M. Hirzel et al.

Fig. 6. Memory Management Schemes. Each node in this graph is a memory management scheme.
An edge indicates that the scheme with the lower vertical position is strictly weaker than the scheme
with the higher vertical position.

described above, our results would have been a very loose upper bound. Thus,
we omitted a study of heap liveness from this article.

Figure 6 presents accuracy schemes organized as a lattice. The order is by
strength, with the strongest scheme at the top and the weakest scheme at the
bottom. To make the figure more readable and because type accuracy offered
little benefit in our benchmark programs (Section 6), we omit the different com-
binations of type accuracy and liveness accuracies

(
e.g.,

(
T, iaggr

sg

))
. Although

we collected data for all the schemes in Figure 6, we present results for only
the schemes that offer some improvement over schemes that are immediately
below them in the lattice. These schemes are marked by solid circles. For ex-
ample, we found that enhancing intraprocedural analysis with record analysis,((

N , irecord
sg

))
gave insignificant benefit over intraprocedural analysis of scalars

only
((

N , iscalar
sg

))
and thus we do not report further results for

(
N , irecord

sg

)
.

5.2 Metrics

To conduct our measurements, we execute Run-2 (Figure 3) multiple times
for each benchmark, once for each accuracy scheme. We execute all our runs
on Pentium-based workstations.9 To facilitate comparisons between different
schemes, we trigger the reachability traversal at the same time for each level
of accuracy. For this study, we trigger a reachability traversal every A/n bytes
of allocation where A is the total allocation throughout the benchmark run
and n = 50.10 Thus, for each program and accuracy scheme, we end up with

9In Section 6.4, we see that type accuracy yields different benefits on different architectures.
10However, a given benchmark run may have much fewer than 50 reachability traversals if it
allocates a number of objects that are larger than A/n bytes.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



Usefulness of Type and Liveness Accuracy for GC • 607

a vector of approximately 50 numbers representing the reachable bytes found
at each traversal. To compare two liveness schemes, we subtract their vectors
to determine how they compare at each traversal. We reduce our metric to a
single number by reporting the average of the elements of the difference vector.

Here is an example for our metric, where for simplicity we assume n = 3.
Let the conservative garbage collector (N , N ) encounter (100, 200, 200) bytes
in reachable heap objects after its three collections. Let our strongest scheme(
T, Iaggr

sg

)
encounter (100, 180, 160) bytes in reachable heap objects after its

three collections. We write

avg
(N , N )− (T, Iaggr

sg

)
(N , N )

to mean

1
n

(
(N , N )1 −

(
T, Iaggr

sg

)
1

(N , N )1
+ · · · + (N , N )n −

(
T, Iaggr

sg

)
n

(N , N )n

)
,

which is
1
3

(
100− 100

100
+ 200− 180

200
+ 200− 160

200

)
= 10%

in our concrete example. In other words, with strong accuracy, the heap would
on average be 10% smaller after garbage collections.

An alternative metric is to measure the heap size (including fragmentation
and GC data structures) or the process footprint instead of bytes in reachable
heap objects. These are useful metrics but unfortunately not ones we can mea-
sure easily in our infrastructure since our instrumentation and extensions to
the Boehm–Demers–Weiser collector increase the memory requirements of the
host program.

5.3 Benchmarks

We used three criteria to select our benchmarks. First, we picked programs
that perform significant heap allocation. Second, we picked programs that we
thought would demonstrate the difference between accurate and inaccurate
garbage collection. For example, we picked anagram since it uses bit vectors,
which may end up looking like pointers to a conservative garbage collector.
Third, we picked programs that span a wide variety of programming styles and
languages.

Table VIII describes our benchmark programs. Main data structures gives
the data structures most commonly used in the benchmarks based on code in-
spection. Table IX gives information about our benchmark programs and their
inputs. Language gives the source language of the benchmark programs. We
have benchmarks in three different languages. Lines gives the number of lines
in the source code of the program (including comments and blank lines). Total al-
location gives the number of bytes allocated throughout the execution of the pro-
gram. Workload describes how we run each benchmark. Two of our benchmarks,
gctest and gctest3, are designed to test garbage collectors [Bartlett 1988, 1989].
These benchmarks both allocate objects and create garbage at a rapid rate.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



608 • M. Hirzel et al.

Table VIII. Benchmark Descriptions

Name Description Main data structures

Programs using gc:
gctest3 Synthetic stress test for Bartlett’s collector. Lists and arrays
gctest Synthetic stress test for Bartlett’s collector. Lists and trees
bshift Measurements on Barrel-shifter topology. Doubly-linked lists
erbt Test for red-black-tree package. Red-black trees
ebignum Test for arbitrary precision numbers package. Arrays
li Lisp interpreter. Cons cells
gegrep Pattern finder similar to GNU grep. DFAs
xerces XML parser with implementation of Document Object Model. Document Object Model
Programs using explicit deallocation:
anagram Anagram generator. Lists and bit fields
ks Kernighan-Schweikert graph partitioner. Graphs
ft Finds minimum spanning trees. Graphs
yacr2 Yet another channel router for circuit layout. Arrays and structures
bc GNU bc calculator. Abstract syntax trees
gzip GNU gzip compression tool. Huffman trees
roboop Robotics simulation package. Matrices
eon Probabilistic ray tracer. Object graph
ijpeg Image compression and decompression. Various image repn.

