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Abstract
Application programming interfaces often have correctness constraints that cut
across multiple arguments. Violating these constraints causes the underlying
code to raise runtime exceptions, but at the interface level, these are usually
documented at most informally. This article presents novel principled static
analysis and the first interprocedural weakest-precondition analysis for Python
to extract inter-argument constraints. The analysis is mostly static, but to make it
tractable for typical Python idioms, it selectively switches to the concrete domain
for some cases. This article focuses on the important case where the interfaces
are machine-learning operators and their arguments are hyperparameters, rife
with constraints. We extracted hyperparameter constraints for 429 functions
and operators from 11 libraries and found real bugs. We used a methodology
to obtain ground truth for 181 operators from 8 machine-learning libraries; the
analysis achieved high precision and recall for them. Our technique advances
static analysis for Python and is a step towards safer and more robust machine
learning.
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1 INTRODUCTION

To use machine-learning (ML) operators, data scientists must configure their hyperparameters, usually via construc-
tor arguments. For example, sklearn’s StandardScaler operator has hyperparameters with_mean and with_std, and
LogisticRegression has hyperparameters dual, solver, penalty and so forth.1 Incorrect hyperparameter configurations raise
exceptions, cause slowdowns, or yield sub-optimal accuracy. But configuring hyperparameters correctly is often not easy
due to hyperparameter constraints. For example, StandardScaler does not allow with_mean==True if input data is sparse,
and LogisticRegression does not allow dual==True unless solver=="liblinear" and penalty=="l2". We need a reliable formal
specification of these constraints for dynamic precondition checks, static verifiers, or pruning automated hyperparameter
search.

Unfortunately, it is difficult to find a reliable formal specification of hyperparameter constraints. Type annotations
are insufficient: putting aside the fact that types are not yet widely adopted in Python and often wrong,2 they are also
not expressive enough for constraints across multiple hyperparameters, or across hyperparameters and data. Hyperpa-
rameter tuning tools, such as auto-sklearn3 or hyperopt-sklearn,4 come with search space specifications. But writing
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F I G U R E 1 Overview of analysis and its components.

those specifications by hand is tedious and error-prone: for example, they take 25 KLOC of Python in auto-pandas.5
Therefore, they often cut corners, making under-approximations (e.g., specifying only one of the types of a union) and
over-approximations (e.g., missing constraints). This may be tolerable for search but is unacceptable for error checking.

One might be tempted to turn to natural-language documentation for hyperparameter constraints.6 But even though
popular packages like sklearn1 have high-quality documentation, this is at most semi-formal and not always reliable. The
code may raise an undocumented exception. For example, using the techniques in this article, we found that sklearn’s
ExtraTreesClassifier raised an exception if bootstrap==False and oob_score==True. But the documentation did not mention
this constraint. As another example, our analysis found that AffinityPropagation raised an exception for sparse data, but
the documentation said it handled sparse data. We submitted sklearn issues for both examples, and both were confirmed
by the developers and fixed within days. The ExtraTreesClassifier fix updated the documentation to match the code and
the AffinityPropagation fix updated the code to match the documentation.

This article presents a static analysis for extracting hyperparameter constraints from code of ML operators. We focus
on Python and sklearn,1 the most widely-used ML framework today (as of April 2023, the “Used by” count of the sklearn
GitHub repository was 494k, ahead of 264k for TensorFlow and 239k for PyTorch). Figure 1 depicts the components of our
analysis: (1) PetPy, a minimal Python syntax and 3-address code translation, (2) a call graph analysis to connect functions
with call sites; (3) a reference immutability (read/mod) analysis to flag preconditions as sound; (4) WP, an intraprocedu-
ral weakest precondition analysis; (5) a concrete evaluation to simplify analysis results; and (6) IWP, an interprocedural
weakest precondition analysis. Our preconditions are logic formulas with constraints over hyperparameters and data. We
can dynamically check these at the interface, which is friendlier than raising an exception from deep within the imple-
mentation. For better error messages, our analysis factors formulas to be easily associated with individual exceptions.
We can also use these preconditions to prune search spaces for hyperparameter tuning. Moreover, we can envision using
them for static verification of client code.

This article tackles static analysis for Python, a problem that has received surprisingly little attention given the
importance and widespread use of Python in data science programming. We set out to build an analysis for extracting
hyperparameter constraints expecting to reuse existing results, only to discover that even classical static analyses such as
pointer analysis and call graph construction for Python remain open problems. The problem is difficult due to the rich
features of Python and their use in ML libraries. We build our analysis over the AST, applying classical ideas from Hoare
logic, separation logic, compiler theory, and static program analysis.

We develop novel, principled, yet practical static analysis for Python. First, we propose PetPy, a minimal Python syntax
that abstracts away Python AST constructs. We propose an interpretation of syntactic constructs into weakest precondition
formulas, which we then turn into hyperparameter constraints. In addition, we propose an interpretation into 3-address
code that can serve as input to flow-insensitive static analyses (e.g., reference immutability, taint analysis, and points-to
analysis). Our interpretation defines principled rules for the handling of AST constructs; this is in contrast to the majority
of work which handles Python AST constructs in an ad-hoc way. Specifically, the analysis interprets certain constructs
precisely, while it defaults to a catch-all rule for the remaining, uninterpreted constructs; the catch-all rule is unique to
our analysis and allows us to reason about unsoundness due to difficult-to-interpret Python construct. We build reference
immutability analysis on top of the 3-address code, and a soundness analysis, which help reason about the soundness
and “trustworthiness” of the inferred weakest precondition formulas; the 3-address code was necessary to build reference
immutability, as the analysis, similarly to many static analyses, is defined over 3-address code. We propose techniques that
switch between the analysis domain and the concrete runtime domain to simplify analysis results (weakest precondition
formulas). These techniques are particularly suited to Python, which provides rich reflective features that seamlessly
integrate static program analysis and dynamic program execution.
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We ran our analysis on 429 functions and operators from 11 libraries. Our analysis discovered issues in sklearn,
imblearn, TensorFlow, and NumPy, leading to six merged pull requests. For the input validation experiments for 181 ML
operators from 8 ML libraries (122 sklearn operators plus 59 operators from 7 sklearn-compatible libraries), the analysis
achieved 0.96 precision and 0.76 recall, significantly improving over previous work on the problem.

1.1 Contributions

This article makes the following contributions:

• PetPy, a minimal Python syntax for flow-insensitive analysis.
• The first interprocedural weakest precondition analysis for Python defined as an interpretation over PetPy.
• An interpretation into 3-address code, and a reference immutability and soundness analyses built on top of the

3-address code.
• Formula simplification using concrete evaluation.
• Successful application to widely-used machine learning libraries.

We believe that our framework is a step forward towards principled and practical static analysis of Python. In addition,
our interface specifications contribute to more reliable and easier to use machine-learning libraries.

1.2 Outline

The rest of the article is organized as follows. Section 2 presents the problem statement and gives an overview of the chal-
lenges and proposed analyses. Section 3 presents the PetPy syntax. Section 4 is an overview of the intraprocedural weakest
precondition analysis. Section 5 presents our call graph analysis, necessary for the interprocedural weakest precondition
analysis. Section 6 details interpretation into 3-address code and the reference immutability and soundness analysis built
on top of it. Section 7 puts these building blocks together into the interprocedural weakest precondition analysis. Section 8
describes our implementation and the Python features that power the implementation. Sections 9 and 10 describe case
study and evaluation; we apply the analyses on widely used ML operators. Finally, Sections 11 discusses related work and
Section 12 concludes.

2 PROBLEM STATEMENT AND OVERVIEW OF TECHNIQUES

This section illustrates our approach for extracting hyperparameter constraints using a weakest-precondition anal-
ysis of Python code. As a running example, Figure 2 shows an excerpt of the source code of the sklearn logistic
regression operator.

2.1 Hyperparameters constraints

A machine-learning operator is a class (L11). The hyperparameters correspond to the constructor arguments (L33). In
sklearn, hyperparameters always have default values (L33) and are stored as instance attributes (L34-36). The class
docstring (L12-32) specifies types, default values, and descriptions for hyperparameters.

The description sometimes includes constraints between hyperparameters that must always hold, for example, ‘lib-
linear’ does not support setting penalty=‘none’ (L26). But since these constraints are expressed in natural language, they
are open to interpretation, possibly outdated, and challenging to extract for automatic tools.6 For instance, in Figure 2,
the constraint on solver and penalty is also rephrased in the description of penalty: If ‘none’ (not supported by the liblinear
solver) (L20).

This article proposes a static analysis to mine these constraints from the source code of the operator (as opposed to
the docstring). For each raise exception statement, the analysis automatically extracts a weakest precondition that must
hold to prevent that statement from executing.
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F I G U R E 2 Source excerpt of LogisticRegression operator from https://github.com/scikit-learn/scikit-learn/blob/15a949460/sklearn/
linear_model/_logistic.py#L1012.

https://github.com/scikit-learn/scikit-learn/blob/15a949460/sklearn/linear_model/_logistic.py#L1012
https://github.com/scikit-learn/scikit-learn/blob/15a949460/sklearn/linear_model/_logistic.py#L1012


RAK-AMNOUYKIT et al. 5

2.2 Static analysis

This section illustrates the main analysis components from Figure 1.

2.2.1 Intraprocedural weakest precondition analysis

For each operator method, the analysis computes the precondition of each raise exception statement. For instance, in
Figure 2, the fit method can raise a ValueError (L44). Analyzing backward the control flow that can cause this exception
yields the following weakest precondition Q: self.penalty = 'elasticnet' ⇒ self.l1_ratio ∈ R∧ 0 ≤ self.l1_ratio ≤ 1.

2.2.2 Call graph construction

Sklearn often externalizes complex checks in dedicated functions. For instance, in Figure 2, function _check_solver (L4-8)
ensures that its arguments solver, penalty, and dual respect a set of constraints. To collect constraints corresponding to
function calls—such as _check_solver (L40)—this article proposes a simple call graph analysis able to handle class hier-
archy and functions imported from other modules. It relies on concrete evaluation to identify external calls that have no
impact on the analysis results, for example, library functions like np.unique(y) (L48).

2.2.3 Reference immutability analysis

Unfortunately, a lot of Python code in practice has side effects, which can make the weakest precondition analysis
unsound in general. An exception can occur even if the precondition holds if a statement modifies a location referenced
in the precondition as a side effect. To mitigate this, we propose a soundness analysis to check if a precondition may be
unsound. Given a statement S and a precondition Q, the analysis computes the set of locations read in the precondition
(read(Q)) and the set of locations modified by the statement (mod(S)). The precondition is sound if these two sets are dis-
joint. In our running example, backwards analysis finds the precondition Q at L41: self.penalty = 'elasticnet'⇒ self.l1_ratio
∈ R ∧ 0 ≤ self.l1_ratio ≤ 1. The call at L40 seemingly does not affect Q and the analysis propagates Q to the beginning of
fit. However, the call still demands consideration—if it writes self.l1_ratio or self.penalty, then even if Q holds at the start
of fit that does not guarantee that Q holds after L40. Our soundness analysis computes mod(_check_solver(...)) = { } and
read(Q) = {self.l1_ratio, self.penalty}. Since they do not intersect, we conclude that Q is a sound precondition at the start of
fit. If Q holds, the exception at L44 will not be raised.

