SOFTWARE - PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2014)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2276

Debugging mixed-environment programs with Blink

Byeongcheol Lee!* T, Martin Hirzel?, Robert Grimm? and Kathryn S. McKinley*

YGwangju Institute of Science and Technology, Gwangju, Korea
2IBM, Thomas J. Watson Research Center, Yorktown Heights, NY, USA
3New York University, New York, NY, USA
4Microsofz‘ Research, Redmond, WA, USA

SUMMARY

Programmers build large-scale systems with multiple languages to leverage legacy code and languages
best suited to their problems. For instance, the same program may use Java for ease of programming and
C to interface with the operating system. These programs pose significant debugging challenges, because
programmers need to understand and control code across languages, which often execute in different envi-
ronments. Unfortunately, traditional multilingual debuggers require a single execution environment. This
paper presents a novel composition approach to building portable mixed-environment debuggers, in which
an intermediate agent interposes on language transitions, controlling and reusing single-environment debug-
gers. We implement debugger composition in Blink, a debugger for Java, C, and the Jeannie programming
language. We show that Blink is (i) simple: it requires modest amounts of new code; (ii) portable: it supports
multiple Java virtual machines, C compilers, operating systems, and component debuggers; and (iii) pow-
erful: composition eases debugging, while supporting new mixed-language expression evaluation and Java
native interface bug diagnostics. To demonstrate the generality of interposition, we build prototypes and
demonstrate debugger language transitions with C for five of six other languages (Caml, Common Lisp, C#,
Perl 5, Python, and Ruby) without modifications to their debuggers. Using real-world case studies, we show
that diagnosing language interface errors require prior single-environment debuggers to restart execution
multiple times, whereas Blink directly diagnoses them with one execution. Copyright © 2014 John Wiley &
Sons, Ltd.

Received 22 July 2013; Revised 17 April 2014; Accepted 2 May 2014

KEY WORDS: debuggers; foreign function interface; JNI; composition

1. INTRODUCTION

Software developers resort to multiple languages to leverage legacy code and existing libraries and,
when possible, use a language well suited to their needs for new code. Large programs are hard to
get correct, even when written in a single language, because an individual developer is typically an
expert on only a small fraction of the code. Mixed-language programs require additional developer
expertise, and language interfaces add another source of errors. For example, the literature reports
hundreds of mixed-language interface bugs [1-4]. Foreign function interfaces (FFIs) such as Java
native interface (JNI) and Python/C consist of voluminous and complex programming rules. For
example, there are 1500+ rules in JNI [5]. The effects of interface bugs are not defined, and they very
often crash programs immediately or insidiously. Traditional debuggers offer little or no information
that the programmer can use to correct such bugs.

*Correspondence to: Byeongcheol Lee, School of Information and Communications, Gwangju Institute of Science and
Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 500-712, Korea.

TE-mail: byeong @gist.ac.kr

Copyright © 2014 John Wiley & Sons, Ltd.

B.LEE ET AL.

Traditional debuggers are not much help with mixed-language programs because they are lim-
ited to a single execution environment. For example, native programs and their debuggers (e.g., the
gdb debugger for C, C++, and Fortran) require language implementations to use the same applica-
tion binary interface (ABI). The ABI is machine dependent and thus precludes portable execution
environments for managed languages, such as Java, C#, JavaScript, and Python. For portabil-
ity, managed languages rely on virtual machine (VM) execution, using interpretation, just-in-time
compilation, and garbage collection. They abstract over internal code, the stack, and data represen-
tations. Debuggers for managed languages, such as the standard Java debugger jdb, operate on
VM abstractions, for example, through the Java Debug Wire Protocol (JDWP), but do not under-
stand native code. Current mixed-language debuggers are limited to XDI and dbx, which support
Java and C within a single JVM [6, 7], and the Visual Studio debugger, which supports managed
and native code in the Common Language Runtime (CLR) [8]. While these debuggers understand
all environments, they are behemoths that are generally not portable. The challenge when build-
ing a mixed-environment debugger is that each environment has different representations; managed
debuggers operate at the level of bytecodes and objects, whereas native debuggers deal with machine
instructions and memory words.

This article presents a novel debugger composition design for building mixed-environment debug-
gers that uses runtime interposition to control and reuse existing single-environment debuggers. An
intermediate agent instruments and controls all language transitions. We show composition with
interposition is sufficient to implement the three pillars of debugging functionality: execution con-
trol, context management, and data inspection [9]. The result is a simple, portable, and powerful
approach to building debuggers.

We implement this approach in Blink, a debugger for Java, C, and the Jeannie programming
language [10]. Because Blink reuses existing debuggers, it is simple: Blink requires 9K lines of new
code, half of which implements interposition. Blink is portable: it supports multiple Java virtual
machines or JVMs (Oracle and IBM), C compilers (GNU and Microsoft), and operating systems
(Unix and Windows). By comparison, dbx works only with Oracle’s JVM and XDI works only
with the Harmony JVM.

We also explore how well our composition approach generalizes to other languages and what
are its requirements. We implemented a simple prototype of the language interposition approach
for five of the six standard debuggers for Caml, Common Lisp, C#, Perl 5, Python, and Ruby. Our
prototypes implement each language’s FFI to C. Because the Caml debugger lacks the ability to
evaluate functions on which our interposition approach depends, it requires changes to the existing
debugger to compose. We use the function evaluation in the C# debugger to implement interposition.
We simply interpose on the interpreters for Common Lisp, Perl 5, Python, and Ruby. These case
studies indicate that debugger composition is viable in many language settings.

Debugger composition furthermore facilitates powerful new debugging features: (i) a read—
eval-print loop (REPL) that, in Blink, evaluates mixed Java and C expressions in the context of a
running program and (ii) a dynamic bug checker for two common JNI problems. We implement
these features in Blink. This article demonstrates this functionality using several case studies, which
reproduce bugs found in real programs and compare debugging with other tools to debugging with
Blink. The other tools crash, silently ignore errors, or require multiple program invocations to diag-
nose a bug, whereas Blink typically identifies the bug directly in a single program invocation. The
result is a debugger that helps users effectively find bugs in mixed-language programs.

To summarize, the contributions of this work are as follows:

1. A new approach to building mixed-environment debuggers that composes single-environment
debuggers. Prior debuggers either support only a single environment or re-implement func-
tionality instead of reusing it.

2. Blink, an implementation of this approach for Java, C, and Jeannie, which is simple, portable,
powerful, and open source [11].

3. Two advanced new debugger features: a mixed-environment interpreter and a dynamic checker
for detecting JNI misuse.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

DEBUGGING MIXED-ENVIRONMENT PROGRAMS WITH BLINK

4. A prototype of language interposition for six additional languages and their debuggers which
shows that our approach generalizes.

5. A discussion of the requirements and multiple mechanisms for implementing language
execution environment composition.

6. Case studies showcasing the experience of debugging real-world bugs with Blink.

This article extends our prior publication on Blink [12] in two main ways: (i) it demonstrates
how Blink helps diagnose real-world bugs (Section 8) and (ii) it elaborates on and reports on the
implementations of several mechanisms that show debugger composition generalizes to other lan-
guage environments (Section 6). Our experiences with Blink inspired us to develop another tool,
called Jinn [5], to identify a wide variety of JNI automatically at runtime, but even with such tools,
programmers still must discover the root cause of their bugs. Blink helps programmers answer the
critical questions about their bugs, such as “Where am 1?7’ ‘How did I get here?’ and “What variable
values are the root cause?’

The remainder of the article is organized as follows. Section 2 motivates multilingual debugging
with an example. Section 3 shows how to design an agent that composes debuggers, controls execu-
tion, and answers programmers queries, regardless of language context. Section 4 explains advanced
debugging features, such as multilingual expression evaluation. Section 5 describes implementation
details, such as tracking and reporting stack context, setting break points in C when stopped in Java
code, and stepping across language interfaces. Section 6 discusses and reports on prototypes that
generalize our composition approach to other languages. The evaluation in Section 7 shows that
Blink is portable across architectures, composes a wide variety of vastly different debugger and lan-
guage implementations, and adds little overhead to debugging. Section 8 walks through two case
studies of challenging multilingual errors that crash programs and shows that Blink helps developers
find these bugs quickly. Section 9 discusses related work, and Section 10 concludes.