Table IX. Benchmark Statistics

Name Language Lines Total allocation Workload

gctest3 C 85 2 200 004 loop to 20,000
gctest C 196 1 123 180 only repeat 5 in listtest2
bshift Eiffel 350 28 700 scales 2 through 7
erbt Eiffel 927 222 300 50 trees with 500 nodes each
ebignum Eiffel 3 137 109 548 twice the included test-stub
li C 7 597 9 030 872 nqueens.lsp, n = 7
gegrep Eiffel 17 185 106 392 ’[A-Za-z]+\−[A-Za-z]+’ t

xerces C++ 48 452 387 632 Macbeth, act I

anagram C 647 259 512 words < input.in

ks C 782 7 920 KL-2.in

ft C 2 156 166 832 1000 2000

yacr2 C 3 979 41 380 input4.in

bc C 7 308 12 382 400 find primes smaller 500
gzip C 8 163 14 180 -d texinfo.tex.gz

roboop C++ 11 806 587 544 10
eon C++ 30 115 54 540 Kajiya, 10x10
ijpeg C 31 211 148 664 testinput.ppm -GO

The benchmarks bshift, erbt, ebignum, and gegrep are Eiffel programs that we
translated into C using the GNU Eiffel compiler SmallEiffel. The benchmarks
xerces, roboop, and eon are C++ programs that we translated into C using EDG
[Edison Design Group 2002]. We made minor modifications to xerces and eon to
get them to work with our infrastructure. Many of our benchmarks (including
all Eiffel programs) were written with garbage collection in mind and some
even included a garbage collector as part of the program (e.g., li and xerces). We
modified these programs to use our garbage collector instead of their own.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



Usefulness of Type and Liveness Accuracy for GC • 609

Fig. 7. Accurate and conservative garbage collection versus free. We present results for bench-
marks that use explicit deallocation and for which there is a difference between explicit deallocation
and (N , N ).

Due to the prohibitive cost of our analyses,11 we had to pick relatively short
runs for most of the programs. However, for those programs where we were
able to do both shorter and longer runs, we found little difference between the
two runs as far as our results are concerned (Section 6.5).

6. RESULTS

We now present experimental results to answer the following questions about
the usefulness of liveness for garbage collection and leak detection:

(1) How does garbage collection compare to explicit deallocation? (Section 6.1)
(2) Does accuracy improve the effectiveness of garbage collection? (Section 6.2)
(3) How much accuracy does a garbage collector need in order to reclaim the

most objects? (Section 6.3)
(4) Does the benefit of type accuracy depend on the underlying architecture

and memory layout? (Section 6.4)
(5) Does our methodology yield valid results? (Section 6.5)

6.1 GC Versus Explicit Deallocation

Figure 7 compares the performance of our most inaccurate ((N , N )) and ac-
curate

((
T, Iaggr

sg

))
collectors to explicit deallocation. The height of the (N , N )

versus free bar presents the average difference between the bytes retained by

11Some of these benchmarks take over 24 hours on a 850-MHz Athlon with 512 MB of memory to
run all the configurations.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



610 • M. Hirzel et al.

(N , N ) and explicit deallocation as a percentage of the bytes retained by (N , N ).
The height of the

(
T, Iaggr

sg

)
versus free bar presents the average difference be-

tween the bytes retained by
(
T, Iaggr

sg

)
and explicit deallocation as a percent-

age of the bytes retained by (N , N ). A negative bar in Figure 7 indicates that
garbage collection frees fewer bytes than explicit deallocation. A positive bar
means that garbage collection frees more bytes than explicit deallocation.

Figure 7 gives the data only for benchmarks that use explicit deallocation.
Also, since (N , N ),

(
T, Iaggr

sg

)
, and explicit deallocation collect exactly the same

number of objects for anagram, ks, and ft, we omit these programs.
From this figure, we see that explicit deallocation is better than conservative

garbage collection ((N , N )) for five of the nine benchmarks that use explicit
deallocation. The performance of

(
T, Iaggr

sg

)
is more impressive: it finds leaks

in at least two benchmark programs (yacr2 and bc). In the other programs,(
T, Iaggr

sg

)
is still close in performance to explicit deallocation. Thus, as far as re-

claiming memory or detecting leaks is concerned,
(
T, Iaggr

sg

)
compares favorably

to explicit deallocation while (N , N ) is much worse than explicit deallocation.

6.2 Usefulness of Accuracy

Section 6.2.1 compares the ability of type accurate, liveness accurate, and con-
servative collectors in reclaiming objects. Section 6.2.2 compares how much
work each kind of collector needs to do at garbage collection time.