2.2.4 Interprocedural weakest precondition analysis

The call graph analysis takes an (operator class, target method) pair and constructs the call graph rooted at
the target method. Interprocedural analysis uses that call graph to trace back exceptions that occur in reach-
able methods in the call graph. It computes preconditions that must hold at the start of a target method,
for example, fit or predict, to prevent the exceptions from happening at runtime. Intraprocedural analysis on
_check_solver returns the following weakest precondition: solver ∈ ['liblinear', 'saga'] ∨ penalty ∈ ['l2', 'none']. Using
the call graph, our analysis then maps the arguments solver and penalty to the corresponding hyperparame-
ters self.solver and self.penalty (L40). The analysis also simplifies subformulas that depend on constants, such
as default arguments in Python. This works by evaluating likely constants with the interpreter, as described
in Section 7.

Overall, on the example of Figure 2 the analysis yields the following two constraints which match the docstring of the
operator constructor.

• penalty = 'elasticnet' =⇒ is_number(l1_ratio) and (0 <= l1_ratio <= 1)

• solver in ['liblinear', 'saga'] or penalty in ['l2', 'none']
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F I G U R E 3 Syntax of PetPy, a subset of Python. The notation .? indicates an optional term and .∗ indicates a possibly empty sequence.
For simplicity, these operators automatically remove trailing commas (e.g., for function arguments) and we use the notation .!? to explicitly
leave the trailing comma (e.g., for star assignments).

3 PETPY PYTHON SUBSET

Due to the rich features of Python, we focus the analysis on a subset of Python that we call PetPy. Figure 3 presents the
PetPy syntax. For simplicity, we omit newlines and indentation and use an explicit sequence delimiter.

A program is a sequence of statements. A statement is either nothing (𝜀 or pass), a sequence (e.g., x[0] = y; x[1] = z),
an assignment (e.g., x = 42), raising an exception (raise), returning a value (return), an if-then-else, a for loop, or a
function definition (def). In function definitions, arguments can be positional arguments (e.g., def f(x, y)), an optional
variable-length positional argument (e.g., def f(x, *args) where args is a tuple of arguments values), keywords arguments
with default values (e.g., def f(x=42, y=0)), and an optional variable-length keyword argument (e.g., def f(**kwargs) where
kwargs is a dictionary mapping arguments names to values).

An expressions is either a constant (c, e.g., None or 42), a variable (x), a function call (e.g., f(42)), accessing an attribute
(e.g., foo.bar), accessing an element (e.g., foo[0]), safely accessing an element with a default value (e.g., foo.get(0,42)
returns 42 if foo[0] does not exist), a list (e.g., [0,1,2]), a dictionary (e.g., {"foo": 42, "bar": 0}), the application of a
unary or binary operator (e.g., 2 + 3), unpacking a sequence (e.g., [0, *[1,2]] returns [0,1,2]), and unpacking a dictionary
({"foo": 42, **{"bar": 0}} returns {"foo": 42, "bar": 0}). The left hand-side of an assignment can be used to deconstruct
a pattern (e.g., x,y,z = [0,1,2]). A star can be used once in any sequence to capture all remaining elements (e.g., after
x,*y,z = [1,2,3,4] we have y = [2,3]). A pattern is either a variable (x), a tuple, a list, an object attribute (e.g., foo.bar), or an
object element (e.g., foo[0]).

We add a new construct Other to capture uninterpreted statements and expressions. We thus capture all Python
features that are handled precisely by our analysis (ones that have PetPy productions) and features that are handled
approximately (ones that default to Other, including while, del, try, and the rest of the Statement nodes specified by the
Python AST).

The key motivation behind the PetPy syntax is that it grounds the analysis. It specifies statements and expressions
concretely and allows us to state concretely the analysis semantics we implement for each syntactic construct; impor-
tantly, it allows us to state exactly what statements and expressions are interpreted precisely (typically, ones that have
a PetPy production) and what statements and expressions are interpreted approximately (ones that default to Other).
When selecting statements and expressions to cover with PetPy productions, and thus interpret precisely in the analysis,
the key criterion was to include constructs that modify heap locations or propagate heap addresses (for the purposes of
reference immutability).

4 INTRA-PROCEDURAL WEAKEST PRECONDITION ANALYSIS

Our intra-procedural weakest precondition analysis uses essentially standard backwards reasoning7-9 and adapts it for
Python. This section describes the core analysis and Section 6 describes our novel extension with soundness reasoning.
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The analysis starts from a raise statement, then computes the precondition that must hold at the start of the enclosing
function or method to prevent the exception. Each step of backward reasoning computes WP(stmt,Qpost) → Qpre: given a
statement and a postcondition Qpost, our analysis returns a precondition Qpre as a valid PetPy expression. WP is defined
by induction on the PetPy syntax. PetPy sequences are handled as it is standard in backwards reasoning, while other
constructs fall under catch-all rule Other.

• WP(raise exp, Qpost) handles Raise statements:
return False

At a blank Raise statement, an exception is certain, so the precondition for not raising it is Qpre = False.
• WP(x = exp, Qpost) handles Assignment statements:

return Qpost[exp/x]
The precondition Qpre results from the substitution of left-hand side x with exp.

• WP(exp1.f = exp2, Qpost) and WP(exp1[exp2] = exp3, Qpost) default to the catch-all rule Other (last rule in this list).
These patterns trigger a modification to a heap variable and we cannot substitute directly into the formula. They default
to Other which simply propagates the formula up.

• WP((lhs) = exp, Qpost) and WP([lhs] = exp, Qpost) handles tuple and list assignments.
If lhs contains a star pattern, directly or indirectly, then the assignment is handled by Other; for example, x, *y, z = [1,2,3]
and x, (y, *z), w = [1,(2,3),4] are handled by Other. As previewed earlier, this means that the postcondition propagates as
is. Otherwise, that is, if there is no star pattern, the assignment recurses down to handling of individual components;
for example, x, y[0] = [1,2] recurses to the WP rule for sequence x = [1,2][0]; y[0] = [1,2][1].

• WP(if exp : stmt1 else: stmt2, Qpost) handles If statements:
Qpre1 ← WP(stmt1, Qpost)
Qpre2 ← WP(stmt2, Qpost)
return (exp ⇒ Qpre1) ∧ (¬ exp ⇒ Qpre2)

The precondition is standard. If the condition evaluates to True, then the weakest precondition of stmt1 and Qpost
must hold, otherwise, the weakest precondition of stmt2 and Qpost must hold.

• WP(for exp1 in exp2 : stmt, Qpost) handles For statements:
if Qpost == True then

Qbody ← WP(stmt, True)
Qpre ← exp1 ∈ exp2 ⇒ Qbody
return Qpre

else
return Qpost

end if
If the exception (recall that the analysis tracks a single raise statement) is nested in a For statement, then we guard
the precondition with exp1 ∈ exp2. Variables in exp1 are bound at the For loop and the precondition Qbody may involve
these variables. These variables are quantified in formula Qpre, however, if Qpre reaches the top-level function (fit in our
client analysis), we ignore because the clients of weakest precondition analyses do not support such functionality. On
the other hand, if postcondition Qpost is not True, we simply propagate Qpost past the For statement.

• WP(Other, Qpost) handles Other statements:
return Qpost

Other statements are Python statements that do not match the syntax of PetPy. The code for Other propagates Qpost
as-is, which is potentially unsound as the statement may modify locations referenced in Qpost. We address this issue in
Section 6, where we introduce principled handling of Other statements.

Figure 4 illustrates with the example from Figure 2 L42-L44. The figure uses standard Hoare logic notation
with curly braces around logic formulas embedded between code statements. In our analysis, {Qpre}stmt{Qpost} means
Qpre = WP(stmt,Qpost). Furthermore, Figure 4 indicates formula simplification by showing equivalent formulas,
notated as {Qunsimplified ≡ Qsimplified}.
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F I G U R E 4 Inferring the weakest precondition for one of the exceptions raised by logistic regression.

5 CALL GRAPH CONSTRUCTION

Call graph construction for Python is non-trivial, complicated by imports, functions as first-class values, and complex
features such as decorators and context managers. We are aware of a single publication on call graph construction in
the literature, PyCG,10 and several GitHub repositories, most notably code2flow.11 While both PyCG and code2flow pro-
duced quality call graphs, neither sufficed for our purposes—PyCG required that all files under analysis are specified at
the command line, while our problem required crawling through the ML library and discovering imported classes and
functions. Neither call graph handled inheritance in sklearn, which was crucial for interprocedural weakest precondi-
tion analysis. Unfortunately, call graph construction for Python remains an open problem—none of PyCG, code2flow, or
our algorithm built for the purposes of interprocedural weakest precondition, handles value flow and calls on receiver
objects, for example, enc.fit().

The call graph is a parameter to the interprocedural analyses we built in Sections 6 and 7. We plug in our call graph
construction, which we built for the purposes of the interprocedural weakest precondition analysis and consider a minor
contribution of the framework; other call graph construction analyses can be used as well.

5.1 Basic algorithm

We propose a new call graph construction analysis that runs in seconds and achieves good accuracy for our purposes. It
can be used as a baseline when developing and benchmarking more complex and more accurate call graph construction
algorithms. The analysis takes as input the full package (e.g., sklearn) and an (operator class, target method) pair, for
example, (LogisticRegression, fit) and produces the call graph resulting from a call of the target method on an operator class
receiver. The analysis is a name-based resolution in its essence. It first crawls the package directory and creates two maps:

classTable ∶ package:class → [base1,… ,baseN]
functionTable ∶ package:class:function → function code

The classTable is a map from the fully qualified class name to the list of (unqualified) names of base classes. Here pack-
age is the full path name of the file that contains the class definition and class is the unqualified name of the class. For
example, class LogisticRegression in Figure 2 (L11) is represented in classTable as

'linear_model/_logistic.py:LogisticRegression' → ['LinearClassifierMixin','SparseCoefMixin','BaseEstimator']

The functionTable is a map from the fully qualified function name to the source code of that function definition. For
example, function fit (L39) is represented in functionTable as

'linear_model/_logistic.py:LogisticRegression:fit' → def fit ...

If the function has no enclosing class, then the class field in the key is the string 'None'. For example,

'linear_model/_logistic.py:None:_check_solver' → def _check_solver ...

The algorithm constructs a call graph where each node is a (class, function) pair and where edges represent the calling
relations. Starting at the pair (operator_class, entry_function), it visits all calls in entry_function’s definition and adds
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new nodes and edges to the graph. When the algorithm adds a new (class, function) pair to the graph, it queues the
corresponding function definition for processing. The process continues until no new nodes or edges are added.

The analysis is defined by induction on the PetPy syntax. The main difficulty is that Python has rich syntax and
semantics for function calls. Consider the call check_classification_targets(X) in Figure 2 L47, which is a Name call,
the predominant kind of call. The analysis searches in functionTable and finds utils/multiclass.py:None:check_
classification_targets. It queues node (None,utils/multiclass.py:None:check_classification_targets) for processing (if it has
not been processed already). In addition to (1) Name calls, the analysis also matches (2) constructor calls, for example,
LogisticRegression(), (3) calls through self, for example, self._validate_data(X, y, [...]) (L46), and (4) package-qualified calls,
for example, linear_model._logistic.check_solver(). When matching calls through self, the analysis makes use of classTable
to crawl the hierarchy and find functions that are defined in superclasses.