2. MOTIVATION: A LANGUAGE INTERFACE BUG

This section uses a real-world multilingual bug to illustrate that debugging across language inter-
faces with current tools is at best painful and that Blink significantly improves the debugging
experience.

Consider the code in Figure 1, which distills fragments from the Eclipse SWT windowing toolkit
and the java-gnome Java binding for the GNOME desktop to illustrate a common class of JNI bugs
that is due to JNI’s reflection-like API [13]. Execution starts at line 6 in Java code. Line 8 calls the
dispatch method, passing either "mouseEvent" or "keyboardEvent" as a parameter. The
dispatch method is declared in Java (line 10) but defined in C (line 20). Line 22 calls another C
function, call java_ wrapper, defined in line 24. Line 28 looks up the Java method identifier
(mid) based on the parameter string. This lookup fails for "keyboardEvent" because of the
capitalization error (line 15 expects "keyBoardEvent"). With the current state of the art, this
bug is difficult to diagnose. For example, executing Oracle’s JVM with the -Xcheck:jni flag
results in the following output:

FATAL ERROR in native method:
JNI call made with exception pending
at EventHandlerBug.dispatch (Native Method)
at EventHandlerBug.main (EventHandlerBug. java:8)

This call stack shows only Java line numbers and does not mention the C function call
java_wrapper where the error occurs. The user would at best inspect the code to find JNI calls and
then re-execute the program with breakpoints potentially on all JNI operations. Existing static bug
detectors do not find this problem either, because they do not currently handle the array lookup and
string manipulation on line 8, which are difficult to analyze statically [2, 3, 14].

Blink improves over both approaches—it detects the invalid JNI usage, automatically inserts a
breakpoint, and prints the following diagnostic message:

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

B.LEE ET AL.

EventHandlerBug.java

1. public class EventHandlerBug {

2. static { System.loadLibrary ("NativeLib"); }
3. static final String[] EVENT NAMES

4. = { "mouse", "keyboard" };

5. public static void main(String[] args) {

6. int idx = Integer.parselnt (args[0]);

7. assert (0 <= idx && idx < EVENT NAMES.length);
8. dispatch (EVENT_NAMES[idx] + "Event");

9. }
10. tatic native void dispatch(String ml);
11. static void mouseEvent () {
12. System.out.println ("mouse clicked");
13. }
14. /* cause: ‘keyboard’ vs. ‘keyBoard’ mismatch */
15. static void keyBoardEvent () {
16. System.out.println("key pressed");
17. }
18. }

EventHandlerBug.c

19| #include <jni.h>

.\ void EventHandlerBug dispatch (JNIEnv* env,

21. jclass cls, Jjstring ml) {
22. call_java wrapper (env, cls, ml);
23./ 1}

static void call java wrapper (JNIEnv* env,

25 jclass cls, jstring jstr) {
26 const char* estr = (*env)->GetStringUTFChars (
27 env, jstr, NULL);

28 jmethodID mid = (*env)->GetStaticMethodID (

29. env, cls, estr, "()V");

30. /* effect: attempted call with invalid ‘mid’ */
31 (*env) ->CallStaticVoidMethod (env, cls, mid) ;
32. (*env) ->ReleaseStringUTFChars (env, jstr, cstr);
33. }

Figure 1. Example bug: a typo in Java code (line 15) causes a crash in C code (line 31).

JNI warning:

Missing Error Checking: CallStaticVoidMethod

[1] call_by_name_wrapper (EventHandlerBug.c:31)

[2] Java_EventHandlerBug_dispatch (EventHandlerBug.c:22)
[3] EventHandlerBug.main (EventHandlerBug.java:8)

blink> _

This message shows the mixed C and Java stack and identifies the call at line 31 as erroneous.
Because mid is invalid, the user would next determine that mid is derived from the string cstr
and print cstr:

blink> print cstr
"keyboardEvent"

Variable cstr holds "keyboardEvent" instead of "keyBoardEvent", but where does
that value come from? Line 8, mentioned in the original stack trace, contains the expression
EVENT NAMES [1dx]+"Event". To examine the Java array from the C breakpoint, the user
employs Blink’s mixed-language expression evaluation as follows:

blink> print ‘EventHandlerBug.EVENT_NAMES[1]
"keyboard"

To fix the bug, the user would change either the string in EVENT NAMES [1] or the method name
in line 15.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

DEBUGGING MIXED-ENVIRONMENT PROGRAMS WITH BLINK

3. DEBUGGER COMPOSITION APPROACH

This section describes our approach to building mixed-environment debuggers by composing them
out of single-environment debuggers. We use our implementation of Blink for Java and C as our
running example. Our insight is that interposing a modest amount of functionality between language
transitions suffices to reuse a substantial amount of functionality of component debuggers, creating
one debugger that understands multilingual programs.

3.1. Debugger features

Our goal is to provide all the standard debugging features in a mixed environment. When a user
debugs a program, he or she wants to find and correct a defect that results in erroneous data or
control flow, which leads to erroneous output or a crash [15]. Rosenberg identifies three essential
features in support of this quest [9].

Execution control: The debugger controls the execution of the debuggee process by starting it,
halting it at breakpoints, single stepping through it, and eventually tearing it down. Typical
interactive commands are run, break, step, continue, and exit.

Context management: The debugger keeps track of where in the code the debuggee process is
and, on demand, reports source code listings and call stack traces. Typical interactive commands
are 1ist and backtrace.

Data inspection: Users query the debugger to inspect data with source language expressions, such
as print or eval.

3.2. Intermediate agent

Our approach to implementing these standard debugger features for a mixed environment is to
compose single-environment debuggers through an intermediate agent. Our mixed-environment
debugger consists of a controller and one driver for each single-environment component debug-
ger. Figure 2 illustrates this structure for the case of Java and C using jdb for Java, and gdb or
cdb for C (depending on whether we run on Linux or Windows). The debuggee process runs both
Java and C, and the intermediate agent coordinates the debuggers. The intermediate agent has two
complementary responsibilities:

1 Mixed-Environment Debugger

1
1
| |
! Controller |
1
! 1
! 1
1
i / \ i
! | jdb Driver ggb./c"b !
| river \
1
[I N |
Y Y
jdb gdb/cdb
A R < B i
i Agent i
i A 1
! A A :
1
' | Java Code |«—Y—»| C Code |
. FFI !
1
! |

Figure 2. Agent-based debugger composition approach.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

B.LEE ET AL.

Language transition interposition: When the debuggee switches environments on its own, the
agent alerts the corresponding single-environment debugger, so this debugger can track context
or take over as necessary.

Debugger context switching: When an interactive user command requires the debugger to switch
environments, the agent transitions the debuggee into the appropriate state and issues the
command to the appropriate single-environment debugger.

The following subsections detail the agent responsibilities and how to satisfy them.

3.3. Language transition interposition

Language transition interposition is required for execution control, because otherwise single step-
ping is incomplete. Consider a Java and C debuggee suspended at a Java breakpoint. The Java
debugger is in charge, and the C debugger is dormant. A single step on a return statement to C
causes a language transition to C. The agent must detect this transition, because otherwise the Java
debugger waits for control to return to Java code while the C debugger remains dormant.

Language transition interposition is also required for context management, because otherwise
stack traces are incomplete. Language transitions result in different portions of the stack belonging
to different environments, but each single-environment debugger understands only the portions cor-
responding to its own language. To prepare for reporting the entire mixed-language stack, the agent
must stitch together different single-environment stack fragments at their seams.

Therefore, the agent must capture all environment transitions, whether they are debuggee or user
initiated. With two languages, there are four kinds of local transitions: mixed-language calls and
returns. For instance, in the case of JNI, those four kinds of local transitions are Java calls to C, C
calls to Java, Java returns to C, and C returns to Java. The agent must also capture non-local control
flow such as exceptions.

Our approach instruments all environment transitions to call agent code. For instance, in Figure 2,
we interpose on transitions between Java and C code, instrumenting them to call the agent. One
option for realizing this instrumentation is to modify the compiler or interpreter. However, to achieve
portability across different JVMs and C compilers, we do not want to modify them. Instead, we
leverage the fact that Java’s FFI is wrapper based and instrument the wrappers.