6.2.1 Usefulness of Liveness and Type Accuracy for Reclaiming Objects. In
this section, we investigate the individual and cumulative benefits of type and
liveness accuracy. Figure 8 compares reachability traversals using type accu-
racy only ((T, N )), liveness accuracy only

((
N , Iaggr

sg

))
, and both type accuracy

and the best liveness accuracy
((

T, Iaggr
sg

))
. The bars of this graph present the

difference between the bytes retained by (N , N ) and the bytes retained by
(T, N ),

(
N , Iaggr

sg

)
, and

(
T, Iaggr

sg

)
as a percentage of the bytes retained by (N , N ).

As with Figure 7, the data in Figure 8 is an average across all the reachability
traversals in a program run.

From Figure 8, we see that just adding type information to a reacha-
bility traversal yields modest improvements for only three programs (gzip,
roboop, and ijpeg). In comparison, there is a significant benefit to using live-
ness information in a reachability traversal. We also see that there is no ben-
efit to adding type information to liveness for identifying garbage objects. In
other words, the information that the aggressive liveness analysis computes is
sufficient for identifying live pointers in our benchmark runs. Note, however,
that type information is necessary in environments that use copying garbage
collection.

From Figure 8, we also see that, for six out of the seventeen benchmarks
(gctest3, gctest, li, anagram, ks, ft), there is no benefit from any kind of ac-
curacy at least for our runs. (Some of the subsequent graphs will omit these
benchmarks in order to make them more readable.)

While Figure 8 shows that accuracy enables a garbage collector to collect
more bytes on average, it does not say whether the leaks in a conservative

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



Usefulness of Type and Liveness Accuracy for GC • 611

Fig. 8. Benefits of liveness and type accuracy.

Fig. 9. For how long are objects leaked?

collector are short lived (e.g., (N , N ) collects exactly the same objects as(
T, Iaggr

sg

)
but one garbage collection later) or long lived (e.g., there are some

objects that
(
T, Iaggr

sg

)
frees that (N , N ) never identifies as unreachable).

Figure 9 addresses the nature of the improvement that
(
T, Iaggr

sg

)
provides

over (N , N ) for those of our programs that benefit the most from accuracy. A
point (x, y) in Figure 9 says that y% of the leaked objects are leaked for x% or
fewer garbage collections. For example, in benchmark gzip 50% of the objects

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



612 • M. Hirzel et al.

Fig. 10. Percentage of stack slots that the garbage collector must examine.

leaked by (N , N )
(
in relation to

(
T, Iaggr

sg

))
are leaked for up to 40% of the

garbage collections (recall that we trigger garbage collection approximately 50
times for each benchmark program). Curves that remain low until they get to
the far right of the graph (e.g., bshift) indicate benchmarks where (N , N ) leaks
objects for a significant portion of overall program execution. Such leaks are
likely to cause real memory problems in long-running programs.

6.2.2 Usefulness of Liveness and Type Accuracy for Reducing Effort. Be-
sides enabling a garbage collector or leak detector to identify more garbage
objects, accuracy can also reduce the amount of work for root (i.e., global and
stack) processing. A conservative collector must look at all stack and global
locations to find pointers while an accurate collector has tables that allow it to
skip examining many locations that are not live or not pointers. While accurate
collection will most likely inspect fewer locations, it will incur the overhead of
decoding the tables; we ignore table decoding overhead in this study. Figures 10,
11, and 12 give the percentage of stack, global, and heap locations that garbage
collectors using (T, N ) and

(
T, Iaggr

sg

)
would have to examine; in contrast, a

conservative collector must examine all stack and global locations.
From these figures, we see that even though type accuracy does not reclaim

many more objects than conservative collection, it does significantly reduce the
work for the garbage collector. Liveness accuracy further reduces the number
of memory slots that a garbage collector or leak detector must examine. The
benefit of liveness accuracy is most prominent in the stack (Figure 10).

The benefit of accuracy in the heap (Figure 12) comes from two sources. First,
as with stack and global variables, accuracy allows a garbage collector to skip
nonpointer or nonlive slots. Second, since accurate garbage collectors free up
more objects than conservative collectors, there are fewer slots in the heap with

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



Usefulness of Type and Liveness Accuracy for GC • 613

Fig. 11. Percentage of global slots that the garbage collector must examine.

Fig. 12. Percentage of heap slots that the garbage collector must examine.

accurate collectors than with conservative collectors. We see that programs for
which liveness accuracy reclaims many more bytes than type accuracy (e.g.,
bshift in Figure 8) are also the ones where there is the most difference between
the (T, N ) and

(
T, Iaggr

sg

)
bars in Figure 12.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



614 • M. Hirzel et al.

Fig. 13. How much liveness do we need (average)? We omit benchmarks for which there is no
benefit from liveness.

6.3 Strength of Liveness Analysis

The prior sections presented results for our most aggressive liveness schemes,(
T, Iaggr

sg

)
and

(
N , Iaggr

sg

)
. Since more accurate liveness information is more dif-

ficult to implement and expensive to compute, it is important to determine the
point of diminishing return for liveness. In this section, we investigate how
powerful the liveness analysis needs to be before it is useful.