The analysis has limitations, leaving some calls as unresolved. Most notably, there is no comprehensive value-flow
analysis and expression calls such as self.random_state_.shuffle(ordered_idx) or est.fit(X), as well as calls through function
pointers, remain unresolved. Also, our target libraries sometimes outsource computation to Cython.12 At this point, our
analysis does not look at Cython files to try to find Cython class and function definitions. In our experiments, unresolved
calls are split between (1) expressions and indirect calls and (2) Cython calls.

5.2 Concrete evaluation

A notable part of the analysis is the evaluation of external library calls directly in the Python interpreter. We separate
imports into two categories, local imports and external imports. Local imports, typically relative imports, are sub-packages
of the package under analysis and are in scope for the static analysis. External imports refer to separately installed depen-
dencies and are out of scope for the analysis. In typical machine-learning Python libraries, built-in calls and external calls,
particularly calls to the numpy and scipy libraries, abound. When processing calls, the analysis encounters hundreds of
built-in and external calls, which raises the question: Are these calls unresolved due to limitations of the analysis, or are
they out of scope for the analysis?

We have a simple heuristic that filters out (certain) built-in and external calls. We evaluate the call with no arguments
in the Python interpreter using its external import environment (picked up by a crawler). If evaluation causes a TypeError
complaining of missing arguments, then we conclude that the call is an external call and the callee method is out of scope
for the analysis. If evaluation causes another exception, such as a NameError exception, then the call remains unresolved.
As an example, consider the call np.unique(y) (Figure 2, L48). When the analysis encounters this call, it tries its cases for
Name, self call and so forth but fails to match. It then runs eval("import numpy as np; import ...; np.unique()") which leads
to the following error:

TypeError: unique() missing 1 required positional argument: ’ar’.

Our analysis concludes that np.unique(y) is an external call rather than an unresolved call. Note that sending the call
as is will result in NameError due to the argument y. Distinguishing external and unresolved calls makes a distinction for
what is largely “unachievable” for the analysis (external calls) and what is a potential limitation and presents room for
improvement (unresolved). A client analysis may choose different handling for these two categories of calls.

6 3-ADDRESS CODE, REFERENCE IMMUTABILITY AND SOUNDNESS
ANALYSIS

Side-effects in Python make the weakest precondition analysis from Section 4 unsound in general. An exception can be
raised even if the precondition holds if a statement modifies a location referenced in the precondition as a side effect. To
mitigate this issue, we augment the core analysis from Section 4 with a soundness flag. To be clear, “soundness” is too
strong a term given Python’s complex semantics and dynamic nature. In this work we consider “soundness” predicated
upon mild assumptions about call graph behavior. Soundness reasoning, even under assumptions, increases confidence
in analysis results and we believe this is an important research direction.

The rest of this section is organized as follows. Section 6.1 describes the soundness flag and propagation of sound-
ness using the mod and read sets. As mentioned earlier the mod set approximates the locations a statement modifies and
the read set approximates the locations a formula reads. Computation of mod and read sets uses a known static analysis,
reference immutability, however extensions are necessary to adapt to the problem of soundness analysis. Section 6.2
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outlines standard reference immutability and novel extensions necessary for our purpose. Section 6.3 describes an inter-
pretation of PetPy into 3-address code. This is necessary because reference immutability takes 3-address code as input.
It takes a 3-address code statement and creates corresponding constraints for that statement. Translation into 3-address
code is non-trivial; our translation can be used for reference immutability analysis as well as a range of other flow analyses
such as for example points-to analysis and taint analysis. Finally, Section 6.4 describes fragment reference immutability,
yet another extension of the standard analysis, and Section 6.5 outlines the computation of mod and read sets as a client
of reference immutability.

6.1 Soundness flag

At each step of backward reasoning, the analysis now computes WP(stmt,Qpost, Spost) → (Qpre, Spre): given a statement,
a postcondition Qpost, and a soundness flag Spost, our analysis returns a pair (Qpre, Spre) of a precondition Qpre and its
soundness flag Spre. If the flag Spre is true, then Qpre is sound, that is, if Qpre holds at the corresponding program point, then
the tracked exception is not raised. On the other hand, if Spre is false, the exception may still be raised even if Qpre holds.
Below we describe the addition of the flag for Sequence, Raise, Assignment, If, and Other statements. PetPy statements
that are not defined here (e.g., For) are handled by Other.

• WP(stmt1; stmt2stmt2, Qpost, Spost) handles Sequences:
Q1, S1 ← WP(stmt2,Qpost, Spost)
return WP(stmt1,Q1, S1)

This is the standard sequence rule in backwards analysis. It propagates the postcondition and combines the soundness
flags. If stmt2 turns the flag to False, then the flag remains False after processing of stmt1.

• WP(raise exp, Qpost, Spost) handles Raise statements:
return (False, True)

A blank raise makes an exception certain, so the precondition for not raising it is Qpre = False with soundness flag
Spre = True.

• WP(x = exp, Qpost, Spost) handles Assignment statements:
Qpre ← Qpost[exp/x]
return (Qpre, Spost ∧mod(exp)∩ read(Qpre) == ∅)

Our treatment follows the principles of separation logic.13 If the set mod(exp) of locations modified by exp and the set
read(Qpre) of locations read by Qpre are disjoint, then Qpre is sound, meaning that Qpre evaluates to true iff after the execu-
tion of x = exp, Qpost evaluates to true. Otherwise, Qpre is potentially unsound. In other words, if exp has side-effects that
modify some location referenced by Qpre, then making Qpre true before the execution of the right-hand-side expression
exp does not necessarily make Qpost true after. Section 6.2 describes how to compute mod and read sets.

• WP(exp1.f = exp2, Qpost, Spost) and WP(exp1[exp2] = exp3, Qpost, Spost) default to Other, as in Section 4.
These patterns trigger a modification to a heap variable and we cannot substitute into the formula. The formula prop-
agates up, however, the soundness flag will turn to False if the locations modified in the assignment statement and the
locations read in the formula intersect.

• WP((lhs) = exp, Qpost, Spost) and WP([lhs] = exp, Qpost, Spost) handles tuple and list assignments.
Again, handling is analogous to Section 4, adding the handling of the soundness flag. If lhs contains a star pat-
tern, directly or indirectly, the tuple or list assignment is handled by Other. For example, x, *y, z = [1,2,3] and
x, (y, *z), w = [1,(2,3),4] are handled by Other, propagating the postcondition as is and possibly turning the flag to False.

Otherwise, the assignment recurses down to the components, for example, x, y[0] = [1,2] recurses to the WP rule for
sequence x = [1,2][0]; y[0] = [1,2][1].

• WP(if exp : stmt1 else: stmt2, Qpost, Spost) handles If statements:
(Q1, S1) ← WP(stmt1, Qpost, Spost)
(Q2, S2) ← WP(stmt2, Qpost, Spost)
Qpre ← (E ⇒ Q1) ∧ (not exp ⇒ Q2)
return (Qpre, S1 ∧ S2 ∧mod(exp)∩read(Qpre) == ∅)
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F I G U R E 5 Undocumented constraint in sklearn ExtraTreeClassifier (before the pull request).

It is sound if (1) Qpost is sound, (2) neither stmt1 nor stmt2 contain statements that invalidate the soundness, and (3)
exp has no effect on Q1 or Q2. In practice, exp is almost always side-effect free.

• WP(Other, Qpost, Spost) handles all other statements:
return (Qpost, Spost ∧mod(other)∩read(Qpost) == ∅ )

The handling of other propagates Qpost as-is, however, it sets the soundness flag to False when other may interfere
with the formula Qpost. Our work proposes systematic handling of loops and other intricate Python constructs (slices,
generators, etc.). Instead of defining handlers for those constructs (loops are a known thorn in weakest precondition
inference), we consider the much easier problem of intersecting the read and mod sets. If the analysis can show that the
weakest precondition formula and the statement do not interfere, then loops and other constructs are handled safely
without complex analysis that approximates fixpoint computation.

Figure 5 illustrates this with a constraint in ExtraTreeClassifier that our analysis discovered. It was undocumented
and we submitted a pull request which the developers immediately merged. The exception in L9 yields the formula
in L5-6. Propagating over the call in L4 entails computing mod(self._validate_estimator()) = { self.base_estimator_ } and
read(self.bootstrap or not self.oob_score) = { self.bootstrap, self.oob_score }. These sets do not intersect and the flag
remains True as shown in L3. The call assignment in L2 entails computing mod(_get_n_samples_bootstrap(...)), which is
{ } because the call is side-effect free. This leads to the sound precondition self.bootstrap or not self.oob_score in L1.

6.2 Reference immutability

Section 6.2.1 describes the standard reference immutability system ReIm. Section 6.2.2 describes an extension that
improves precision when reasoning about modified locations.

6.2.1 Standard reference immutability (ReIm)

The analysis requires information about the set of locations modified by a statement stmt (actually, a statement sequence)
as well as the set of locations read by a formula Q. In our treatment statements and formulas are Python AST nodes, so
both the mod and read analyses entail AST traversal. At the core of mod is the known reference immutability analysis,
however, adaptation to Python requires a significant extension of this work. In this section, we outline the ReIm14 refer-
ence immutability system; just as other reference immutability systems such as Javari,15 ReIm is designed for Java. In the
following sections, we describe the extensions needed to adapt the analysis to Python and the notion of soundness we use
in this work.

ReIm assigns type qualifiers to each variable, each field, and each return value in the program. The two main qualifiers
are mutable and readonly:

• mutable: A mutable reference x can be used to mutate the referenced object. This is the implicit and only option
in standard languages using the reference model for variables. A mutable reference x indicates that there may be a
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sequence of assignment statements that leads to a modification to the object o that x refers to, or to one of o’s com-
ponents. More precisely, the sequence gives rise to a flow path from x to a y, where y is the receiver of an update: for
example, y.f = z. In all examples below there is a path from x to the corresponding update indicating that the object
that x refers to is modified through x:

⚬ In x.f=1 and in x[0]=1, x is a mutable reference.
⚬ In y=id(x); y[i]=1, where id is the standard identity function that returns its argument, x is mutable. The flow path

in this case is as follows: x → id.param → id.ret → y.
⚬ In y=x.f; y.g=0, x is mutable. The offending flow path in this case is x.f → y.

• readonly: readonly captures “deep” immutability. A readonly reference x cannot be used to mutate the refer-
enced object nor anything it references, or in other words, there is no sequence of statements that leads to an update
of the object x refers to, or to one of its components. All of the following are forbidden:

⚬ x.f = y

⚬ x.set(z) where set sets a field of its receiver x. The call creates a flow path x → self, where self is the implicit
parameter of set.

⚬ z = id(x); z.f = w

⚬ y = x.f; y.g = z

The subtyping relation is mutable <∶ readonly, meaning that a mutable reference can be assigned to a readonly
one, but a readonly reference cannot be assigned to a mutable one. Qualifiers can also be polymorphic, that is, either
mutable or readonly depending on the context.