3.4. Debugger context switching

When one single-environment debugger is active and the user issues a command that only the other
debugger can perform, the agent must assist in debugger context switching. For example, when
the program is at a breakpoint in Java and the user wants to set a breakpoint in C, the agent must
suspend the Java debugger and issue the command to the C debugger. Similarly, commands such
as backtrace (which lists stack frames possibly from multiple languages; see Section 4.2) and
print require one or more context switches to tap into functionality from both single-environment
debuggers. We switch debugger contexts with the following steps.

Set a breakpoint in a helper function in the other environment.

Call the helper function using expression evaluation.

At the breakpoint, activate the other debugger.

When the other debugger completes, return from the helper function, which returns control
back to the original debugger.

el s

Figure 3 illustrates context switching on the example of switching from jdb to gdb. Each ver-
tical line represents an execution context, with an active context marked by a box overlaying the
line. Horizontal arrows show control transfers between execution contexts. From top to bottom, the
application starts out executing Java code and hits a Java breakpoint, thus suspending itself and acti-
vating jdb. Now, suppose the user requests a gdb debug action. At the moment, gdb is inactive
and cannot accept user commands. Blink therefore initiates a debugger context switch by using the
jdb function evaluation feature to call the debugger agent method j2c. The method j2c is a Java

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

DEBUGGING MIXED-ENVIRONMENT PROGRAMS WITH BLINK

jdb Java Code C Code gdb/cdb Control
State

Application

Application

Figure 3. Debugger context switching example, using j 2 ¢ helper function to switch from jdb to gdb/cdb.
Blink also has a ¢27 helper function for switching in the other direction.

method that uses JNI to call C and has a breakpoint in the C part of the code. When execution hits
the C breakpoint, gdb is activated and can perform the debug action requested by the user. When
complete, gdb’s continue returns from the C code and Java method, at which point jdb wakes
up again and is ready to accept commands. The user can either request additional debugging actions
in Java or C, or resume normal application execution with continue.

3.5. Soft-mode debugging

Debugger composition requires soft-mode debugging, in which the debuggee process executes
basic commands, such as break, step, and backtrace, on behalf of the debugger. In con-
trast, hard-mode debugging does not require the debuggee to run code on the debugger’s behalf,
except when users explicitly request it, for example, with a command to evaluate a function call.
Debuggers for C, including gdb and cdb, are typically hard mode. Java debuggers are typi-
cally soft mode because Java’s JDWP expects an agent in the JVM that issues commands to
the debuggee.

Soft-mode debugging is less desirable than hard mode because running code in the debuggee
changes debuggee state and behavior and may thus lead to Heisenberg effects. The very act of
debugging may change the behavior of the bug. Notably, the user may set a breakpoint in a C library
shared by the application and JVM. The user expects to reach the breakpoint through a JNI call,
but JVM code may instead reach the breakpoint through internal service code. Because the JVM
is typically not reentrant (i.e., it assumes that no user code runs in the middle of a JVM service),
debugger actions may now crash the JVM.

Blink mitigates its use of soft-mode debugging by warning users on actions that might trigger a
soft-mode inconsistency. Debugging actions in C are safe as long as the program enters native code
through JNI, exceptions are cleared, and garbage collection is enabled. Because we already rely on
language interposition, we detect whether the JVM is in a safe state. If the debugger is about to
perform an action in C, but the JVM is in an unsafe state, the debugger warns the user. Instead of
just warning the user, we could refuse to perform debug actions altogether. We chose a warning over
refusal because unreliable information is better than no information.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

B.LEE ET AL.

4. ADVANCED FEATURES

This section shows how interposition for composition facilitates two advanced debugging fea-
tures: (i) identifying mixed-language interface errors and (ii) mixed-language expression evaluation,
which helps users manipulate and examine state across multiple languages.

4.1. Environmental transition checker

Interposition makes it easy to control and compose debuggers, and it also makes it easy to add
dynamic checks that find language interface bugs. This section demonstrates how to build a pow-
erful Environmental Transition Checker that detects two common language interface bug classes:
(i) uncaught exceptions and (ii) unexpected null values. Inspired by these cases, we subsequently
built a tool called Jinn in which we codified all JNI rules in state machines, updated on language
transitions to dynamically identify many classes of errors [5].

‘We now motivate our choice of bug classes and describe the extensions to the intermediate agent
to dynamically detect missing exception checks and unexpected null values.

4.1.1. Exception checking. The JNI specification forbids JNI calls when an exception is pend-
ing [16, Chapter 10.1]. Because C does not support exceptions, users must handle them by hand. In
particular, when an exception is raised, the C code must clean up resources such as acquired locks
and unwind call frames until it finds an exception handler or exit. C macros and nested function calls
complicate the task of writing C code that unwinds the stack and releases resources. Furthermore,
because exceptions are rare, this code is hard to exercise and test, which leads to bugs. Previous work
shows that programmers tend to write JNI code that incorrectly propagates exceptions [3, 4]. We
thus add code to Blink that automatically detects missing error checking, which is key to integrating
languages with and without automatic exception handling.

To detect missing error checking, Blink adds the checks to the intermediate agent, which
instruments and interposes on all JNI function calls. For example, Blink wraps CallStaticInt-
Method as follows:

int wrapped_CallStaticIntMethod (JNIEnv* env, ...) {
if (jvm_ExceptionCheck (env))
cbreak (env, "Missing JNI Error Check!");
return jvm_CallStaticIntMethod(env, ...);
}

The agent changes the pointer CallStaticIntMethod to refer to wrapped CallStatic
IntMethod instead of the original jvm CallStaticIntMethod. The wrapper checks if the
JVM has a pending exception. If it does, it executes cbreak, a native breakpoint set during agent
initialization, which reports a breakpoint hit to the native component debugger and, in turn, to Blink,
which displays the error message to the user together with the current calling context.

4.1.2. Null checking. The JNI specification requires that some function arguments must be non-
null pointer values [16, Chapter 10.2]. If JNI functions receive unexpected arguments, the JVM
may crash or silently produce incorrect results. Neither outcome is desirable, and the programmer
should inspect and correct all these errors. Blink dynamically detects obviously invalid arguments to
JNI functions, that is, NULL or (jobject) 0xFFFFFFFF. We extend Blink’s intermediate agent
interposition on every JNI function call to check that the arguments are valid as in the following
example function:

jstring wrapped_NewStringUTF (JNIEnv* env, charx utf) {
if ((utf == NULL) || (utf == OxFFFFFFFF))
cbreak (env, "Invalid JNI Argument!");
return Jjvm_NewStringUTF (env, utf);

}

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

DEBUGGING MIXED-ENVIRONMENT PROGRAMS WITH BLINK

So, when C passes NULL as the ut £ argument, the agent calls the C breakpoint function cbreak
and reports an error message and the current stack. At this point, the user probably needs to examine
variables and expressions from both languages to determine the root cause of the invalid argument.
We therefore provide mixed-language expression evaluation, as described in the next section.

4.2. Jeannie mixed-environment expressions

The more powerful a debugger’s data inspection features, the easier it is for the user to determine
whether he or she is on the right track to finding a bug. For example, gdb provides expression
evaluation with an REPL. An interactive interpreter evaluates arbitrary source language expressions
based on the current application state. While implementing a language interpreter requires a signifi-
cant engineering effort, expression evaluation makes it easier to determine whether the current state
is infected, especially if the evaluator supports function calls and side effects. Besides debugging,
expression evaluation is useful for rapid prototyping, program understanding, and testing, as users
of languages with REPLs readily attest.

Blink advances the state of the art of expression evaluation by accepting mixed-environment
expressions, which nest subexpressions from multiple languages and environments with a lan-
guage specification operator. It is based on the insight that, given single-environment interpreters,
mixed-environment expression evaluation reduces to handing off subexpressions to the component
debuggers and passing intermediate results between them.