Figure 13 gives the impact of the liveness accuracy on the garbage collector
or leak detector’s ability to identify dead objects. For each benchmark, it has 8
bars. Each bar gives the result for one level of liveness. The first four bars give
the benefit of liveness analysis for stack variables only and the next four bars
give the benefit of liveness analysis for global and stack variables. Figure 14 is
similar to Figure 13 except that it gives the benefit of different levels of liveness
accuracy at the point where the number of live bytes in the conservative scheme
is at its maximum. Thus, Figure 14 gives a sense of the maximum memory size
reduction due to liveness accuracy when compared to conservative collection.

Figures 13 and 14 present results only for liveness levels that offer some
benefit (Section 5.1). Also, Figures 13 and 14 present data only for benchmarks
where liveness accuracy is useful.

From Figure 13, we see that intraprocedural stack liveness affects only four
benchmarks (ebignum, gegrep, gzip, and roboop) and the benefits are small.
This is consistent with behavior observed by Agesen et al. [1998]. Adding inter-
procedural analysis to analysis of local variables slightly improves the results
for gegrep and adding analysis of records and aggregates significantly improves
the results for roboop. Note that doing just interprocedural analysis of stack

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



Usefulness of Type and Liveness Accuracy for GC • 615

Fig. 14. How much liveness do we need (maximum)? We omit benchmarks for which there is no
benefit from liveness.

scalars or intraprocedural analysis of local aggregates12 does not improve per-
formance for roboop but doing both has a synergistic effect.

The majority of the benefit of liveness analysis comes from analyzing global
variables (see second set of four bars in Figure 13). The relative importance of
local and global variable liveness is not too surprising: unlike local variables,
global variables are around for the entire lifetime of the program and thus a
dead pointer in a global variable will have a much bigger impact on reacha-
bility traversal than a dead pointer in a (relatively short lived) local variable.
However, even for global variables, liveness analysis yields little benefit unless
the liveness analysis is interprocedural and analyzes records. The cumulative
impact of aggregate and interprocedural analysis is greater than the sum of the
parts. For example, in benchmark bshift the benefit of interprocedural analysis
is 3% and the benefit of analyzing aggregates intraprocedurally is 0%, but the
benefit of adding both is 43%.

Figure 15 illustrates how the combined effect of analyzing aggregates and
interprocedural analysis is greater than the sum of their parts. In this example,
s is a global record. Assume that the fields of s are used consistently with their
types. If we analyze procedure f using an interprocedural analysis without
records then we would have to conclude that the two fields of s may contain live

12We do not present results for this configuration since it performs the same as
(

N , iscalar
s

)
.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



616 • M. Hirzel et al.

struct { int ∗ i; int ∗ j ; } s;
void f (){

g ();
}

Fig. 15. Example of the synergy between analyzing aggregates and doing interprocedural analysis.

Fig. 16. How much liveness do we need (assuming worst case about library calls)?

pointers at the call to g since the analysis is conservative about record fields
(it assumes all record fields are always live). If we analyze procedure f using
an intraprocedural liveness analysis that analyzes records, then once again we
would have to conclude that the fields of s may contain live pointers at the call
to g since the intraprocedural analysis assumes the worst case for calls. Only
when we analyze procedure f using an interprocedural liveness analysis that
analyzes aggregates are we able to determine that the fields of s do not contain
live pointers.

For many programs,
(
N , I record

sg

)
and

(
N , Iaggr

sg

)
have similar performance

(ebignum, yacr2, bc, gzip, ijpeg, eon, and roboop plus all the benchmarks that
do not benefit from liveness), which is encouraging since

(
N , I record

sg

)
requires

analysis of only records while
(
N , Iaggr

sg

)
requires analysis of records and ar-

rays. Arrays are much harder to analyze and it is unlikely that any reasonable
compiler analysis would approach the performance of

(
N , Iaggr

sg

)
.

For the above results, we assumed that all liveness analyses, intraprocedural
and interprocedural, had information that allowed them to precisely analyze
library calls. Figure 16 presents results similar to Figure 13 except that we

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



Usefulness of Type and Liveness Accuracy for GC • 617

computed these results while assuming the worst case about standard libraries.
Comparing Figures 16 and 13 we see that precise information about library
routines makes a significant difference in one program, roboop. Information
about library routines also helps five other programs to a smaller extent (bshift,
erbt, gegrep, gzip, and eon).

6.4 Type Accuracy and Underlying Architecture

From Section 2, we know that the usefulness of type information for reclaiming
objects depends on what pointers look like. Since the appearance of pointers
depends on memory layout and on the underlying architecture (e.g., 32-bit or
64-bit), type information may have a different benefit if the program is run
using a different memory layout or architecture.

To investigate the effects of memory layout on the usefulness of type accu-
racy, we ran our programs four times each with a different heap starting address
(0x10000000, 0x20000000, 0x40000000, and 0x80000000). We observed small
variations in our four runs but even then the benefit of type accuracy for re-
claiming objects was small: no more than 3% for any of our programs and 0%
for most of the programs. The run with starting address of 0x20000000 showed
the most improvement from type accuracy.