Figure 6 presents the typing rules following ReIm. They enforce the standard rule that the right-hand side of an
implicit or explicit assignment is a subtype of the left-hand side, which disallows flow paths from a readonly variables
to an update. The details of the analysis are described by Huang et al.14 and Milanova.16

Standard reference immutability provides type inference as well. The algorithm initializes variables and fields to the
full set of qualifiers, then solves the constraints via fixed-point iteration. This entails removing infeasible qualifiers from
the sets. For example, the constraint at field write x.f = y requires that x is mutable. Thus, the algorithm removes other
qualifiers from the set of x. The key property is that the algorithm computes the “best,” that is, the most precise typing
for the program. If a variable x is inferred as readonly, that means no sequence of statements exists that gives rise to a
flow path from x to an update statement.

Importantly, the input to reference immutability analysis is a 3-address code representation of the program, as outlined
in Figure 6. The major challenge facing principled analysis for Python is to translate complex Python AST constructs
(what analysis designers have access to) into 3-address code statements (what many static analyses accept as input), as
completely and as accurately as possible.

F I G U R E 6 Typing rules. Function typeof retrieves the qualifiers of fields and methods. Γ is a type environment that maps variables to
their immutability qualifiers. The ▹ operation at field accesses and at method calls adapts polymorphic fields and polymorphic parameters
and return variables, respectively, to the corresponding context of usage.
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F I G U R E 7 Typing rules for more precise location reasoning. Rules for non-self TWRITE, all (including self) TASSIGN, and all
TREAD remain as in Figure 6.

6.2.2 self.f reasoning

Our first extension of standard reference immutability ensures more precise reasoning, which is necessary for weakest
precondition analysis. Specifically, our extension treats the implicit parameter self in a special way in order to compute
more precise mod sets. Let us return to the code example of Figure 5. The modification due to call self._validate_estimator()
in L4 is due to a field write statement self._base_estimator_ = ... in the body of _validate_estimator(). We need to nar-
row down the set of modified locations to mod(self._validate_estimator()) = { self.base_estimator_ }. Standard reference
immutability would conclude that self is mutable and therefore, mod(self._validate_estimator()) = { self.* } which implies
that all fields of self may be modified by a call to _validate_estimator(). As a result, our soundness analysis would con-
clude that the set of locations modified by the call statement, namely self.* and the set of locations read by the formula,
namely self.bootstrap and self.oob_score, intersect, and therefore would set the soundness flag to False.

In order to compute more precise sets we extend the typing rules as shown in Figure 7. The extension is a heuristic that
takes advantage of the well-known idiom in object-oriented programming, namely, that fields of objects are written and
read exclusively through self. The idiom applies to Python code as well. The analysis captures the semantics of modi-
fications through self, which results in the computation of more precise mod sets. Specifically, the new rules split field
writes and instance calls into self and non-self ones and define rules for each kind. Additionally, each instance method m
has an associated self_mod(m) set that records the field writes to self in m. Recording happens in rule (TWRITE-SELF)
which adds a constraint to include the modified location. At the same time, self is not made mutable by the update;
mutability propagates through self_mod(m) sets: (TCALL-SELF) propagates the sets and (TCALL) ensures that receiver
y is mutable when self_mod(m) of the callee m is not empty.

The extension preserves the properties of reference immutability: if a non-self reference x is inferred as readonly,
then there does not exist a sequence of statements that gives rise to a flow path from x to an update; similarly, if a self
reference in method m is readonly, and self_mod(m) = ∅, then there does not exist a sequence of statements that gives
rise to a path to an update. One can show this by induction on the length of the flow path.

6.3 Reference immutability for Python: From PetPy to 3-address code

We have adapted the ReIm reference immutability type system14,16 for Python and inferred qualifiers for each variable
and each field. We use our call graph from Section 5 as ReIm is inherently interprocedural. We assume that library calls
are polymorphic with respect to immutability, that is, they do not modify the argument; however, if the code modifies the
left-hand-side of an external call assignment, then mutability is passed to the argument. This assumption is motivated by
our target applications, machine-learning libraries such as sklearn. The vast majority of library calls are to numpy and
scipy functions, which follow this behavior.
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The problem of adapting reference immutability for Python is challenging due to the fact that standard reference
immutability is defined over a 3-address code representation. 3-address-code translation becomes necessary in order to
adapt reference immutability analysis to Python. To the best of our knowledge, translating Python into a 3-address code
CFG representation remains an open problem. The principal challenge is the complex semantics of Python. For example,
a subscript expression exp1[exp2] has the following “fixed” interpretation in Java: exp1 evaluates into a reference to an
array object, say a, exp2 evaluates into an integer i; exp1[exp2] fetches the ith element of a. Such an expression translates
into 3-address code in a straight-forward manner: tmp = a[i]. In Python, however, one may override the subscript operation
and the interpretation of exp1[exp2] into 3-address code may remain unknown until runtime. Even a basic operation such
as subscript becomes non-trivial to handle.

As hinted by the PetPy grammar (Figure 3), our approach divides Python constructs into interpreted and uninterpreted
ones (shown as Other in PetPy). Interpreted constructs are ones for which the analysis defines a precise semantics and
interprets those constructs faithfully to that semantics. Those constructs have standard interpretation (semantics) into
3-address code in well-studied languages such as Java. Uninterpreted constructs are ones for which the analysis does not
define a semantics. The analysis handles those constructs in an approximate way, where handling may introduce both
unsoundness and imprecision; our treatment allows clients of the 3-address representation to incorporate reasoning about
unsoundness due to uninterpreted constructs.

Our goal is to design an interpretation that handles flow-insensitive value flow as accurately as possible, conceding that
it is challenging, perhaps impossible, to design a sound interpretation of all constructs into 3-address code. The key idea
in our setting is to designate interpreted and uninterpreted nodes; furthermore, we state precisely the interpretation we
apply to both interpreted and uninterpreted nodes.

The interpretation function I(cstr,Γ) takes an arbitrary construct cstr and a reference environment Γ. The interpreta-
tion of a statement (they are not necessarily 3-address code ones in the Python source) does not return a value but adds
new 3-address statements to a global set S. The interpretation of an expression returns a set of names that occur in the
expression in a certain way; it may modify S as well.

6.3.1 Worklist algorithm

The analysis uses the standard worklist algorithm:
Reach ← { main }, Worklist ← { main } # Entry point of analysis
S ← ∅
while Worklist ≠ ∅

f ← remove function from Worklist
Γ← []
(f ,Γ)

Starting from a designated main function, the analysis interprets the function as specified earlier. At call sites interpretation
has effect on the worklist and reachable functions adding new functions as they become reachable. Since interpretation
produces 3-address statements as needed by reference immutability, the analysis creates the corresponding constraints
for each statement. We assume new functions are interpreted in an empty environment; this is a simplifying assumption
as it ignores global variables.

6.3.2 Statement interpretation

As mentioned earlier the interpretation of a statement adds new statements to a global set of 3-address statements S. The
important invariant is that the statements are exactly as required by reference immutability analysis: the self and non-self
versions of TASSIGN, TWRITE, TREAD, and TCALL of Figures 6 and 7, where designated components are variable
names referring to memory locations. The analysis creates reference immutability constraints as it creates the 3-address
statements.

• I(x = exp ; stmt,Γ) handles a statement sequence with the first statement in the sequence a variable assignment:
R ← (exp,Γ)
S ← S ∪ { x = r | r ∈ R }
(stmt,Γ + {x})
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The handling augments the environment with the new local variable x, then interprets the remainder of the sequence
in the new environment. Note that (1) we assume, but elide from this writeup, that each variable is uniquely iden-
tified by its enclosing function, (2) if x already exist in Γ due to an earlier definition in the same function, then the
augmentation has no impact. This treatment allows shadowing: if a variable with the same name x is defined in a
nested function, augmentation distinguishes it and adds a new variable to the environment and lookup returns the
new variable.

The interpretation of a sequence when the first statement is something other than a variable assignment proceeds
as follows: the analysis interprets the first statement in the incoming environment, then it interprets the remainder of
the sequence in the same environment.

• I(exp1.f = exp2,Γ) handles Attribute assignment statements:
L ← (exp1,Γ)
R ← (exp2,Γ)
S ← S ∪ { l.f = r | l ∈ L, r ∈ R }

This is the standard semantics though exp1 and exp2 can be arbitrarily complex. For example, consider the interpreta-
tion of x.f.g.h = z if a > 0 else w. Jumping ahead a bit (since the interpretation of expressions is detailed in the following
subsection), the interpretation of x.f.g returns { n } where n is a fresh variable corresponding to x.f.g. Interpretation
of x.f.g has side effects on S: it contributes 3-address statements {n1 = x.f, n = n1.g }. I(z if a > 0 else w) returns the set
{z, a, w}; the if expression is uninterpreted, and the function returns all variables mentioned in the expression. The final
step contributes the following 3-address-code statements: {n.h = z, n.h = a, n.h = w}.

• I(exp1[exp2] = exp3,Γ): As it is customary in flow-insensitive program analysis, subscript assignments exp1[exp2]
= exp3 are handled analogously to attribute assignments. We interpret the subscript expression e2, as it may con-
tribute statements in S, however, we ignore the index and create l[] = r statements treating the subscript as a
special field.

• I((lhs) = exp,Γ) and I([lhs] = exp,Γ): A tuple or list assignment of the form (lhs) = exp or [lhs] = exp reduces to
pat = exp when *pat appears in the lhs list (e.g., x,*y,z = [1,2,3] reduces to y = [1,2,3]). It reduces to and triggers inter-
pretation of pat = exp[i] when it appears as just pat in the list (e.g., x,y,z = [1,2,3] reduces to the interpretation of
y = [1,2,3][1]). We note that we aim for flow-insensitive 3-address code; the star pattern will match the list as a whole
and will in general introduce infeasible value flow.
As a more detailed example of handling of assignments, consider statement sequence l=[1]; *l[0],x=[y]; z=l[0][0]. Tuple
assignment *l[0],x=[y]; invokes the interpretation of l[0]=[y] which gives rise to 3-address statements n1[]=y, l[]=n1 (again,
we jump ahead as the handling of expression [y] is detailed in the following subsection). Statement z=l[0][0] gives rise
to n2=l[]; z=n2[]. The bottom line is that interpretation captures the flow path from y to z. If is mutable, mutability is
transferred to y.

• (return exp,Γ) handles Return statements:
ret ← fresh variable representing the return of the enclosing method
R ← (exp,Γ)
S ← S ∪ { ret = r | r ∈ R }

The statement is straightforward. The interpretation of the right-hand-side expression is guaranteed to return variables,
and we create a simple variable to variable assignment for ret and each one of those variables.

• (for exp1 in exp2 : stmt,Γ) handles For statements:
(exp1 = exp2[0]; stmt,Γ)

We turn the interpretation into a sequence. The key part is to capture the binding of exp1 to the elements of exp2. If
exp1 is a variable, say i, then the “artificial” statement exp1 = exp2[0] augments the environment and i is in scope when
analyzing the body of the for statement.

• (def fun(param): stmt,Γ) handles function definitions:
(stmt,Γ + {param})

The interpretation captures inner functions encountered in the function under analysis. The analysis augments the
environment with variables from outer scope when analyzing the body of the inner function fun. The outer-scope
variables are implicit parameters.