Blink implements mixed-environment expressions written in the Jeannie programming language
syntax [10], which mixes Java and C code using the incantation ‘backtick period language’, that
is, ' .Cand ' .Java. A single backtick * toggles when there are only two languages, as in Blink.
For example, consider this native Java method declaration from the BuDDy binary decision diagram
library [17]:

public static native int makeSet (int[] var);

The C function implementing this Java method is as follows.

jint BuDDyFactory_makeSet (JNIEnv xenv, Jjclass cls, JjintArray arr) {
/+ C code using parameters through JNI x/
}

In the C function, the variable arr is an opaque reference to a Java integer array. Single-language
expression evaluation could only print its address, which is not helpful for debugging. But the mixed-
environment expression ‘.Java (('.C arr).length) (or ' ((‘arr) .length) for short)
changes to the Java language and accesses the Java field 1ength of the C variable arr, returning
the length of the Java array, which is much more meaningful to the user.

Blink decomposes a Jeannie expression into language-specific subexpressions and delegates the
tasks of evaluating each subexpression to language-specific component debuggers. The delegation
task is based on two primitive commands parameterized by languages: backtick and print.

backtick. backtick implements the semantics of the backtick operator in Jeannie in the
following form:
backtick(source, target) expression

source and farget are programming languages, and expression is an expression in the source lan-
guage. backtick evaluates expression, transfers the result value from the source language to
the target language, and returns the name of a fresh variable in the farget language holding the
transferred value.

print. print generalizes expression evaluation in component debuggers by taking a language as
a parameter as well as an expression in the following form:
print(lang) expression

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

B.LEE ET AL.

lang is a programming language, and expression is an expression in the lang language.

After Blink decomposes a Jeannie expression into single-language subexpressions, it executes
a sequence of the two primitive commands. For instance, *.Java (('.C arr) .length) is
decomposed into the following three primitive commands.

backtick (c, java) arr => _v0
backtick (java, c) _v0.length => vl
print (c) vl

The first backtick command evaluates the arr expression in C holding an opaque reference
to a Java array, transfers the opaque reference to a Java reference, and returns a fresh variable in
Java holding the Java reference. The second backtick command evaluates the Java expression
containing the fresh variable from the first command, obtains the length of the Java array, transfers
the integer value from Java to C, and returns a fresh C variable that holds the C integer value. The
last print command evaluates the C variable v1, thus printing the length of the array.

4.2.1. Implementing the backtick command. To convert and store values across languages in
a backtick command, we add two features: mixed-environment data transfer and convenience
variables.

Mixed-environment data transfer. Mixed-environment data transfer is constrained by the kinds
and mappings of data types and values offered by the FFI. For instance, the set of exchangeable types
in JNI includes a few Java primitive types (e.g., jint) and dozens of opaque reference types (e.g.,
jobject). The mechanisms of transferring data across languages are baked in the implementations
of FFIs. For instance, a call from Java to C converts a Java reference into an opaque reference,
whereas a call from C to Java converts an opaque reference to a Java reference.

To transfer data values across languages in general, Blink delegates the value conversion task to
the intermediate agent executing calls between Java and C inside the debuggee process. For instance,
Blink converts an opaque reference to a Java reference by generating and evaluating a C expression
that contains the JNI reference as a parameter to a call to the agent’s function. The agent transfers
the opaque reference to a Java reference and stores the result in a Java global variable. Blink next
generates and evaluates a Java expression to extract the Java reference in the global variable.

One complication in this meta-programming approach of generating and evaluating expres-
sions is the static typing in Java and C that expects all generated expressions to be correctly
typed. In the case of C values, gdb provides exactly what Blink needs: the whatis command
finds the type of an expression without executing it. For instance, consider a backtick command
backtick(c, java) p where p is an opaque reference. The whatis command discov-
ers that the type of p is jobject, and Blink chooses the agent function c2java_ jobject,
which transfers an opaque reference in C into the reference in Java. Blink then generates and eval-
uates c2java_jobject (p) as a correctly typed C expression by construction. If the type of
p is jint, Blink would choose the agent function c2java_jint that expects an argument of
the jint type. All values of opaque reference types (e.g., jstring and jarray) go through
c2java_jobject. The eight primitives types (e.g., jboolean and jint) have their special-
ized agent functions (e.g., c2java_jbooleanand c2java_jint). These agent functions share
the c2java prefix and return the location of a Java global variable of type Object containing
the transferred value. Primitive values are wrapped into Java objects (e.g., Integer). To extract
the value in a variable o, Blink adds either type casts or method calls to the variable. For instance,
((Integer)o) .intValue () is the expression for extracting the integer value stored in the
wrapper object.

In case of Java values, jdb lacks the necessary functionality, and our workaround takes advan-
tage of method overloading in Java and jdb. The Blink agent declares several overloaded java2c
methods in Java for the argument types of Object and the eight primitive types. jdb chooses one
of the overloaded methods by matching the types of formal and actual arguments. For instance, jdb

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

DEBUGGING MIXED-ENVIRONMENT PROGRAMS WITH BLINK

chooses the overloaded method of receiving a Java reference if the Java expression has reference
type instead of other overloaded methods receiving a value of primitive types.

Convenience variables. Convenience variables store the results of a (sub)expression evaluation
in temporary variables. Application variables are named locations in which application code stores
data during execution. Convenience variables are additional named locations provided by the debug-
ger, in which the user interactively stores data for later use in a debugger session. Convenience
variables behave like variables in many scripting languages: they are implicitly created upon first
use, have global scope, and are dynamically typed. In addition to user-defined convenience vari-
ables, some debuggers support internal convenience variables, for example, to hold intermediate
results during expression evaluation. In the mixed-environment case, the debugger must remember
not only the values of convenience variables but also their languages. Because gdb provides conve-
nience variables (written ‘Svar’), Blink reuses them to store C values. Because jdb and cdb lack
this feature, Blink implements convenience variables in the debugger agent, using a table to map
names to values and languages.

4.2.2. Read—eval—-print loop. This section explains how Blink evaluates expressions.

Read. As suggested by Rosenberg [9], the Read stage of Blink’s REPL reuses syntax analysis
code. We reuse the Jeannie grammar, which composes Java and C grammars [10, 18]. It is written in
Rats!, a parser generator that uses packrat parsing for expressiveness and performance. The Jeannie
grammar and Rats! are designed for composition. Blink uses abstract syntax tree (AST) implemen-
tations from the xtc compiler framework, which is integrated with Rats/ and provides generic tree
walking support.

Eval. The Eval stage of Blink’s REPL evaluates the AST in two passes. Both passes use depth-
first left-to-right tree traversals. The first pass annotates each AST node with its language (Java
or C). Figure 4 shows how Blink annotates the AST for the expression ‘x = $y + ‘z’, assuming
that the current language is Java.

The second pass does the actual evaluation. The evaluation pass uses the backtick and print
commands discussed earlier for language transitions and for the root of the AST, respectively. That
leaves only AST nodes for operators in the languages being debugged. Rather than eagerly eval-
uating such nodes one by one, the evaluation pass builds up expression strings corresponding to
maximum single-language subtrees. Evaluation of those expression strings is delayed as far as pos-
sible and is only forced at AST nodes for backtick or print. Figure 5 illustrates this. For example, the
evaluator delimits single-language subtrees in Java and C at backtick and creates a convenience
variable _vj as a representative of the subtree below backtick. Rather than eagerly comput-
ing the result of $y + _v3j at the + node, the evaluator merely computes an expression string at

Figure 4. Reading and annotating the expression x = $y + ‘=z when the current language is Java.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

B.LEE ET AL.

print|"99 bottles"

|
PN
X + Sy + _v]j
PN
|

zZ Z

= Sy + _v]j

Sy |$

_V]

Figure 5. Evaluating the expression x = $y + ‘z when the current language is Java, and the current
values of Sy and z are the integer 99 and a C reference to the Java string " bottles", respectively.

interpret (astNode) :

1

2 lang < astNode.language

3 if astNode.operator == BACKTICK:

4. source < astNode.children[0].language

5. subExpression < interpret (astNode.children[O0])

6 tmpVarName < backtick (source, lang) subExpression

7 return tmpVarName

8. else if astNode.operator == PRINT:

9. subExpression < interpret (astNode.children[O0])

10. print (lang) subExpression

11. return null

12. else: //single-language operator of one of the concrete languages
13. for each i in range (0, astNode.children.length):

14. subExpressions[i] <« interpret (astNode.children[i])
15. op < astNode.operator

16. expression <« generate(lang, op, subExpressions)

17. return expression

Figure 6. Pseudo-code for the Eval stage of Blink’s REPL.

that point. That string is further incorporated into the generated string for the parent = node and
ultimately evaluated as part of the print node.