To investigate the effects of architecture on the usefulness of type accuracy,
we ran several of our benchmarks on a 64-bit Alpha workstation running OSF
and a 32-bit SPARC workstation running Solaris. On the SPARC, we found type
accuracy to be more important than on the Pentium. Type accuracy improved
the effectiveness of garbage collection for several benchmarks, including gctest,
bc, ft, yacr2, bshift, li, gzip, and ijpeg. Some benchmarks showed major improve-
ment: 25% (gzip) and 35% (ijpeg). We suspect that some of the image data in
ijpeg is being interpreted as pointers and therefore garbage collection of ijpeg
benefits greatly from type accuracy. On the Alpha, the improvement due to type
accuracy was even less than on the Pentium, with only one benchmark, gzip,
showing non-trivial benefit from type accuracy.

Our results suggest an idea for strengthening leak detectors: running a pro-
gram using a leak detector (such as Purify [Hastings and Joyce 1992]) multiple
times with different starting memory addresses and on different architectures.
The combined information from multiple runs will expose more leaks than a
single run.

6.5 Validation of Our Methodology

Our approach extracts liveness information from a single run of the program
and thus it is possible that the liveness information is specific only to that run.
Also, the runs we use are short since our liveness analyses are quite slow. In this
section we present numbers for a second run of several benchmark programs.
We tried to pick runs that were longer and performed more allocation than our
original runs: bshift (104 248 bytes), gegrep (453 756 bytes), gzip (20 240 bytes),
roboop (1 929 864 bytes), and yacr2 (76 376 bytes).

Table X gives the stack and global locations that are different between the two
runs as a percentage of total stack and global locations when using

(
N , Iaggr

sg

)
. If

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



618 • M. Hirzel et al.

Table X. Number of Stack and Global Locations That are Different as a
Percentage of Total Static Stack and Global Locations

Stack Global
Benchmark Count % different Count % different

bshift 1574 0.2 10469 0
gegrep 19327 0.4 34220 0
gzip 2075 3.4 84158 0.6
roboop 46330 0 10970 0
yacr2 586 3.0 384 0

a stack or global location had a different liveness at any point in the two runs,
we counted that location as “different”. The total stack and global locations are
in the Count columns. The results for other levels of accuracy are similar or
better.

From Table X, we see that there is little difference between the liveness
information for our two runs. To see whether these small differences translate
into different behavior, we also measured the retained bytes of

(
T, Iaggr

sg

)
and(

N , Iaggr
sg

)
. We found that the results were identical for the two runs in terms

of the relative usefulness of the different accuracy schemes. The number of
bytes that each liveness scheme was able to identify as garbage was of course
different between the two runs. Thus, it is likely that our run-time methodology
is computing a tight approximation.

6.6 Summary of Results

To summarize, our results show that as far as reclaiming objects in our bench-
mark runs is concerned, type accuracy or weak liveness accuracy schemes, such
as ones implemented in current systems, yield little or no benefit. Type accuracy
does, however, reduce the work of the reachability traversal by allowing it to
ignore most memory slots. The benefits of type accuracy depend greatly on the
memory layout and the underlying hardware architecture: we found that the
benefit of type information in reclaiming objects is much greater on a SPARC
32-bit workstation than on the Pentium-based workstations we used for the ma-
jority of this study. Aggressive liveness analyses, particularly ones that analyze
globals records and are interprocedural, promise significant improvements.

Figure 17(b) shows the experimental relationship between the accuracy
levels. Figure 17(b) is a subset of Figure 6 containing only the solid nodes,
but with a different interpretation of vertical position (the horizontal position
has no significance). For each scheme S in Figure 17(b), the vertical position
corresponds to the metric avg (N ,N )−S

(N ,N ) %, which is explained in Section 5.2.
The horizontal lines in Figure 17(b)

(
e.g., between

(
T, Iaggr

sg

)
and

(
N , Iaggr

sg

))
connect accuracy schemes that differ in strength only theoretically but insignif-
icantly in our experiments.

7. EXPERIENCES

Besides demonstrating that certain kinds of liveness can be valuable in iden-
tifying dead objects, our experiments also had an unexpected side effect: they
enabled us to identify leaks in the BDW collector [Boehm et al. 2002]. The BDW

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



Usefulness of Type and Liveness Accuracy for GC • 619

Fig. 17. Theoretical (a) and experimental (b) strength of accuracy schemes.

collector is a mature and extremely useful tool that has been used heavily by a
large user community for over 10 years and there are even commercial leak de-
tection products that are based on this collector [Dion and Monier 2002]. Thus,
we were surprised to find any leaks in this collector. Our experience leads us
to believe that experiments such as ours may be valuable to implementors of
garbage collectors and leak detectors in fine tuning their systems.

Broadly speaking there are two kinds of bugs in a garbage collector or leak
detector: (i) it can incorrectly identify an in-use object as garbage and (ii) it can
fail to identify a dead object. The existence of a bug of the first kind, particularly
in a garbage collector, will probably be exposed quickly since freeing an object
that is still in use will cause the program to exhibit unexpected behavior or to

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



620 • M. Hirzel et al.

crash. The existence of a bug of the second kind is much harder to detect since
it does not cause the program to crash: it just causes the program to use more
memory. Since most programmers treat a garbage collector as a black box, they
will not be able to tell whether the leak is due to a bug in the garbage collector
or whether it is due to an unfortunate pointer in their own code. All bugs we
found in the BDW collector were of kind (ii).