• I(Other(exp1, … , expn),Γ) handles all other statement statements (e.g., raise, if, or uninterpreted statements):
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(exp1,Γ)
…
(expn,Γ)

The algorithm simply descends into the components of the statement and extracts the corresponding 3-address
code. That means that these statements do not “glue” components soundly and precisely. However recursive
descent processes all nested assignments and calls and generates 3-address code that captures value flow. We make
the assumption (based on empirical observation) that the remaining kinds of statements have little impact on
flow-insensitive value flow.

6.3.3 Expression interpretation

• I(exp1(exp2),Γ) handles Call expressions:
n ← fresh variable
F ← 𝑟𝑒𝑠𝑜𝑙𝑣𝑒(exp1(exp2)) # Call graph
A ← (exp2,Γ)
S ← S ∪ { n = f(a) | f ∈ F, a ∈ A }
if f ∉ Reach

add f to Reach and Worklist
return {n}

We assume that the call graph algorithm resolves the call expression. We elide detailed handling of arguments but
note that resolution interprets both exp1 and exp2 and creates corresponding 3-address statements. Receiver argu-
ments are extracted during the handling of the call. For example, suppose the call is x.g.h.fun(a1) and it resolves
to a function Module.Class.fun in some class Class; then, x.g.h is passed as an argument expression and assigned
to self.

• I(exp .f,Γ) handles Attribute/Subscript expressions:
n ← fresh variable
V ← (exp,Γ)
S ← S ∪ { n = v.f | m ∈ M, v ∈ V }
return {n}

• I([ exp ],Γ) and I({ exp },Γ) handle Tuple/List/Set/Dictionary creation expressions:
n ← fresh variable
V ← (exp,Γ)
S ← S ∪ { n[] = v | v ∈ V }
return {n}

• I(x,Γ) handles Variable:
return 𝑙𝑜𝑜𝑘𝑢𝑝(x, 𝛤 )

• (Other (exp1, … , expn),Γ) handles uninterpreted expressions:
return

⋃
1≤i≤n (expi)

It simply returns the union resulting from the interpretation of the component expressions.

6.4 Fragment reference immutability

Our work introduces fragment reference immutability. Fragment reference immutability takes a statement and com-
putes readonly or mutable qualifiers for that single statement. The following example illustrates and motivates fragment
reference immutability:

1 for e in lst:
2 x = m(z) # z is read−only after the call as the call does not modify argument
3 z.append(...) # z is mutable here
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In ReIm’s global inference, as described in Section 6.2.1, z is mutable because of the mutation through append in L3.
However, in fragment reference immutability of the For statement (L1-2), z is read-only, as the mutation occurs later in
the code. Fragment reference immutability infers types exactly as ReIm does, except that (1) its scope is not the entire
program, but a single statement, and (2) at method calls it makes use of parameter, return types, and outer-scope vari-
ables computed by ReIm’s global inference; these variables present the summary view of the callee. More precisely, it
takes as input a statement and interprets it exactly as described in the previous section, creating corresponding con-
straints. If the statement under analysis contains a method call, the fragment reference immutability makes use of the
parameter/return/outer-scope types of the callee function as inferred by global reference immutability. If parameter p is
mutable that means there is a sequence of statements that lead to an update of the argument after the call. Thus, fragment
reference immutability creates a constraint qa <∶ mutable rather than qa <∶ qp. It does not descend into the callee.

As an example, consider the code excerpt below. Interpretation of g inherits the environment of f, including x. The
analysis extracts the straight-forward 3-address code statements and global reference immutability creates the correspond-
ing constraints (shown in comment). If we apply fragment reference immutability to the call statement g(), it will deduce
mutability of x.

1 def f ():
2 x = {}
3 def g():
4 y = x # qy <∶ qx mutable <∶ qy

5 y["foo"] = 42
6 g()
7 return x

6.5 mod(S) and read(Q)

We now elaborate on the computation of mod(S) and read(Q) sets.
mod(S) contains x, x.*, where x≠self, and self.f. They are added to the set as follows:

• If S contains a variable assignment x = ..., then x is placed into mod(S). If x is in mod(S) this means that statement S
may write stack location x.

• x.* refers to any heap location reachable from x. Here x may refer to self as well as a non-self variable. If fragment
reference immutability on S infers x mutable, then x.* is placed into mod(S). This means that S may write some part of
the object that x refers to, however, the analysis cannot determine which part, that is, which field. This can happen due
to a field write x.f = ... or due to a call m(x) where the parameter is mutable according to global reference immutability.

• self.f refers to a specific field of self. self.f is added to mod(S) if self is not mutable in S but self.f ∈ self_mod(m), where
m is the enclosing method of S. This means that S may write precisely field f of self and no other part of the object. If
the statement wrote more deeply on the heap, then selfwould have been inferred mutable and we would have added
self.* to the mod set due to the previous rule.

For example, mod(_get_n_samples_bootstrap(...)) is { } because method _get_n_samples_bootstrap is read-only, that is,
parameters are inferred by global reference immutability as read-only leaving all expression arguments read-only in the
fragment reference immutability.

Recall that Q is valid PetPy expression that can be analyzed. read(Q) contains three kinds of elements x, x.*, and x.f
that are added as follows:

• Any variable x that appears in Q is added to read(Q). This means that Q reads stack location x.
• If x appears as a component of an argument expression of some call in Q, then x.* is added to read(Q). This means that

Q may pass x into a function and the function may read parts of the object x refers to.
• If x.f appears as a component of Q, then we add x.f to read(Q). This means that Q reads precisely field f of x.

For example, read(self.bootstrap or not self.oob_score) equals {self, self.bootstrap, self.oob_score}. self is read in the
formula, as well as self.bootstrap and self.oob_score. There are no call expressions and therefore no x.* elements are added
to the set.
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Finally, mod(S) ∩ read(Q) == ∅ evaluates to True if and only if none of the following is true:

• x is in both mod(S) and read(Q) for some x.
• x.f or x.* is in mod(S) and y.g or y.* is in read(Q), for some x≠self, y≠self; f may be the same as g.
• self.f or self.* is in mod(S) and self.f or self.* is in read(Q).

The above computation assumes that self is a unique reference on the current stack frame. On the other hand, it treats
any x.f and y.g, where x≠self and y≠self, as potential aliases. We use the intersection symbol for notational convenience,
even though this is a custom operation as defined here.

7 INTERPROCEDURAL WEAKEST PRECONDITION ANALYSIS

To handle runtime exceptions raised outside of a target function, we expand our analysis to be interprocedural by using
the call graph described in Section 5 to trace exceptions along function call paths. The interprocedural analysis computes
preconditions that must hold at the start of a target function, for example, fit or predict, to prevent exceptions that could
be raised by the target function itself or transitively reachable callees.

If a callee raises exceptions, their preconditions, after performing backward reasoning, become additional
parts of the caller’s preconditions. For each raise statement, intraprocedural analysis computes the precondi-
tion at the start of its enclosing function. Then we propagate that formula upward through the call graph
until it reaches the target function. The number of preconditions of a target function equals the number of
possible paths to all exceptions. For example, consider the excerpt of LogisticRegression’s fit target function
from Figure 2 (L39). Its preconditions include the preconditions from its own raise (L44), those from callees
_check_solver (L40) and self._validate.data (L46), as well as those from other functions transitively reachable in the
call graph.

7.1 Basic algorithm

The analysis takes the transitive closure of a target function over the call graph, breaking cycles if they exist. Then it
analyzes each function in reverse topological order. Preconditions of each function travel up the call graph via function
calls. Each precondition is treated separately, whether it is from a function’s own Raise statement or from a function call.
A precondition from a Raise statement follows intraprocedural analysis. For a function call, each of its preconditions is
substituted with appropriate function arguments. Then it follows the standard intraprocedural backward analysis from
Section 4 until it reaches the entry point of the function.

At a function call, each precondition of the callee is substituted with the function call’s arguments. For positional
arguments, the analysis performs a straightforward substitution of arguments or default values. Consider a call call(arg1)
that the call graph has resolved to function callee(p1,p2='default') and the analysis has computed a list of precon-
ditions (Q1

callee, … ,Qn
callee). IWP defines the computation of the interprocedural weakest precondition. IWP(call(arg1),

(Q1
callee, … ,Qn

callee)) propagates the callee’s preconditions Q1
callee, … ,Q2

callee to the caller:

return
⎛
⎜
⎜
⎜
⎝

Q1
callee[arg1∕p1][’default’∕p2],

… ,

Qn
callee[arg1∕p1][’default’∕p2]

⎞
⎟
⎟
⎟
⎠

The above formula (and the rest of the section) elides the soundness flag for brevity. It is handled in the obvious way,
for example, given (Q1

callee, S
1
callee) we have

Q1
caller ← Q1

callee[arg1∕p1][’default’∕p2]
S1

caller ← S1
callee ∧mod(arg1) ∩ read(Q1

caller) == ∅
return (Q1

caller, S
1
caller)
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7.2 Handling keyword arguments

Substitution becomes more complex with keyword arguments (or named arguments), particularly when a variable-length
keyword argument is involved. A variable-length keyword argument, usually named **kwargs in Python, allows a function
to accept multiple keyword arguments as a dictionary. This dictionary can be passed from a caller to callees deeply nested
in the call chain and can be updated dynamically along the call chain. The analysis works in a reverse topological order
of a call graph, making it sometimes impossible to determine at the call the actual keyword arguments stored, and which
of the callee’s formal arguments use their default values.

At the first contact where the function call contains a variable-length keyword argument, the analysis can
only discover what could possibly be in there by inspecting the callee’s function arguments. To handle this,
the analysis creates a dictionary placeholder to keep track of possible keyword arguments and their default
values, and integrates the placeholder into the current precondition formula. The placeholder in the precondi-
tion indicates that the value of the associated variable-length keyword argument could not be determined yet
as it can potentially be specified in a future function call of a part of the call graph that the analysis has
not reached yet. At such a function call, the placeholder in the precondition is then resolved (see details in
Section 8.2).

7.3 Concrete evaluation

The handling of keyword arguments motivates our next idea. Due to use of default arguments, weakest precondition
formulas can sometimes be fully evaluated. For example, isinstance('csr',str) immediately evaluates to True. Such evalu-
ation can significantly simplify formulas and improve scalability. Thus, during substitution, the analysis does concrete
evaluation:

• constr(C1,C2)[target/value] handles substitution in an arbitrary construct constr:
Q′ ← constr(C1[target/value], C2[target/value])
Q′′ ← eval(Q′)
return simplify(Q′′)

eval(Q′) tries to evaluate Q′ in the interpreter using just the standard libraries numpy and scipy as the context of
evaluation. If it evaluates to a constant, the analysis propagates this constant rather than Q′.

Simplify(Q′′) performs standard simplification, most notably of implication formulas: False⟹ Q becomes True
and True⟹ Q becomes Q.

8 IMPLEMENTATION

This section details the implementation of various parts of the analysis.