Figure 6 shows the algorithm for the expression evaluation pass. The interpret function visits
an AST node and returns a subexpression to be incorporated by the evaluation of the parent node.
Lines 3—7 handle backtick nodes in the AST by invoking the backt ick function described earlier.
The backtick function evaluates an expression in the source language, transfers the result to the
target language, stores it in an internal convenience variable, and returns the name of that temporary.
Lines 8-11 handle print nodes by invoking the print function described earlier to display a result
to the user. Because print nodes are always at the root of the AST, this case returns null. Finally,
lines 12—17 handle all other AST nodes, which correspond to normal C or Java operators or user-
visible debugger convenience variables. For such nodes, the interpreter first computes expression
strings of children (e.g., $y and _vj in Figure 5) and then combines them with the appropriate
operator syntax (e.g., + is an infix operator, so the combined expression is $y + _VvJj).

In our conference paper [12], Blink used to take a ‘one node at a time’ approach for expression
evaluation. This choice kept the engineering effort reasonable and increased our confidence that
Blink was accurate. However, it lead to a large number of calls to component debuggers. More
importantly, Blink had to special-case 1-values by delaying their evaluation and building up larger
expressions. We subsequently changed Blink, so it delays all single-language evaluation, not just
that of 1-values. This choice simplifies the overall design and speeds up the interpreter, because it
makes fewer round trips to component debuggers.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

DEBUGGING MIXED-ENVIRONMENT PROGRAMS WITH BLINK

Print. When expression evaluation reaches the root of the tree, Blink prints the result. As recom-
mended by Rosenberg, Blink disables user breakpoints for the duration of expression evaluation,
because the user would probably be surprised when expression evaluation hits a breakpoint in a
callee [9]. But there may be other exceptional conditions during expression evaluation, such as
Java exceptions or C segmentation faults. In this case, Blink aborts the evaluation of the current
expression, and the debug session continues at the fault point instead. Whether expression evalua-
tion terminates normally or abnormally, Blink always nulls out internal convenience variables for
subresults and re-enables all user breakpoints.

5. BLINK IMPLEMENTATION

While previous sections described debugger composition and the advanced features it enables at a
high level, this section explains Blink’s implementation in detail.

5.1. Controlling component debuggers

In order to control component debuggers, Blink employs event-driven programming. The event
sources include the drivers for each component debugger, and the event sink is the controller. This
event-driven programming framework decouples the controller from the component debuggers as
well as allowing Blink to issue appropriate actions based on the sequence of events from the com-
ponent debuggers. The drivers communicate with the component debuggers through Posix pipes by
sending and receiving textual messages. Each driver recognizes some patterns of the textual output
when it sends a command, waits for the completion of the command, and generates an event contain-
ing the result. This choice of the textual interface is driven by the command line interface available
in the single-environment debuggers such as jdb, gdb, and cdb, but our event-driven framework
could also accommodate any kinds of interface to component debuggers.

5.2. Blink debugger agent

The Blink debugger agent is a dynamically linked library that includes both Java and native code and
that executes within the JVM hosting the application. The host JVM loads and initializes the Blink
agent using the Java virtual machine tool interface (JVMTI) [19]. Blink triggers single-environment
debugger actions using their expression evaluation features. As far as the component debuggers are
concerned, these actions are initiated by the application process.

Debugger context switching. Blink supports switching contexts between its component debug-
gers as illustrated in Figure 3. The helper functions j2c and c27j are part of the Blink debugger
agent and contain breakpoints set during initialization. These internal breakpoints force the
application to surrender control to the respective debugger.

Runtime transition interposition. = The Blink agent interposes on all environment transitions
to report full mixed runtime stack traces and to control single stepping between environments.
Figure 7 shows the four possible transitions between Java and C. (Exceptions do not add additional
cases, because at the boundary between environments, they are indistinguishable from returns.) The
program in Figure 8 contains mutual recursion between Java and C to exercise the four kinds of
transitions. jPing in Java and PingPong cPong in C call each other until the integer argument
reaches zero.

j2c call: Line 8 in Figure 8 is an example of a call from Java to C. It looks just like an ordinary
method call, and in fact, with virtual methods, the same call in the source code may invoke native
methods or Java methods. To interpose on j2c calls, the Blink agent wraps all JNI native methods.
For example, the wrapper function for the native method PingPong cPong on line 14 in Figure 8
conceptually reads as follows:

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

B. LEE ET AL

| Java Native Interface i
i in JVM !
I
I

]
|
j2c-call

j2c-return

c2j-call

Figure 7. Transitions between Java and C.

PingPong.java

1. class PingPong {

2 static { System.loadLibrary("PingPong"); }
3. public static void main(String[] args) {
4. JPing (3) ;

5 }

6 static int jPing(int 1) {

7 if (1 > 0)

8 cbPong(i - 1);

9. return 1i;
10. }
11. static native int cPong(int 1i);
12. }

PingPong.c

13. #include <jni.h>
14. jint PingPong_ cPong (

15. JNIEnv* env, jclass cls, jint i

16.) {

17. if (1 > 0) |

18. jmethodID mid = (*env)->GetStaticMethodID (
env, cls, "jPing"™, "(I)I");

19. (*env)->CallStaticIntMethod (env,cls,mid, i-1);

20. }

21. return 1i;

22. '}

Figure 8. JNI mutual recursion example.

jint wrapped_PingPong_cPong(...) {
j2c_call(); /* interposed j2c call =/
jint result = PingPong_cPong(...);

j2c_return(); /* interposed Jj2c return =/
return result;

Because Blink cannot know all native methods at start-up, and part of the wrapper is specific to
the C function being wrapped, Blink needs to generate code on the fly. On the other hand, most
of the wrapper is general, just passing arguments to and results from the original native method
implementation while also invoking the debugger agent. Therefore, instead of generating code for
the entire wrapper, Blink just generates a small trampoline in assembly code. For instance, consider
the assembly code template for IA32 in AT&T syntax:

movl S$descriptor, %eax
Jmp j2c_wrapper

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

DEBUGGING MIXED-ENVIRONMENT PROGRAMS WITH BLINK

Sdescriptor is a parameter that identifies a native method. The agent dynamically generates
two instructions for the native method, saves the address of the native method, and uses JVMTI’s
NativeMethodBind to replace the address of the native method with the address of the generated
code. When the host JVM activates the native method, the first instruction stores the identity of
the native method into the scratch register $eax, and the second instruction jumps to the generic
wrapper j2c_wrapper. The generic wrapper receives the identity of the native method through
the scratch register, extracts the arguments, and calls the original native method.

This approach is simple and general; that is, it does not require the full power of dynamic code
generation. However, it does require some porting effort across architectures and operating systems.
In our experiences with IA32 for Unix and Windows, the non-portable code amounts to only 10-20
lines of assembly.

j2creturn: The Blink agent interposes on returns from a C function to a Java method through the
JNI native method wrapper function shown earlier. The return looks just like an ordinary function
return, and, in fact, the same C function can return to Java or to C.

c2j call: All calls from C to Java go through a JNI interface function, such as
CallStaticIntMethod in Figure 8 on line 19. Blink instruments every c27j interface function.
All interface functions reside in a struct of function pointers pointed to by variable INIEnv* env
on line 15 of Figure 8. During JVMTI initialization, Blink replaces the original function pointers by
pointers to wrappers. Conceptually, the wrapper for CallStaticIntMethod reads as follows:

int wrapped_CallStaticIntMethod(...) {
c2j_call(); /* interposed c2j call x/
int result = jvm_CallStaticIntMethod(...);
c2j_return(); /* interposed c2j return */
return result;

}

Note that, for demonstration purposes, Section 4.1.1 showed a different wrapper for
CallStaticIntMethod. In the actual implementation, the wrapper also performs the check for
pending exceptions.

c2j return: The same wrappers that interpose on c27j calls also interpose on c27j returns, as
shown earlier.

5.3. Context management

One basic debugger principle from Rosenberg’s book [9] is ‘Context is the torch in the dark cave.’
Users, unable to follow all the billions of instructions executed by the program, feel like they are
being taken blindfolded into a dark cave when searching for the source of a bug. When the program
hits a breakpoint, the debugger must provide context.