How did our experiments help us in finding leaks in the BDW collector? We
experimented with a wide range of variations in the BDW collector, some of
which minor (such as intraprocedural liveness of local scalar variables) and
some significant (such as ones involving interprocedural analysis). We discov-
ered the leaks when we saw behavior in one of our variations that did not
make sense. For instance, in one case, we found that incorporating intrapro-
cedural liveness of global and local variables found many more dead objects
than intraprocedural liveness for just local variables. When we tried to imag-
ine how such a situation could happen, we ended up with contrived examples
that seemed unlikely to appear in real programs. Thus, we investigated further
and found the source of the problem: the BDW collector was mistakenly using
some of its own global variables as roots. When we provided liveness informa-
tion for globals to the BDW collector it circumvented BDW’s mechanism for
finding roots in global variables and thus avoided this problem.

To summarize, garbage collectors and leak detectors are notoriously hard
to write and debug. Our experimental methodology provides implementors of
these tools with an additional mechanism for identifying potential performance
problems.

8. RELATED WORK

In this section, we review prior work on comparing different garbage collec-
tion alternatives, type and liveness accuracy for compiled languages, and leak
detection.

Röjemo and Runciman [1996] describe heap profiling, which they use to tune
their applications. Röjemo and Runciman’s approach is to provide heap profile
information to programmers who can use it to tune the memory usage of their
applications. Röjemo and Runciman introduce the notion of “drag”, which is the
time between the last real use of an object and the time at which it is deallo-
cated. Their notion of “drag” is stronger than our strongest liveness analysis
since it is derived from exact information on when a heap object is last accessed.
Our basic goals are similar: we are also trying to reduce the memory footprint
of programs and are using profiling techniques to accomplish our goals. How-
ever, for Röjemo and Runciman, the profiling tools provide information to pro-
grammers whereas, for us, they provide information to designers of memory
managers.

In work concurrent to ours, Shaham et al. [2000] evaluate a conservative
garbage collector using a limit study. They find that the conservative garbage
collector is not effective in reclaiming objects in a timely fashion. However, un-
like our work, they do not demonstrate if an accurate collector would be more
effective in reclaiming objects. In their follow-up work, Shaham et al. [2001]

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



Usefulness of Type and Liveness Accuracy for GC • 621

investigate manual optimizations (such as dead-code elimination and insertion
of nil assignments) to improve the performance of their garbage collector; these
optimizations were guided by their limit study. Shaham et al. [2001] also dis-
cuss which compiler analyses would be needed to automate their optimizations.
Thus, Shaham et al. [2001] and our work have similar goals. Our work differs
from Shaham et al.’s [2001] work in that we determine the needed compiler
analyses automatically rather than manually.

Bartlett [1988], Zorn [1993], Smith and Morrisett [1998], and Agesen
et al. [1998] compare different garbage collection alternatives with respect to
memory consumption. Bartlett [1988] describes versions of his mostly copy-
ing garbage collector that differ in stack accuracy. Zorn [1993] compares the
Boehm–Demers–Weiser collector to a number of explicit memory management
implementations. Smith and Morrisett [1998] describe a new mostly copying
garbage collector and compare it to the Boehm–Demers–Weiser collector. All
these studies focus on the total heap size. Measuring the total heap size is use-
ful for comparing collectors with the same accuracy, but makes it difficult to
tease apart the effects of fragmentation, allocator data structures, and accu-
racy. Since we are counting bytes in reachable objects instead of total heap size,
we are able to look at the effects of garbage collector accuracy in isolation from
the other effects. Agesen et al. [1998] investigate the effect of intraprocedu-
ral local variable liveness on the number of reachable bytes after an accurate
garbage collection. Besides intraprocedural local-variable liveness we also con-
sider many other kinds of liveness.

Several papers (Attanasio et al. [2001], Fitzgerald and Tarditi [2000], Hicks
et al. [1997], Smith and Morrisett [1998], and Zorn [1993]) compare different
memory management schemes with respect to their efficiency. Zorn [1991] looks
at the cache performance of different garbage collectors. We do not look at run-
time efficiency but instead concentrate on the effectiveness of garbage collectors
in reclaiming objects.

Boehm and Shao [1993] describe a technique for improving type accuracy
for heap objects without compiler support which requires a moderate amount
of programmer support. Boehm and Shao do not report any results for the
effectiveness of their scheme.

Henderson [2002] describes how to compile type-safe languages to C without
giving up type accuracy. The resulting C program, which can be compiled to
machine code using a conventional compiler, can safely use a copying garbage
collector.

Diwan et al. [1992], Agesen et al. [1998], and Stichnoth et al. [1999] consider
how to perform accurate garbage collection in compiled type-safe languages.
Diwan et al. [1992] describe how the compiler and run-time system of Modula-3
can support accurate garbage collection. Agesen et al. [1998] and Stichnoth
et al. [1999] extend Diwan et al.’s work by incorporating liveness accuracy
and allowing garbage collection at all points and not just safe points. Even
though these papers assume type-safe languages, type accuracy is still difficult
to implement, especially in the presence of compiler optimizations. Our work
identifies what kinds of accuracy are useful for reclaiming objects, which is
important for deciding what kinds of accuracy to obtain by compiler analysis.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



622 • M. Hirzel et al.