8.1 Python AST

As mentioned earlier, the analysis analyzes source code over its abstract syntax tree, making use of the python AST
module. There are two main usages of AST nodes; to process code for call graph construction (see Section 5) and
to store precondition formula during the weakest precondition analysis (see Section 4). First, the analysis crawls
through Python files and collects necessary information such as function definition as a mapping from function
names to their corresponding AST nodes. This information is then used to construct a call graph starting from
a selected target function. During the weakest precondition analysis, formulas of preconditions from each raise
exception are stored in AST format because they are easy to process, modify, and compare as they travel up the
call graph until reaching the target function. Formulas in AST format are also a good fit for simplification and
concrete evaluation, as we can use the unparse functionality of the AST library and construct Python code for
concrete evaluation.
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8.2 Variable-length keyword arguments

This section provides the implementation detail of handling of variable-length keyword arguments in Section 7.2. To
handle this feature, the analyzer uses the built-in get method of Python dictionaries to keep track of values of the keywords
arguments. At the entry of a function func with keyword arguments, the analysis creates kwName, a placeholder for a
dictionary that will eventually be replaced with an actual dictionary containing the value of keywords arguments. For a
keyword argument kw with a default value df, the analyzer substitutes occurrences of kw in formulas Qfunc (formulas
reaching the entry of func) with kwName.get('kw',df). A parameters that does not occur in the dictionary thus becomes the
default value (in Python d.get(a, b) returns b if a is not in d).

Later in the call graph, we arrive at a function with a function call that does not pass actual keyword arguments but
passes a dictionary, for example, **kwargs. Here we substitute kwName with kwargs in all formulas. More formally, we have
Q[kwargs/kwName] and kwName.get('kw',df) becomes kwargs.get('kw',df) in Q. Eventually, we arrive at a call that passes
actual keyword arguments, typically a subset of all keyword arguments in kwName, for example, {'kw1':v1, 'kw2':v2}.
At this point we can replace the placeholder with this dictionary. Every instance of {...}.get('kw',df) is thus resolved. If a
keyword kw is not in the actual dictionary {...}, the formula resolves to kw’s default value df, the second argument of get.
If kw is in the actual dictionary {...}, the formula resolves to the corresponding value.

Figure 8 illustrates an example from sklearn LogisticRegression. This is a modified source excerpt with a simplified
path from a target function, LogisticRegression’s fit, to one specific exception in the _ensure_sparse_format function. The
values of keyword arguments is not known at the call to check_array (L19); they are only set at the call to validate_data
(L18) and passed through in L19 via argument check_params.

Following the reverse topological order of the call graph, we start at _ensure_sparse_format (L2). The method’s pre-
condition Q (L1) is ¬ isinstance(accept_sparse, str) ⇒ ¬ accept_sparse is False. Function check_array (L9) contains a
call to _ensure_sparse_format. The call does not involve variable-length keyword arguments so the analysis performs a
straightforward substitution. The precondition result is the same (L8).

F I G U R E 8 Modified excerpt with simplified path from sklearn LogisticRegression fit function to one specific exception.
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Next, in function _validate_data, a call to check_array involves **check_params (L19). At this point we are not
able to determine which keyword arguments are in **check_params. The analysis uses the dictionary name, here
check_params, as a placeholder and substitutes all keyword arguments in the condition Q with a safe access using the
default value

Q[check_params.get('accept_sparse',False)/accept_sparse]
[check_params.get('accept_large_sparse',True)/accept_large_sparse]
[check_params.get('dtype','numeric')/dtype], etc.

The resulting precondition for our example is shown at L16–17.
Finally, in fit, the call self._validate_data(..) (L24) provides enough information to determine keyword

arguments passed with **check_params. The analysis substitutes check_params with the concrete dictionary
{'accept_sparse':'csr', 'dtype':_dtype, 'order':'C', 'accept_large_sparse':solver != 'liblinear'}. The precondition reduces to ¬
isinstance('csr',str) ⟹ ¬ 'csr'is False, which is of course True meaning that LogisticRegression’s fit does not throw the
_ensure_sparse_format exception from this call path.

A wrinkle in the handling of dictionaries is that some of the actual arguments in the dictionary might be
expressions rather than constants. In that case, evaluation of the get expression will result in a NameError. Run-
ning {'accept_sparse':'csr', 'dtype':_dtype, 'order':'C','accept_large_sparse':solver != 'liblinear'}. get('accept_sparse',False)
in the interpreter will raise a NameError because of _dtype and solver. To mitigate this issue, when
the actual keyword argument is not a constant, the analysis unparses the ast.Node into a string, then
prepend a nonsensical string to it, and then store the string node into the dictionary. In our run-
ning example the ast.Name expression _dtype becomes the string '?XYZ _dtype' and the dictionary
becomes {'accept_sparse':'csr', 'dtype':"?XYZ _dtype", 'order':'C','accept_large_sparse':"?XYZ solver != 'liblinear'"}. Calling
get('accept_sparse',False) on the above receiver evaluates into 'csr'. We can parse back the expression stored in the
nonsensical string if it is needed later.

8.3 JSON schema

After extracting weakest precondition constraints, the analysis can further encode constraints into JSON schema,17 a
widely-supported and widely-adopted schema language. For instance, JSON schema is the foundation of the Open API
language for specifying REST APIs.18 JSON schema works well with Python and is expressive enough to encode com-
plex constraints. For example, a recent AutoML tool relies on JSON schema to specify ML hyperparameters including
constraints.19

The JSON schema translator encodes extracted constraints, stored as Python AST, into JSON schema format. Unlike
Python 3 types, JSON schema is expressive enough for complex formulas. The encoder removes pythonic expressions,
rewrites logical implication, and performs Boolean simplification. It also supports min and max functions, and comparison
of variables and values.

The extracted constraints capture the relationship between arguments and data, and are particularly useful for argu-
ment validation. In a situation where some arguments need to be set beforehand, they can be validated against weakest
precondition constraints to ensure that exceptions will not be raised. This allows for early detection of errors and avoids
encountering them during the runtime.

Recall the excerpt of the sklearn logistic regression operator in Figure 2, the analysis extracts the following two
constraints.

• penalty = 'elasticnet' =⇒ is_number(l1_ratio) and (0 <= l1_ratio <= 1)

• solver in ['liblinear', 'saga'] or penalty in ['l2', 'none']

The first constraint is translated into the JSON schema shown in Figure 9 (L1-7). Hyperparameters correspond to
object properties, and the JSON schema keyword "anyOf" expresses a disjunction (we encode p ⇒ q as ¬p ∨ q). The type
condition l1_ratio ∈ R is translated to a JSON schema type "number", and bounds are expressed with "minimum" and
"maximum". L9-14 shows the JSON schema of the second constraint.
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F I G U R E 9 JSON schemas of the two constraints extracted from the code of Figure 2.

9 CASE STUDIES

The interprocedural weakest preconditions analysis is effective at finding real issues. We ran the analysis on 11 libraries
and tracked discrepancies between documentation and preconditions we inferred from code. We reported a total of eight
issues to developers: three issues to sklearn, one issue to imblearn, three issues to TensorFlow, and one issue to NumPy.
All issues from sklearn and imblearn were fixed and merged into respective libraries. All three TensorFlow issues were
acknowledged by developers and we created one approved PR addressing one of the issues. For NumPy, we created one
issue that led to a PR and a change in both the code and the documentation. In addition, we have contributed PRs to the
Lale Auto-ML library,20 specifically improving the JSON schema constraints of 72 of sklearn’s operators.

The 11 libraries can be categorized into two groups: (1) Sklearn-compatible libraries and (2) Other libraries. The first
group consists of sklearn (122 operators) and 7 independent libraries that are sklearn-compatible: XGBoost (2 operators),
LightGBM (2 operators), imblearn (22 operators), category_encoders (17 operators), MAPIE (2 operators), metric_learn
(13 operators), and sklearn_pandas (1 operator). Our analysis is general and can run on any library when provided an
(operator class, target method) entry tuple. These seven sklearn-compatible libraries follow sklearn convention and pro-
vide (operator class, fit) targets. When analyzing sklearn-compatible libraries we stop at the boundary with other libraries.
Some of the sklearn-compatible libraries import sklearn functions, most often data validation functions and we do not
reanalyze those functions. We detail our studies on this group in Section 9.1.

The second group consists of three libraries: TensorFlow (200 functions), NumPy (5 functions), and Pandas (43 func-
tions). They are independent libraries that do not follow sklearn convention. For these libraries, we look for classes and
functions that have both documentation and potential preconditions. We detail our case studies in Section 9.2.

9.1 Sklearn and sklearn-compatible libraries

We have reported two hyperparameter issues, one in sklearn and one in imblearn, and discovered inconsistencies in
sklearn’s sparsity checks. The sklearn issue is an undocumented constraint between hyperparameter bootstrap and
oob_score that we previously discussed where an exception is raised if bootstrap==False and oob_score==True. This con-
straint affects ExtraTreesClassifier and five other operators. We created a PR updating the docstrings of oob_score to
indicate that it depends on bootstrap. For imblearn, we reported a case in InstanceHardnessThreshold where the estimator
parameter does not support a string value contradicting the documentation. The developers issued a PR that updated the
documentation to match the precondition.

Moreover, having noticed inconsistencies in sklearn’s sparsity checks, we ran an additional experiment. Operators in
sklearn run data validation code as illustrated in Figure 8. As shown, validation code checks for sparsity of X with default
is accept_sparse=False. We isolated the following exception in 'sklearn/utils/validation.py:None:_ensure_sparse_format' (L6
in Figure 8):

raise TypeError('A sparse matrix was passed, but dense data is required. Use X.toarray() to convert to a dense numpy array.')
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and computed the preconditions up to each fit and each predict method in sklearn. This exception is guarded by multiple
conditionals along lengthy call chains starting at fit or predict, and ending at _ensure_sparse_format. It fires up if X is
sparse and accept_sparse is False. Analysis is tricky because there are many different ways the code can set accept_sparse
to a value other than False; it is enabled by our novel interprocedural propagation. Figure 8 illustrates the call chain in
LogisticRegression with simplified control flow.

Our analysis reports either (1) a constraint not sp.issparse(X) at the top of fit/predict, meaning that if the user passes
a sparse matrix the exception is raised, or (2) True, as in Figure 8 L22, meaning that the exception is not raised with a
sparse X. Case (2) is because the operator has set accept_sparse to an appropriate value. For example, in Figure 8 L24, the
operator sets accept_sparse to 'csr'.

Case (1) indicates that the operator’s fit/predict method does not accept sparse data and this ought to be specified in
the docstring. If the analysis reports not sp.issparse(X) but the documentation states that the method accepts a sparse X,
then there is definitely a bug, either a documentation bug or a code bug. Case (2) indicates that the operator’s fit/predict
may accept sparse X, as data validation code appears to accept sparse X. If the analysis reports True, but the docstring states
that the method does not accepts sparse X, then this is not necessarily a bug, as the operator may indeed forbid sparse
data due to some internal operational constraints.

We applied the analysis on the fit and predict methods in all sklearn operators. We detected two instances of case (1),
one in AffinityPropagation.predict and one in MeanShift.predict. It appeared that in both cases the predict functions were
meant to support sparse data and they did, but the data validation call forgot to pass an argument for accept_sparse, so it
defaulted to False, which triggered the exception when a sparse X was passed. We reported the issue in AffinityPropagation
to sklearn and suggested the following fix: check_array(X, accept_sparse='csr'). The developers issued and merged a pull
request within days. Our PR for MeanShift led to a discussion among sklearn developers on whether this should be a
documentation fix or a code fix, eventually settling on a documentation fix.