Source line number information. The most important question in debugging is “Where am 1?°
Debuggers answer it with a line number. Java compilers provide line number information to jdb,
and C compilers provide line number information to gdb or cdb, which Blink borrows.

Calling context backtrace. While “Where am I?” is the most important question, ‘How did I get
here?’ is a close second. Debuggers answer this question with a calling context backtrace, which
shows the stack of function calls leading up to the current location. The JNI code in Figure 8 is an
example of mixed-runtime calls that produce a mixed stack. In the beginning, the main method on
line 4 calls the jPing method with argument 3, yielding the following stack:

main:4 — jPing (3) : 7

Because 1 > 0, control reaches line 8, where the Java method j Ping calls native method cPong
defined in C code as function PingPong_cPong:

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

B.LEE ET AL.

main:4 — jPing(3) :8 — cPong (2) : 17

The C function cPong calls back into Java method jPing by first obtaining its method ID on
line 18, and then using the method ID in the call to CallStaticIntMethod on line 19:

main:4 — jPing (3) :8 — cPong (2) :19 — jPing (1) : 7

Finally, after one more call from j Ping to cPong, the mixed-environment mutual recursion comes
to an end as it reaches the base case 1 = 0:

main:4 — jPing (3) : 8 =+ cPong (2) :19 — jPing (1) : 8 — cPong (0) :17

At this point, the stack contains multiple and alternating frames from each environment. Unfortu-
nately, the single-environment debuggers only know about a part of the stack each, because each
environment uses its own calling conventions. For example, a standard Java debugger shows all Java
fragments, with gaps for the C parts of the stack:

main:4 — jPing (3) :8 — ?(C) — jPing (1) : 8 — ?(C)
A standard C debugger has even less information. It only shows the bottom-most C fragment:
?(Java/C) — cPong (0) : 17

Neither gdb nor cdb understands the JVM implementation details for Java frames.

Blink weaves the complete stack from JVM call frames and native method frames by exploiting
the Java native method wrappers discussed in Section 5.2. The j 2c wrapper saves its frame pointer
and program counter in a thread local variable, and the c2j wrapper retrieves the saved frame
pointer and program counter while also overwriting its old frame pointer and return address. Mod-
ifying the processor state accordingly guides the C debuggers to skip JVM-specific native frames
between j2c and c2j wrappers and yields the following C frames:

cPong (2) :19 - wrapped_CallStaticIntMethod
— wrapped_PingPong_cPong — cPong (0) : 17

Blink recognizes its agent wrapper functions and presents the interleaved Java and C stack:

main:4 — jPing (3) :8 — cPong (2) :19 — jPing (1) : 8 — cPong (0) :17

Blink thus recovers and reports the full stack to the user as needed. These implementation details
will vary for other languages, their environments, and their debuggers. As described later, the user
can also inspect data from both languages at a breakpoint.

5.4. Execution control

With context as the torch, execution control is the means by which the user can get from point A
to B in the cave when tracking down a bug. The debugger controls execution by starting up, tearing
down, setting breakpoints, and stepping through program statements based on user commands.

Start-up and tear down. The Blink controller starts the program in the JVM, attaches jdb and
either gdb or cdb, and loads the Blink debugger agent. To load the agent, Blink uses JVMTI and
the -agentlib JVM command line argument. To initialize the agent, Blink issues internal com-
mands, such as setting two internal breakpoints: one for Java and the other for C.* After it initializes

The internal breakpoints are multiplexed for several conditions. See Section 7.3 for the performance impact of evaluating
these conditions.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

DEBUGGING MIXED-ENVIRONMENT PROGRAMS WITH BLINK

and connects all the processes, but before the user program commences, Blink gives the user a
command prompt. When the program terminates, Blink tears down jdb and gdb/cdb and exits.

Breakpoints. Breakpoints answer the question: ‘How do I get to a point in program execution?’
Users set breakpoints to inspect program states at points they suspect may be erroneous. The
debugger’s job is to detect when the breakpoint is reached and then transfer control to the user.
One of the key challenges for a mixed-environment debugger is setting a breakpoint for a location
in an inactive environment. This functionality requires the debugger to transfer control to the
other environment’s debugger, set the breakpoint, and return control to the current environment’s
debugger. Blink takes the breakpoint request from the user and checks if the request is for Java
or C. If the current environment does not match the breakpoint environment, Blink switches the
debugging context to the target environment and directs the breakpoint request to the corresponding
debugger.

Single stepping. Once the application reaches a breakpoint, the question is “What happens next?’
Users want to single step through the program, examining control flow and data values to find errors.
The step into, or simply step, command executes the next dynamic source line, which may be
the first line of a method call, whereas the step over, or next, command treats method calls as a
single step. The challenge for mixed-environment single stepping is that while j db can step through
Java and gdb or cdb can step through C, they lose control when stepping into a call to the other
environment or when returning to a caller from the other environment.

Blink maintains control during a step command as follows. It sets internal breakpoints at all
possible language transitions, so if the current component debugger loses control in a single step,
then the other component debugger immediately gains control. Blink only enables transition break-
points from the current environment to the other environment when the user requests a single
step. Furthermore, when the user requests step over as opposed to step into, Blink enables return
breakpoints, as opposed to both call and return breakpoints. Note that Blink does not make any
attempts to decode the current instruction, but rather aggressively sets needed internal break-
points just in case the single step causes an environment transition, and then operates on the user
command. This approach greatly decreases debugger development effort, because accurate Java
single stepping requires interpreting the semantics of all bytecodes and accurate C single stepping
requires platform-dependent disassembly. Blink therefore relies on the component debuggers for this
functionality.

Once Blink sets the internal breakpoints, it implements single stepping by issuing the correspond-
ing command to jdb or gdb/cdb. There are three possible outcomes.

1. The component debugger’s single step remains in the same environment. Blink performs no
further action.

2. There is an environment transition and consequently an internal breakpoint intercepts it. Blink
steps from the internal breakpoint to the next line.

3. An exceptional condition, such as a segmentation fault, occurs. Blink abandons single

stepping.

In all cases, Blink then disables its internal breakpoints, as usual for breakpoint algorithms [9].

5.5. Data inspection

Once the user arrives at an interesting point, the main question becomes ‘Is the current state correct
or infected?’ This question is hard to answer automatically, so data inspection answers the sim-
pler question ‘What is the current state?” Blink delegates the inspection of application variables,
including locals, parameters, statics, and fields, to the component debugger for the current environ-
ment, which provides the most local origin for a variable. However, if the variable is declared in
a different environment, the user would add a backtick to the variable so that Blink uses the other
component debugger.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

B.LEE ET AL.

6. GENERALIZATION

The previous sections focus on composing debuggers for Java and C. This section discusses
how to generalize our approach to more environments, starting with the three requirements for
composing debuggers.

Single-environment debuggers: As should be expected, debugger composition requires single-
environment debuggers to compose. The single-language debuggers must support execution
control, context management, and data inspection (as discussed in Section 3.1). The controller
can extract these features through a command line interface (which is what we use), an API, or a
wire protocol.

Language transition interposition: Our approach requires instrumenting local and non-local con-
trol flow in all directions across environment boundaries. For Blink, we leverage Java’s
wrapper-based FFI to meet this requirement and instrument the wrappers. However, there are
other viable implementation strategies for interposition. For example, for an interpreted language,
the interpreter can call the instrumentation when encountering a transition. For a compiled lan-
guage, the compiler can inject a call to the instrumentation when compiling a transition. Finally,
when only compiled code is available, static or dynamic binary instrumentation can implement
interposition.

Debugger context switching: Our approach requires external interfaces to single-environment
debugging functions, such as print or eval. Most single-environment debuggers provide these
commands, including jdb and gdb. This ability is also a defining feature for languages with
interactive interpreters, such as Perl, Python, Scheme, and ML. On the other hand, if the single-
environment debugger does not support direct function invocation, such as in Caml, we must
call the helper function through other means, for example, using an agent helper thread, adding
functionality, or using a lower-level API underlying the single-environment debuggers.

