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ABSTRACT
Runway is a cloud-native tool for managing machine learning ex-
periments and their associated models. The iterative nature of devel-
oping models results in a large number of experiments and models
that are often managed in an ad hoc manner. Runway is a workflow
and framework independent tool that centrally manages and main-
tains metadata and links to artifacts needed to reproduce models
and experiments. Runway provides a web dashboard with mul-
tiple levels of visualizations to evaluate performance and enable
side-by-side comparisons of models and experiments.

1 INTRODUCTION
Machine Learning (ML) models are increasingly at the core of appli-
cations and systems. The process around developing these models
is highly iterative and experiment-driven [4]. The often non-linear
and non-deterministic nature of implementing ML models [7] re-
sults in a large number of diverse models. Through interviews
we find that data scientists tend to manage models using ad hoc
methods such as notebooks, spreadsheets, file system folders, or
PowerPoint slides. However, these ad hoc methods record the mod-
els themselves but not the higher-level experiment. For example, a
data scientist developing a natural language classifier may wish to
compare models from a support vector machine experiment to ones
from neural networks. At best, extra effort must be spent to manage
experiments and their models and at worst, effort is wasted on what
one interviewee called “dead-end trials.” Given the increasing com-
plexity and required computational time for ML models, reducing
effort on experiments may greatly improve the efficiency of data
scientists’ workflows. At the same time, data scientists also tend to
work idiosyncratically with pipelines and workflows unique to the
task at hand. This variety means that a “one size fits all” approach
is insufficient.

To address these challenges, we introduce Runway, a prototype
ML model experiment management tool with the following design
goals: (1) multiple levels of model management, (2) workflow and
framework independence, (3) visual tools for model evaluation and
comparison, and (4) cloud-native architecture that allows for easy
integration with existing platforms. Runway is currently internally
available to data scientists at IBM. Runway’s design is also informed
by a series of interviews with 27 data scientists at IBM from a wide
variety of domains and by iterative agile development with sponsor
users.

2 RELATEDWORK
We position our work in a burgeoning field of engineering that
assists in developing ML models and applications. Kim et al. [4]
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find through interviews that data scientists fulfill multiple impor-
tant engineering roles towards connecting software systems to
“real-world” data. They find something that we confirm in our own
interviews: the sheer variety of titles, backgrounds, domains, and
tasks for data scientists. An important commonality however be-
tween data scientists is familiarity with experiment-driven work
or, as one interviewee put it, “I am used to designing experiments.”
Patel et al. [8] find through interviews and studies with data scien-
tists that the highly iterative and exploratory nature of developing
ML models is a primary challenge. In particular, multiple aspects
of the seemingly linear workflow interconnect and ML developers
would waste time on dead-end experiments. They also find that
for many tasks, evaluating performance is often more difficult than
simply evaluating metrics.

Closely related to our work and model management tools are
tools that support general ML engineering such as Gestalt [6] or
TFX [1] and in particular model management tools such as Mod-
elDB by Vartak et al. [9], ModelHub by Miao et al. [5], and MLMod-
elScope1. Model management tools are concerned with indexing
and tracking large numbers of ML models for future sharing, query-
ing, and analysis. Such tools support data scientists in sensemaking
and identifying insights for their models. Runway builds on model
management tools by supporting multi-level management such as
experiments and including visual evaluation tools.

3 IMPLEMENTATION
3.1 Architecture
Figure 1 shows the high-level architecture of Runway, which con-
sists of three key components: (1) a REST API backend which is the
core of the architecture, (2) a Software Development Kit (SDK) that
allows data scientists to instrument their own Python 3 scripts, and
(3) a web-based dashboard interface. Runway is also designed to
be cloud-native and integrates easily with other services such as
cloud object storage2 and the IBM Deep Learning (DL) Service [2].
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Figure 1: Runway high-level architecture.

Runway stores and organizes metadata about ML models in a
hierarchy of Projects, Experiments, and Runs. Projects represent
1http://mlmodelscope.org
2https://console.bluemix.net/catalog/services/object-storage



the task at hand such as image classification. They are made up of
multiple Experiments which are approaches or ideas data scientists
explore for the task, such as algorithms or network topologies.
Each Experiment is made up of Runs which are specific managed
models with their own set of parameters and metrics, and include
all the Artifacts such as training data, code, and log files that are
required to reproduce the model and result. Interviewees often
considered Experiments as a particular code commit and each Run
as a particular configuration and result from running this code. The
API also manages Credentials to authenticate to external services
which host the artifacts, including cloud storage, model training
environments, and code hosting platforms such as GitHub. Each
“layer” of the hierarchy has its own set of visualizations that assist
in aggregating and making sense of the lower layer.

We found from interviews that most data scientists prefer using
Python for developing ML models. However, due to a wide variety
of frameworks and libraries and unique workflows, we decided that
a workflow and framework independent approach was necessary.
We provide a Python SDK and ask data scientists to instrument
their existing Python scripts using this library. The SDK provides
wrappers for most API calls and convenience functions such as
uploading single files, folders, or archives as artifacts for a par-
ticular model. Instrumenting is straightforward, a data scientist
copies boilerplate code into their existing script and adds specific
modifications such as metrics and artifacts to track.

3.2 Model Evaluation Visualizations
The web-based dashboard is the main visual user interface for Run-
way. On top of managing models and their metadata, this dashboard
provides visualizations to assist in understanding and evaluating
parts of the ML model development process. Runway provides vi-
sualizations that summarize performance at multiple levels such as
a Project-level line and bar chart that displays performance met-
rics for each Experiment in the Project and the number of Runs
per Experiment in Figure 2. Visually aggregating multiple levels
helps to make sense of the entire ML task [6]. This chart allows
data scientists to track performance trends across experiments.
The dashboard also provides visualizations to better understand
relationships between hyperparameters and performance metrics
through a scatter plot on the Experiment level as seen in Figure 3.

Figure 2: Project-level metrics line and bar chart for all Ex-
periments.

3.3 Model Comparisons
Another primary feature for evaluating models that the dashboard
provides is the comparison of models. Once a data scientist selects

Figure 3: Experiment-level metric vs. hyperparameter scat-
ter plot for all Runs.

two Runs for comparison, their metadata, performance metrics,
hyperparameters, and artifacts are all displayed side-by-side. The
comparison also provides features towards better understanding dif-
ferences between models. For example, a difference in performance
may be drilled down to a difference in how the model was config-
ured. The dashboard assists in this process by Git-style highlighting
of differences in text files such as scripts and configuration files
and side-by-side display of visualizations such as learning curves.
Both are visible in Figure 4.

(a) Configuration files (b) Performance

Figure 4: Comparing two experiment runs.

3.4 Preliminary Usage
Though still early, we have found anecdotally that Runway is
especially useful for managing large numbers of automatically-
generated models and identifying trends within these models. The
lightweight and cloud-native nature of Runway also allows it to eas-
ily work with other ML and AI tools within IBM. For example, we
have successfully used Runway in a full ML toolchain that also uses
the IBM Deep Learning Service [2] and an automated parameter
search service [3].

4 CONCLUSIONS
This paper describes our prototype ML model experiment manage-
ment tool Runway. This prototype is currently available for data
scientists within IBM with user studies ongoing. In the future, we
expect that improving how data scientists perform and manage ML
experiments will also improve related aspects of the iterative model
development process. For example, our tool allows for uploading
and archiving all artifacts related to training a particular model.
Not only does this enable reproducibility and provenance for a
particular experiment, the centralized location also allows for easy
sharing of experiments with collaborators.
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