We detected 22 instances of case (2). 12 cases appear to be documentation bugs; documentation was not updated to
reflect a code upgrade that added handling of sparse X.

9.2 Additional libraries

This group consists of independent libraries that do not follow sklearn convention: TensorFlow, NumPy, and Pandas. For
these libraries, the entry point of the analysis is a (class, function) tuple. We look for functions that are documented and
compare them with preconditions inferred by our IWP analysis.

TensorFlow is a popular machine-learning library. We focused on the neural net module as it is one of the commonly used
features. For each function, we compared extracted constraints from the analysis with its documentation. Documented
constraints can be specified either in descriptions of function’s arguments, or in a separate section detailing possible raise
exceptions. For example, in tf.nn.fractional_max_pool, there are four exceptions checking if the argument pooling_ratio has
correct properties such as it needs to be an integer or a list of integer of length 1, 2, or 4. The argument description of
pooling_ratio explains its requirements but does not explicitly state that exceptions will be raised for misconfigured values.
On the other hand, a ValueError exception is raised if the argument Seed is not specified and TensorFlow operation is set
to be deterministic. This constraint is clearly stated in the Raises section along with the type of Raise statement that will
be thrown. In both cases, we consider that the preconditions, if found, are properly documented. Overall, we discovered
four functions where the analysis found undocumented constraints. For example, the tf.nn.max_pool function raises an
exception if the explicit padding is used with an input tensor of rank 5. We reported this issue and created a PR to improve
the documentation. In addition, we reported two issues that were acknowledged and resolved by the developers.

NumPy is a library for working with multi-dimensional arrays. The analysis ran on Python parts of NumPy which contain
some exceptions throughout the code. The notable precondition is an undocumented constraint in the memory-map
class numpy.memmap. The ValueError is raised if the argument Mode is w+ and the argument Shape is not specified. This
constraint is not in the documentation and we reported it to the developers. The PR was created and merged within a
week. The changes are both in the code to make the exception message more meaningful, and in the documentation to
specify this constraint.

Pandas is a popular data manipulation library. We focused on DataFrame which is the primary API of Pandas. It is a
two-dimensional data structure with labeled axes that supports public functions for data manipulation. We analyzed 43
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functions in the DataFrame class and did not uncover any discrepancies between documentation and inferred precon-
ditions. A few preconditions involved multiple function arguments. For example, in the from_dict function, there is a
constraint between columns and orient arguments inferred from an exception that is raised when columns is set (not None)
and orient is specified to certain values.

10 EVALUATION

This section experimentally evaluates the performance of our analysis using three existing libraries: sklearn and 2
sklearn-compatible libraries, XGBoost and LightGBM. The evaluation focuses on these libraries because (1) the code
is almost entirely written in Python and (2) they provide high-quality documentation that can be checked against the
generated constraints. Our evaluation considers three research questions:

RQ1 Is the IWP analysis effective for schema validation for ML operators and how does it compare to existing solutions?
RQ2 How well does the soundness analysis work?
RQ3 What is the impact of concrete evaluation and does the IWP analysis scale?

To answer RQ1, we designed a fuzzing mechanism that can sample random configurations for an operator. We then
convert the constraints computed by the analysis to a JSON schema17 and test if a JSON schema checker is able to stop
invalid configurations while allowing valid ones. Our analysis achieved 0.96 precision and 0.76 recall and outperforms
existing approaches.

To answer RQ2, we measure the percentage of inferred preconditions that are judged “sound” by our analysis across
all 181 operators. 95.7% of all inferred preconditions were judged sound.

To answer RQ3, we report on the impact of the concrete evaluation simplifier from Section 7.3 and on analysis running
times. The analysis runs in under 11 min per operator for all operators, 3 min on average.

10.1 RQ1: Is the IWP analysis effective for schema validation for ML operators?

This experiment evaluates how well IWP hyperparameter constraints are able to stop invalid hyperparameter config-
urations, while allowing valid ones to proceed. They work as assertions at the entry-point methods. Catching invalid
configurations early is important—imagine a pipeline where the first operator takes hours to run only to reach an invalid
configuration of the second one.

10.1.1 Experimental methodology

For each operator, we start with carefully crafted JSON schemas for individual hyperparameters; these schemas cap-
ture constraints on individual hyperparameters, but do not capture constraints that involve multiple hyperparameters
or data. They are JSON schemas from IBM’s Lale Auto-ML project.20 Sampling from the domain of these schemas, we
generated 1000 random hyperparameters configurations based on hyperparameters that are relevant to hyperparameter
optimization. Then, we create a trial by calling the operator’s __init__ method with the hyperparameter configura-
tion, then calling its fit method and checking for dynamic exceptions. We experiment with two kinds of datasets,
dense and sparse, resulting in a total of 2000 trials for each operator. A trial fails if an exception is raised and it
passes otherwise.

The results from the dynamic exceptions are our ground truth. We then translate weakest precondition constraints
from the analysis into JSON schema format and use schema validation to check the hyperparameter configuration against
the schema. We define the categories for precision/recall as follows:

• A trial is a true positive if it fails and the hyperparameter configuration is invalid against the JSON schema (i.e., issues
a warning) as well.

• A trial is a false positive if it passes and the hyperparameter configuration is invalid against the JSON schema.
• A trial is a false negative if it fails and the hyperparameter configuration is valid against the JSON schema.
• A trial is a true negative if it passes and the hyperparameter configuration is valid against the JSON schema.
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We report results on 101 operators: 99 out of 122 sklearn operators, and one each from XGBoost and LightGBM. For the
remaining operators, either the trials for gathering the ground-truth exceeded the time limit or they required customized
inputs that we could not craft.

10.1.2 How well does our analysis work?

We sum up trial results from all operators to calculate precision and recall. On these 101 operators, the analysis achieved
0.96 precision and 0.76 recall leading to an F1-score of 0.85. Our interprocedural analysis captures the vast majority
of exceptions, in many cases interprocedural. For example, seven weakest precondition constraints from four different
functions of LogisticRegression precisely identify 1406 hyperparameter configurations from the failed trials. As another
example, in PCA, the analysis correctly identifies 400 true positives and 600 true negatives from the dense dataset; the
analysis correctly rejects all sparse trials because PCA does not support sparse input and has an explicit exception in the
main file that we infer and capture in JSON schema. (There is an explicit issparse check in PCA that immediately rejects
sparse inputs, rather than defaulting to the exception in validation code.) Interprocedural analysis is crucial for improving
precision and recall, as the exceptions happen along call chains from fit.

The main source of false negatives (i.e., lower recall) is that weakest precondition expressions were beyond the expres-
sive power of JSON schema. Clauses of preconditions that are inexpressible in JSON are treated as True. As a result, in
our experiments, schemas with inexpressible clauses are nearly always valid, that is, accept everything. At first, about 15
of the operators in the dataset do not accept sparse input by specification and all 1000 trials with sparse datasets fail by
throwing the exception in validation code that we investigated in Section 9.1. Unfortunately, the JSON schema for that
exception always evaluated to True resulting in thousands of false negatives. With special handling of the schema for that
exception, the recall score of those operators increases by about 20 points. Note that there were a non-trivial number of
exceptions that IWP infers but the schema does not express.

There are occasions when the IWP analysis misses exceptions as well, for example, because of dynamic class loading.
On no occasion did the analysis infer a precondition (expressible in JSON) that passed, but the corresponding exception
fired. This is consistent with our soundness result (see Section 10.3)—about 95% of our preconditions are sound.

10.1.3 How does our approach compare to other solutions?

We consider two alternative approaches to extract machine-readable hyperparameter constraints: hand-written schemas20

and automatically documentation-extracted schemas.6 The hand-written constraints are crafted by careful manual
examination of the documentation. We use the same experimental methodology to compare IWP to these solutions.

Figure 10 shows an average F1-score of three groups: the group with all 101 operators, the subgroup of 87 operators that
have both weakest precondition and NL docstrings schemas, and the subgroup of 39 operators that have all three schemas,
including hand-written schema. Figure 10 shows that our approach, which is automatic, performs significantly
better than the hand-written constraints.

F I G U R E 10 Average F1-score of three groups; the group with all 101 operators (only IWP schemas), the subgroup of 87 operators (IWP
and NL docstrings schemas), and the subgroup of 39 operators (IWP, NL, and hand-written schemas).
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On the subgroup of 39 operators, the precision and recall for IWP is 0.98 and 0.77 respectively, resulting in F1-score
of 0.86 as shown in Figure 10. Precision and recall for Hand-Written constraints is 0.39 and 0.23 respectively, resulting in
the F1-score of 0.29. The worse performance is mainly because hand-written constraints leave out constraints that appear
in the code as exceptions but are missing from the documentation. Hand-written constraints also miss exceptions in
imported modules. On a rare occasion, hand-written constraints reject hyperparameter configurations that are specified in
the documentation but do not exist in the code. For example, sklearn’s LinearSVC states that the combination of penalty='l1'
and loss='hinge' is not supported. However, no exception exists in the source code, resulting in 492 false positives.

Baudart et al.6 automatically extract constraints for sklearn from natural-language documentation. While the tech-
nique works well for constraints on a single hyperparameter, it does not work as well for constraints on multiple
hyperparameters or hyperparameters and data. Of the 101 operators, 87 operators have docstring-extracted schemas, but
the technique only successfully extracts constraints that involve two or more hyperparameters or hyperparameters and
data for 25 operators. Without these constraints, if a trial fails, its hyperparameter configuration is valid because there is
nothing to validate against. This leads to a false negative and is the main reason of a low recall. Figure 10 shows that our
weakest precondition analysis clearly outperforms the technique from Baudart et al.6

10.2 RQ2: Does soundness analysis work?

We ran the IWP analysis on all 181 operators starting at the target (operator,fit). Recall that this turns all transitively
reachable exceptions into preconditions at the top of the operator’s fit function, where each precondition is accompanied
by a soundness flag. In summary, 95.5% of the sklearn preconditions, across all 122 operators, were inferred sound.
For the remaining seven libraries, 97.0% of the preconditions were inferred sound.

One wrinkle is that initially only about 35% of the sklearn preconditions were judged sound, which was highly sur-
prising. Upon a closer look, the low soundness result across all sklearn operators was due to a single For loop in the shared
data validation code, specifically in check_array. There are about 10 exceptions raised in check_array or its callees and each
gives rise to 3–4 distinct preconditions at the top level because there are multiple paths from fit to check_array. Thus, the
single source of imprecision (i.e., the For loop) propagates towards a large number of exceptions. We ran an experiment
and excluded exceptions in check_array and, as expected, 94% of the inferred preconditions were sound.

The offending For loop assigned a local, has_pd_integer_array, which also appeared in the postcondition formula, thus
rendering the precondition formula unsound. Fortunately, we were able to replace (manually) the For statement with
an equivalent If statement that assigned has_pd_integer_array accordingly. The If statement is equivalent (under some
mild assumptions) in the following sense: WP(For,Q) evaluates to true for the exact same values that WP(If,Q) evaluates
to true (recall that WP(For,Q) is not computable in general; our analysis limits the impact of loops by reasoning about
what variables are modified within a loop). Then we could analyze the full code with the If statement, propagating the
postcondition into a sound precondition. Soundness has implications for schema validation (Section 10.3)—an unsound
precondition may pass validation while the exception still fires at runtime and this never happened in our experiments.