Also, our approach can be used in its current form for identifying leaks in both
type-safe and unsafe languages.

Hastings and Joyce [1992], Dion and Monier [2002], and Geodesic Sys-
tems [2002] describe leak detectors based on the Boehm–Demers–Weiser col-
lector [Boehm and Weiser 1988]. The Boehm–Demers–Weiser collector can also
be used as a leak detector [Boehm et al. 2002]. Our scheme uses more accurate
information than these leak detectors, and is thus capable of finding more leaks
in programs.

Region-based memory management [Tofte 1998] uses a compile-time liveness
analysis of objects to determine where to automatically insert deallocations in
the code. In this paper we focus only on liveness analysis of local and global
variables and not heap-allocated objects.

9. CONCLUSIONS

We describe a detailed investigation of the impact of liveness and type accuracy
on the effectiveness of garbage collectors and leak detectors. By separating the
two dimensions of accuracy—type accuracy and liveness accuracy—we are able
to identify interesting new accuracy schemes that have not been investigated
in the literature. Our novel methodology, which uses a trace-based analysis,
enables us to experiment with a wide range of liveness schemes.

Our experiments reveal that liveness can have a significant impact on the
ability of a garbage collector or leak detector in identifying dead objects. How-
ever, we show that the simple liveness schemes are largely ineffective for our
benchmark runs: we need to use an aggressive liveness scheme that incorpo-
rates interprocedural analysis of global variables before we see a significant
benefit. Also, in our benchmark runs, we found that, while type accuracy can
significantly reduce the work of the reachability traversal, it has a negligible
impact on a garbage collector’s ability to reclaim objects.

ACKNOWLEDGMENTS

We thank Michael Hind, Urs Hölzle, Eliot Moss, and our anonymous referees
for ISMM 2000, ECOOP 2001, and TOPLAS for comments on this research,
and John DeTreville, Tony Hosking, Dirk Grunwald, and Alex Wolf for fruitful
discussions about the ideas in the article.

REFERENCES

AGESEN, O., DETLEFS, D., AND MOSS, J. E. B. 1998. Garbage collection and local variable type-
precision and liveness in Java virtual machines. In Programming Language Design and Imple-
mentation (PLDI ). ACM, New York, pp. 269–279.

ALPERN, B., ATTANASIO, C. R., BARTON, J. J., BURKE, M. G., CHENG, P., CHOI, J.-D., COCCHI, A., FINK,
S. J., GROVE, D., HIND, M., HUMMEL, S. F., LIEBER, D., LITVINOV, V., MERGEN, M. F., NGO, T., RUSSELL,
J. R., SARKAR, V., SERRANO, M. J., SHEPHERD, J. C., SMITH, S. E., SREEDHAR, V. C., SRINIVASAN, H., AND

WHALEY, J. 2000. The Jalapeño virtual machine. IBM Syst. J., 39, 1 (Feb.), 211–238.
APPEL, A. W. 1990. A runtime system. LISP Symb. Computat., 3, 4 (Nov.), 343–380.
ATTANASIO, C. R., BACON, D. F., COCCHI, A., AND SMITH, S. 2001. A comparative evaluation of par-

allel garbage collector implementations. In Workshop on Languages and Compilers for Parallel
Computing (LCPC ), (Aug.).

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



Usefulness of Type and Liveness Accuracy for GC • 623

BARTLETT, J. F. 1988. Compacting garbage collection with ambiguous roots. Tech. Rep. 88/2. DEC
Western Research Laboratory, Palo Alto, Calif. (Also in LISP Pointers 1, 6 (Apr.-June), 2–12.

BARTLETT, J. F. 1989. Mostly-copying garbage collection picks up generations and C++. Tech. Rep.
DEC Western Research Laboratory, Palo Alto, Calif.

BOEHM, H.-J., DEMERS, A. J., AND SHENKER, S. 1991. Mostly parallel garbage collection. In Pro-
gramming Language Design and Implementation (PLDI ) (Nov.). ACM, New York, pp. 157–164.

BOEHM, H.-J., DEMERS, A. J., AND WEISER, M. 2002. A garbage collector for C and C++.
http://www.hpl.hp.com/personal/Hans Boehm/gc/.

BOEHM, H.-J. AND SHAO, Z. 1993. Inferring type maps during garbage collection. In OOPSLA ’93
Workshop on Memory Management and Garbage Collection (Sept.). ACM, New York.

BOEHM, H.-J. AND WEISER, M. 1988. Garbage collection in an uncooperative environment. Softw.—
Pract. Exp. (SPE ), 18, 9 (Sept.), 807–820.

COLNET, D. COUCAUD, P., AND ZENDRA, O. 1998. Compiler support to customize the mark and sweep
algorithm. In International Symposium on Memory Management (ISMM ) (Oct.), pp. 154–165.