Composing environments. Most language implementations interoperate with C and implement
interoperating with other languages using C. Given two environments where one environment is the
native C environment, it is easy to satisfy the aforementioned criteria. For instance, Perl, Python,
and Ruby have debuggers and FFIs to C. We can thus satisfy the three requirements as follows:
(i) reuse the perldebug, pdb, or ruby-debug single-environment debuggers and their inter-
faces; (ii) extend the runtime systems to interpose calls to native methods; and (iii) use perldebug,
pdb, or ruby -debug to evaluate calls to native methods that trigger a C breakpoint. We implement
all of these as a proof of concept, as described later.

For more than two environments (N > 2), there are N(N=1) possible language transitions to
interpose on and debugger context switches to perform. In theory, we could implement composition
by adding agents for each pair of environments. In practice, the native C environment often acts
as a bridge environment, because most environments implement FFIs to C. Using C as a bridge
environment, all the essential requirements are satisfiable: (i) N single-environment debuggers
handle their corresponding N environments; (ii) interposition captures transitions between the N
environments and C, because every transition goes through C; and (iii) debugger context switching
to any environment also goes through the bridging C environment.

Feasibility of composition. We conducted an experimental study to investigate how our approach
generalizes beyond JNI. Table I summarizes the results of this feasibility study of our debugger com-
position. We implement prototype language interposition for five of the six languages in the table.
These languages offer a variety of FFIs, execution environments, and single-language debuggers.
For each language, we spend one day to build a prototype intermediate agent in dozens of lines
of code (LOC). We perform a simple test of executing a debugee program written in Common Lisp,
C#, Perl 5, Python, and Ruby languages. The programs transition between the original language
and C. We attach both gdb and the single-language debugger to the debuggee program, load the
intermediate agent, and trigger debugger context switching at both C and the other language. Suc-
cessful debugger context switching indicates very strong evidence that are our debugger composition
approach will be successful in this language settings. Five of the six prototypes successfully per-

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

DEBUGGING MIXED-ENVIRONMENT PROGRAMS WITH BLINK

Table I. Feasibility of debugger composition using the lines of code (LOC) in the prototype
intermediate agents over additional programming languages, foreign function interfaces, and
single-language debuggers.

Language Foreign function interface Debugger Feasibility LOC
Caml OCaml/C ocamldebug Weak

Common Lisp CLISP foreign function call facility top level loop Strong 21
C# P/Invoke sdb Strong 49
Perl 5 XS perldebug Strong 48
Python Python/C pdb Strong 58
Ruby Ruby C extension ruby-debug Strong 27

form the context switches between languages. Caml’s debugger (ocamldebug) does not satisfy
the requirement of evaluating expressions containing function applications, and we could not find
any workaround without adding this functionality to the debugger. For the five other debuggers for
Common LISP, C#, Perl 5, Python, and Ruby, we trigger debugger context switching successfully.

Given that a significant fraction of single-language debuggers evaluate expressions containing
calls to the helper functions in agents or the programming execution environment uses interpretation,
we conclude that the requirements for debugger composition are very often met in practice.

7. EVALUATION

This section evaluates our claim that debugger composition is an economical way to build mixed-
environment debuggers and that the resulting debuggers are powerful. We show that Blink is
relatively concise, new development cost is low, the space and time overheads are low, and the
resulting tool is portable.

7.1. Methodology

We rely on single-environment debuggers, JVMs, C compilers, and operating systems. We use
JDK 1.7 as implemented by Oracle and IBM. For the debuggee running on Linux/IA32 machines,
we use Oracle Hotspot Client 1.7.0_25 [20] and IBM’s J9 1.7.0 SR6 [21]. jdb 1.6 and gdb 7.4
inspect code and data produced by Oracle’s javac 1.7.0_25 and gcc 4.6.3 with the -g option.
For Windows, we use Oracle’s Hotspot Client 1.7.0_45, Oracle’s JDK 1.7 jdb, Microsoft’s C/C++
compiler (cl.exe) 16.00.30319.01, and Microsoft’s cdb 6.12.0002.633 debugger. For MinGW,
an open-source development environment for native Microsoft Windows applications, we use gcc
4.8.1 and gdb 7.6.1.

7.2. Building Blink

Blink’s modest construction effort leverages the large engineering effort and supported plat-
forms of existing single-environment debuggers. To quantify this claim, we count non-blank
non-commenting source lines of code (SLOC), which is an easily available but imperfect measure
of the effort to develop and maintain a software package. Given the orders of magnitude differences
in SLOC, we are confident that this metric reflects substantial differences in engineering effort.

7.2.1. Construction effort. Table Il shows the code sizes of Blink, jdb, gdb, and their components.
The line counts for jdb, JDI, JDWP, and JVMTI are for the source lines of OpenJDK 1.7.0_25.
The JDI line counts are for the JDI implementation under jdk/src/share/classes/
com/sun/tools/jdi and three others. JDWP line counts are for the source files under
jdk/src/share/back that are compiled into the JDWP agent. The JVMTI line counts are from
the source files under hotspot/src/share/vm/prims. Blink adds a modest 10,295 SLOC
to integrate 1,478,818 SLOC from the Java and C debuggers. The SLOC of the existing debugger

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

B.LEE ET AL.

Table II. Debugger source lines of code (SLOC).

Debugger SLOC Files
Blink 10,295 45
Controller (front-end) 4,924 18
jdb driver (back-end) 384 1
gdb driver (back-end) 514 1
cdb driver (back-end) 533 1
Agent - Java (back-end) 1,717 11
Agent - C (back-end) 2,223 13
Java debugger — jdb 1.6 99,016 473
jdb (user-interface) 19,314 119
JDI (front-end) 13,617 208
JDWP Agent (back-end) 16,668 79
JVMTI (back-end) 49,417 67
C debugger — gdb 7.4 1,379,802 3,817
gdb 599,400 2,878
include 41,271 284
bfd 353,887 430
opcodes 385,244 225

packages are 9—134 times larger than Blink’s. Although other researchers show how to build single-
environment debuggers more economically than gdb [22, 23], Blink adds modestly to this effort.
Blink only adds new code for interposing on environment transitions and for controlling the individ-
ual debuggers. Blink otherwise reuses existing debuggers for intricate platform-dependent features
such as instruction decoding for single stepping and code patching for breakpoints.

7.2.2. Portability. To evaluate the effort required for porting Blink to multiple platforms, we mea-
sure the amount of platform-independent and platform-dependent code and examine how it relies
on architectures and operating systems.

The basic composition framework requires 4,924 SLOC. Blink needs an additional 4,838 SLOC
in the agent, jdb driver, and gdb driver to support our initial configuration, which uses Ora-
cle Hotspot JVM, jdb, and gdb running on Linux/IA32. Out of Blink’s total 10,295 SLOC,
approximately 1,500 SLOCs implement platform-specific code in the agent and debugger drivers,
representing about 15% of Blink’s code base. Our native agent contains a small amount of non-
portable platform-specific and ABI-specific code to access the native call stack. Furthermore, a
small amount of debugger-specific code is required because cdb exposes a different user interface
than the more expressive gdb. Consequently, Blink employs an internal adaptation layer to provide
uniform access to either gdb on GNU platforms or cdb on Windows.

Dozens of source lines in the agent rely on architecture and OS. The architecture-dependent
code is composed of an assembly template to wrap native methods and some inline assembly code
to stitch frames of native methods and JNI functions. The OS-dependent code abstracts process
identifiers and synchronization primitives. Specifically, the agent obtains the process identifier of
a debugee to attach itself to a native debugger and uses mutexes to protect some data structures
keeping track of the set of wrapped native methods and allocating memory for the generated machine
code from an assembly code template.

7.2.3. Portability tests. We now briefly describe some of our functionality tests. They give us
confidence that our implementation is correct and complete on all supported platforms.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

DEBUGGING MIXED-ENVIRONMENT PROGRAMS WITH BLINK

Context management. This test sets two breakpoints, at jPing (PingPong.java:7) and
cPong (PingPong.c:17) in Figure 8. During execution, the application hits each of these
breakpoints twice and issues the backtrace command each time.

Execution control. This test first sets a breakpoint at the main method of the mutual recursion
example in Figure 8. From there, the test repeatedly uses the step command until the end of the
program. This test exercises all cases of mixed-language stepping through calls and returns.