10.3 RQ3: Does the analysis scale?

Our analysis, like all analyses in this space, suffers from path explosion. This applies to exceptions that are nested deeply
into control-flow paths that span multiple functions and if-then-else statements. Yet the analysis still scales and computes
a solution for each operator very quickly due to the two techniques (1) concrete evaluation and (2) pruning heuristic.
Concrete evaluation is important for scalability. As discussed in Section 7.3, part of a precondition can sometimes
be evaluated during the analysis, mostly due to substitution of default values of formal arguments at a function call.
The analysis attempts to perform concrete evaluation after every substitution which maintains the size of the current
precondition to be as compact as possible. Nevertheless, preconditions of deeply-nested exceptions can still suffer from
path explosion.

Another strength of concrete evaluation is the ability to identify trivial preconditions that are True at the top of the
function under analysis. In sklearn, each operator calls an input validation function _validate_data which gives rise to mul-
tiple call paths to the check_array function under different conditions; different operators instantiate inputs to check_array
differently. Figure 8 shows a modified source excerpt of one call path. An exception can have multiple preconditions from
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different call paths, and some of them could be True. A weakest precondition True means that its corresponding exception
of this specific call path will never be reached. For example in PCA, without concrete evaluation, one precondition is

{'no_validation'Is None => NOT({'dtype':[np.float64,np.float32],'ensure_2d':True,'copy':self.copy}.get('force_all_finite',True)
NotIn [True,False,'allow−nan'])}.

It is from a call path of an If statement “if y is None:” but PCA does not take y so it uses a default argument value of
'no_validation' in the _validate_data function. Unevaluated preconditions, even when True, take time to ascertain. Concrete
evaluation evaluates this to True, reducing number of weakest preconditions to consider.

Pruning. To improve scalability after concrete evaluation, we apply a pruning heuristic that removes formulas that are
excessively large, specifically ones that have more than 200 implications at any point during the analysis. Such formulas
are uninterpretable and not useful for our client analysis. Pruning is unsound because some preconditions are removed.
However, since pruned preconditions are large and not useful for us, it does not affect the experiment. Still, the pruning
limit needs to be carefully chosen. Aggressive pruning could improve the running time of the analysis at a cost of poten-
tially removing useful weakest preconditions. For example, form the hyperparameter experiment, setting the pruning
implication number below 24 would remove a useful precondition from PCA. This precondition involves hyperparam-
eter n_components and svd_solver and correctly detect 247 invalid configurations (true positive case) of PCA’s dense
dataset. We choose the pruning number of 200 which keeps the running time reasonable while removing excessively large
preconditions.

As an ablation study, we measure the running time of the analysis and the size of the result file when apply-
ing the two techniques. The result file is a Python pickle file (.pkl format) containing AST formulas of the operator’s
weakest precondition constraints. Table 1 shows the comparison on 15 representative sklearn operators picked to uni-
formly cover the full spectrum of running time of the normal runs. Similar to the previous experiment in the evaluation
section, the analysis takes a fit method as an entry point for all operators. The Plain run evidently presents the effect
of path explosion. The running time and the file size can become extremely large and exceed the time limit for some
operators. When applying only the concrete evaluation, most operators finish under an hour and produce a result

T A B L E 1 Running times and file sizes of some operators when applying the concrete evaluation (CE) and the pruning heuristic (P).

Time (seconds) File Size (kB)

Plain CE P CE and P Plain CE P CE and P

LabelEncoder 6 s 4 s 7 s 5 s 3 3 3 3

LabelBinarizer 3 m 18 s 4 m 01 s 54 s 1 m 45 s 46 44 46 44

SkewedChi2Sampler 41 m 40 s 34 m 31 s 56 s 4 m 00 s 173,584 9187 2,33 921

LassoLarsIC 50 m 33 s 36 m 46 s 1 m 11 s 4 m 29 s 189,96 27,59 2169 2687

PassiveAggressiveClassifier 2 h 15 m 57 s 48 m 06 s 1 m 28 s 4 m 31 s 341,516 6639 3,8 701

VarianceThreshold 42 m 14 s 38 m 51 s 58 s 4 m 34 s 224,16 10,875 2599 139

SelectKBest 36 m 06 s 37 m 13 s 1 m 15 s 4 m 36 s 214,909 33,970 2436 2789

RandomForestClassifier 1 h 08 m 23 s 1 h 04 m 53 s 1 m 20 s 4 m 45 s 347,579 131,197 3121 3933

FeatureAgglomeration 1 h 16 m 31 s 57 m 36 s 1 m 18 s 5 m 10 s 496,860 29,178 4931 2308

SparseRandomProjection 40 m 19 s 40 m 05 s 57 s 5 m 20 s 198,924 10,947 2324 949

HuberRegressor 1 h 12 m 07 s 41 m 32 s 1 m 10 s 5 m 26 s 368,834 12,249 3,20 907

LabelSpreading T/O 1 h 39 m 22 s 1 m 46 s 5 m 55 s T/O 104,181 3778 3318

IsolationForest 3 h 14 m 23 s 47 m 47 s 2 m 04 s 5 m 55 s 404,149 11,182 3903 1155

SparsePCA T/O T/O 2 m 22 s 8 m 32 s T/O T/O 5696 9613

RidgeClassifier T/O T/O 6 m 30 s 14 m 08 s T/O T/O 17,142 10,722

Note: The files store AST formulas of weakest preconditions in .pkl format. T/O (timeout) means the run time limit of 5 h was exceeded.
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file under the size of 30 MB. The concrete evaluation actively simplifies preconditions, and the result perfectly cap-
tures everything from the analysis; however, it also contains complex weakest preconditions that are too large and
uninterpretable. The analysis wastes a considerable amount of time on these preconditions that eventually will not be
useful for our client analysis. On the other hand, when applying only the pruning heuristic, the analysis finishes in
about a minute, which is much faster than other methods. However, the resulting weakest preconditions are incom-
plete. Without the concrete evaluation, preconditions rapidly become larger and get pruned by the heuristic too early
in the analysis, resulting in significantly fewer weakest preconditions. Lastly, when combining both the concrete eval-
uation and the pruning heuristic, the analysis completes in under 15 min on all operators with an average of
about 5 min.

We run the experiments on a Windows machine with Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz.

11 RELATED WORK

Our non-archival preliminary work introduces the idea of using weakest precondition inference for schema valida-
tion for ML operators; it presents an intra-procedural analysis and evaluation of schema validation on 45 sklearn
operators.21 Next, we built upon and significantly extended this early work with (1) novel call graph and interpro-
cedural weakest precondition analyses (motivated by deficiencies of the intraprocedural analysis), and (2) soundness
analysis to reason about quality of inferred preconditions. Additionally, we expand the experimental evaluation
and apply IWP to specification inference, leading to new successful pull requests.22 This article further improves
the core analysis to increase precision and recall of the experiment. We create PetPy, a subset of Python that
allows principled formalization of our analyses. Based on PetPy, we formalize weakest precondition and reference
immutability for Python, as well as detail translation from Abstract Syntax into 3-address code for the purposes of
flow-insensitive analysis. In addition, we add significant details about our Python implementation and introduce case
studies with the application of our framework to three new libraries, in addition to the sklearn-family from the
previous paper.

While backward reasoning and, more generally, verification condition generation have a long history, with papers by
Flanagan et al.23 and by Branett et al.9 among other works, as far as we know, we are the first to apply these technique
on Python, whose rich dynamic semantics notoriously complicate static analysis. Our work demonstrates scalability and
applicability of these powerful techniques on real-world Python code.

Concrete evaluation in the context of a static analysis has some similarity to type-level computation theory.24,25 Kaze-
rounian et al.25 evaluate certain Ruby library calls towards proving type safety of database queries in Ruby programs.
Hirzel et al. perform pointer analysis on Java that is sound modulo classes loaded and reflection called up to that point in
the program execution, adding points-to relations when relevant concrete evaluations occur.26 Our work applies evalua-
tion in the Python interpreter to improve call graph construction and to simplify weakest precondition formulas. It is also
related to concolic testing,27 as that evaluates SMT formulas to find inputs that improve coverage. PyExZ328 and PyCT29

are dynamic concolic testers for Python functions. In contrast, our analysis is static, includes reasoning about soundness,
and it is interprocedural.

In general, work on static analysis for Python is scarce. Ariadne30 explores static analysis of machine-learning libraries
and outlines challenges to traditional static analysis techniques and Monat et al.31 present type analysis via abstract inter-
pretation and Reference 32 construct multilanguage analysis for Python with C extensions. Similarly to our work, this
work formalizes a subset of Python and designs precise, flow-sensitive and context-sensitive interpretation of this subset.
In contrast, our work aims to provide interpretation into 3-address code, which can be used by flow-insensitive analyses,
for example, reference immutability and pointer analysis. Monat et al.’s analysis is significantly more precise, while ours
is more scalable. In addition, we focus on the specific problem of extracting hyperparameter constraints and develop a
practical analysis that extracts logical formulas.

There is a body of work on type inference for Python, including by Maia et al.,33 Xu et al.,34 and Hassan et al.35 Recent
work explores machine-learning-based type inference, including work by Allamanis et al.36 and by Pradel et al.37 Our
work focuses on inference of deeper semantic properties such as hyperparameter and data constraints. iComment for
C38 and jDoctor for Java39 have similar goal to ours—reconciling documentation with code and identifying issues with
either of them.

Data validation for ML pipelines is an important problem. Breck et al. present a system for detection of anomalies in
data fed to machine-learning pipelines.40 Habib et al. check data flowing through ML pipelines using JSON subschema
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checks.41 Our work analyzes parts of the Python code that performs data validation and checks whether it conforms to
the data constraints specified in the documentation. Hyperparameter specifications, including constraints, are important
for automated machine learning (Auto-ML). For example, the Auto-ML tools auto-sklearn3 and hyperopt-sklearn4 come
with hand-written hyperparameter schemas. Lale also has schemas extracted from docstrings.6 In contrast, our article is
the first to show how to extract them via static analysis of the code.

12 CONCLUSIONS AND FUTURE WORK

This article presents an interprocedural static analysis for extracting weakest preconditions from Python. Python’s
dynamic features lead to imprecisions in the analysis that cause path explosion. Therefore, while the core analysis
operates over a standard abstract domain of formulas, we extend it with concrete evaluation to make it tractable.
The concrete evaluation uses the Python interpreter, thus enlisting one dynamic language feature to help tame
other dynamic language features. We introduce PetPy, a subset of Python syntax, and an interpretation of it into
3-address code. We add reasoning about soundness using reference immutability that is defined over a 3-address
code representation. We view the soundness analysis as a step towards principled and perhaps even fully sound
analysis of (subsets of) Python. In future work we will build upon this foundation—we envision building a the-
ory where we can add and remove assumptions leading to respectively weaker and stronger “soundness” guarantees.
We have successfully applied the analysis on 181 operators across 8 ML libraries and 248 functions across 3 popu-
lar libraries. The analysis achieved high precision and recall in the input validation experiment and was effective at
finding real issues.

DATA AVAILABILITY STATEMENT
The source code of the analysis and the experiments are available at Github (https://github.com/Ingkarat/IWP).
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