DION, J. AND MONIER, L. 2002. Third degree. http://research.compaq.com/wrl/projects/om/
third.html.

DIWAN, A., MOSS, J. E. B., AND HUDSON, R. L. 1992. Compiler support for garbage collection in a
statically typed language. In Programming Language Design and Implementation (PLDI ) (July).
ACM, New York, pp. 273–282.

EDISON DESIGN GROUP. 2002. http://www.edg.com.
FITZGERALD, R. AND TARDITI, D. 2000. The case for profile-directed selection of garbage collectors.

In International Symposium on Memory Management (ISMM ) (Oct.), pp. 111–120.
GEODESIC SYSTEMS. 2002. Great Circle—Real-time error detection and code diagnosis for devel-

opers. http://www.geodesic.com/solutions/products gc overview.html.
GOSLING, J., JOY, B., AND STEELE, G. 1996. The Java Language Specification. Addison-Wesley,

Reading, Mass.
HASTINGS, R. AND JOYCE, B. 1992. Fast detection of memory leaks and access errors. In Proceedings

of the Winter ’92 USENIX Conference, pp. 125–136.
HENDERSON, F. 2002. Accurate garbage collection in an uncooperative environment. In Interna-

tional Symposium on Memory Management (ISMM ) (June).
HICKS, M. W., MOORE, J. T., AND NETTLES, S. M. 1997. The measured cost of copying garbage

collection mechanisms. In International Conference on Functional Programming (ICFP ) (June),
pp. 292–305.

HUDSON, R. L., MOSS, J. E. B., DIWAN, A., AND WEIGHT, C. F. 1991. A language-independent garbage
collector toolkit. Tech. Rep. 91-47. Univ. Massachusetts at Amherst, Amherst, Mass.

JONES, R. AND LINS, R. 1997. Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. Wiley, New York.

MILNER, R., TOFTE, M., AND HARPER, R. 1990. The definition of Standard ML. MIT Press,
Cambridge, Mass.

NELSON, G. 1991. (Ed.) Systems Programming with Modula-3. Prentice Hall, Englewood Cliffs,
N.J.

RÖJEMO, N. AND RUNCIMAN, C. 1996. Lag, drag, void and use—heap profiling and space-
efficient compilation revisited. In International Conference on Functional Programming (ICFP )
(Philadelphia, Pa. May) pp. 34–41. (Also available as ACM SIGPLAN Notices 31, 6).

SHAHAM, R., KOLODNER, E. K., AND SAGIV, M. 2000. On the effectiveness of GC in Java. In Interna-
tional Symposium on Memory Management (ISMM ) (Oct.), pp. 12–17.

SHAHAM, R., KOLODNER, E. K., AND SAGIV, M. 2001. Heap profiling for space-efficient Java. In
Programming Language Design and Implementation (PLDI ) (June). ACM, New York, pp. 104–
113.

SMITH, F. AND MORRISETT, G. 1998. Comparing mostly-copying and mark-sweep conservative col-
lection. In International Symposium on Memory Management (ISMM ) (Oct.), pp. 68–78.

STANFORD UNIVERSITY SUIF RESEARCH GROUP. 2002. SUIF compiler system version 1.x.
http://suif.stanford.edu/suif/suif1/index.html.

STICHNOTH, J. M., LUEH, G.-Y., AND CIERNIAK, M. 1999. Support for garbage collection at every
instruction in a Java compiler. In Programming Language Design and Implementation (PLDI )
(May). ACM, New York, pp. 118–127.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.



624 • M. Hirzel et al.

TARDITI, D., MORRISETT, G., CHENG, P., STONE, C., HARPER, R., AND LEE, P. 1996. TIL: A type-directed
optimizing compiler for ML. In Programming Language Design and Implementation (PLDI )
(May). ACM, New York, pp. 181–192.

TOFTE, M. 1998. A brief introduction to regions. In International Symposium on Memory Man-
agement (ISMM ) (Oct.), pp. 186–195.

UNGAR, D. 1984. Generation scavenging: A non-disruptive high performance storage reclama-
tion algorithm. In Software Engineering Symposium on Practical Software Development Envi-
ronments (SDE ). pp. 157–167.

WILSON, P. 1992. Uniprocessor garbage collection techniques. In International Workshop on Mem-
ory Management (Sept.), pp. 1–42.

WILSON, R. P., FRENCH, R. S., WILSON, C. S., AMARASINGHE, S. P., ANDERSON, J.-A. M., TJIANG, S. W. K.,
LIAO, S.-W., TSENG, C.-W., HALL, M. W., LAM, M. S., AND HENNESSY, J. L. 1994. SUIF: An in-
frastructure for research on parallelizing and optimizing compilers. ACM SIGPLAN Not. 29, 12
(Dec.), 31–37.

ZORN, B. 1993. The measured cost of conservative garbage collection. Softw.—Pract. Exp. 23, 7
(July), 733–756.

ZORN, B. G., 1991. The effect of garbage collection on cache performance. Tech. Rep. CU-CS-528-
91. Univ. Colorado at Boulder, Boulder, Col., May.

Received September 2001; accepted May 2002

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.