Data inspection. This test first sets a breakpoint in a nested context of two example programs in
the Blink regression test suite. (The interested reader can find these programs in the open-source
distribution of Blink [11].) When the application hits the breakpoint, the test evaluates a variety of
expressions, covering primitive and compound data, pure expressions and assignments, language
transitions, and user function calls.

Results. All these and other functionality tests succeed for the following configurations on IA32:

Oracle JVM Linux
{IBM VM } {MinGW} + gdb

The ‘MinGW’ case uses Windows with the GNU C compiler, instead of Microsoft’s C compiler. We
performed cursory testing of Blink with Microsoft’s C compiler and Microsoft’s C debugger on all
the key debugger functionality:

Oracle JVM + Windows + cdb

In this configuration, context management and execution control are fully supported, but data inspec-
tion is only partially supported because cdb’s expression evaluation features are incomplete when
compared to gdb.

7.3. Time and space overheads

This section shows that the time and space overheads of Blink’s intermediate agent are low.

Time overhead. The time overhead of the intermediate agent is linearly proportional to the num-
ber of dynamic transitions between Java and C, because it installs wrappers in both Java native
methods and JNI functions. These wrappers add a small number of instructions to the dynamic
instruction stream for each transition between Java and C.

To measure the performance impact of interposition in the intermediate agent, we compared the
execution times with and without the agent. We measured runtime with Oracle Hotspot 1.7.0_25
running on a Linux/IA32 machine on the SPECjvm98 and DaCapo Java v.2006-10 Benchmarks [24,
25]. These Java benchmarks exercise C code inside the standard Java library. The initial heap size
was 512 MB, and the maximum heap size was 1 GB. The experiments used an Intel Xeon E5-2665
2.4 GHz running Linux 3.2.0-48. Each benchmark iterated once. We took the median of 16 trials
and normalized the execution time with the agent by the time without the agent. On average, Blink’s
total overhead is 2%.

Space overhead. The space overhead of running Blink is mostly due to additional code loaded
into the debuggee. In particular, on Linux/IA32, the intermediate agent itself requires about 286 KB
for machine code and data. Additionally, each native method incurs 52+ bytes space overhead for
its wrapper, instantiated from an assembly code template and descriptor containing the type signa-
ture of the native method. Finally, each thread requires 40+ bytes of thread-local storage used by
the intermediate agent and 32+ bytes for each wrapper activation on the stack for an environment
transition. We do not measure total space overhead in a live system, because it is small by design.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

B.LEE ET AL.

8. DEBUGGING MIXED-ENVIRONMENT PROGRAMS

This section presents our experience of debugging real-world mixed-environment programs with
Blink. We classify mixed-environment bugs into two classes: (i) bugs with cause—effect chain across
execution environments and (ii) language interface bugs.

8.1. Bugs with a cause—effect chain across execution environments

Bug 322222 in the Eclipse Bugzilla database illustrates a heroic debugging effort for a critical bug.
The bug crashed JVMs frequently enough to cause more than 14 duplicate bug reports: 261627,
283024, 285749, 291128, 299732, 300637, 303389, 316527, 318623, 319609, 320590, 321929,
323107, and 325238. It had survived more than a year from 2009 to 2010 with more than 100
comments from dozens of programmers before the patch went into Eclipse 3.6.1 in September
2010. Debugging was painful because the erroneous execution included two events in different
environments: an exception in Java and a segmentation fault in C. Figure 9 presents a program in
Java derived from the test case in Bug 323107 to show that a Java exception triggers a segmentation
fault in C. The only difference between SWTBug322222 . success and SWTBug322222.fail
is the call-back listener that throws a Java exception. SWTBug322222 . fail creates a table widget
object, sets the number of entries, and computes the size of the widget object. This process contains
extensive cooperative calls between Java and native code. The native code determines how a table
entry will be graphically shown, and Java code determines what data will be displayed for the
table entry.

Figure 10 simplifies the activation tree from SWTBug322222.fail where the control flow
goes across Java and C. On a successful run, it would have created a table data entry for a table wid-
get in the call to gtk _tree view column cell set cell data and estimated the size
of the table widget in the call to gtk tree view column cell get size. The program
fails to create the table data entry because SWTBug322222.handleEvent throws a Java excep-
tion. The JVM discards several Java stack frames, and CallIntMethodV returns to callback
with a pending Java exception in the current thread. The JNI requires the native code not to exe-
cute any JNI functions except for several ones that check a pending Java exception and clean up
resources. callback follows this exception state rule in the second activation by querying the
exception state with ExceptionOccured and deleting the two pointers to Java objects with
DeleteLocalRef. Unfortunately, pango layout new is oblivious of the pending exception,

import org.eclipse.swt.*; import org.eclipse.swt.widgets.x*;

public class SWTBug322222 {

static void main(String[] args) {
success () ;
fail();

}

static void success () {
final Shell shell = new Shell (Display.getDefault());
final Table tableSuccess = new Table(shell, SWT.VIRTUAL);
tableSuccess.setItemCount (100);
tableSuccess.computeSize (SWT.DEFAULT, SWT.DEFAULT);

}

static void fail() |
final Shell shell = new Shell(Display.getDefault());
final Table tableFail = new Table(shell, SWT.VIRTUAL);
tableFail.setItemCount (100);
tableFail.addListener (SWT.SetData, new Listener () {

public void handleEvent (Event e) {
throw new RuntimeException ("Acceptable");
}
1)

tableFail.computeSize (SWT.DEFAULT, SWT.DEFAULT);

}

}

Figure 9. A test case for Bug 322222 in the Eclipse Bugzilla database. SWTBug322222 . success has
no problem, whereas SWTBug322222.fail triggers a segmentation fault in the native environment. The
difference between the two methods shows that the cause of the fault is the Java exception.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

DEBUGGING MIXED-ENVIRONMENT PROGRAMS WITH BLINK

Java SWTBug322222.main
Java SWTBug322222.fail

Java org.eclipse.swt.widgets.Control.computeSize

C Java_gtk_widget_size_request

C gtk_tree_view_column_cell_set_cell_data

C callback

JNI ExceptionOccurred

JNI CallIntMethodVv

Java org.eclipse.swt.widgets.Display.cellDataProc
Java org.eclipse.swt.widgets.Widget.sendEvent
Java SWTBug322222.handleEvent

Java <<<Cause: an exception in Java>>>

C gtk_tree_view_column_cell_get_size

C pango_layout_new

C g_object_new

c callback

JNI ExceptionOccurred

JNI DeleteLocalRef

JNI ExceptionOccurred

JNI DeleteLocalRef

C <<<Effect: a segmentation fault in C>>>

Figure 10. Simplified activation tree from SWTBug322222.fail for the test case in Figure 9. Java, C,
and JNT denote Java methods, C functions, and JNI functions, respectively.

and it tries to dereference the return value from callback, which is NULL. The program ends up
with a segmentation fault.

The fix was made to Eclipse 3.6.1, and it replaced the second callback with a routine in C that
does not call any routine in Java. Specifically, the target of the second callback was rewritten
from Java to C. From the segmentation fault to the fix, the programmer must discover several
facts: (i) the origin of NULL in pango_layout new; (ii) characteristics of the pending Java
exception; and (iii) the target Java method at the second callback.

The origin of NULL. Blink runs the program and reports the segmentation fault:

blink> run
Signal received: SIGSEGV

The programmer would examine the calling context, source lines, and variables by executing a
few commands:

blink> where
[1] pango_layout_new (pango-layout.c:271)

[2] gtk_tree_view_column_cell_get_size (gtktreeviewcolumn.c:2646)
[3] Java_gtk_widget_size_request (0s.c:16216)

[4] Control.computeSize (Control.java:467)

[5] SWTBug322222.fail (SWTBug322222.java:26)

[6] SWTBug322222.main (SWTBug322222.java:7)
blink> list

268

269 layout = g_object_new (PANGO_TYPE_LAYOUT, NULL);
270

271 layout—->context = context;

blink> print layout
====> (PangoLayout =) 0x0

The statement at line 271 triggers the segmentation fault when it fails to dereference layout,
which is NULL. In order to find the origin of NULL, the programmer has no choice but to rerun
the program, set a breakpoint at line 269, and single step to callback because the call path
from g_object new to callback goes through indirect calls to the low-level machine code
generated on the fly. In other words, the programmer cannot reveal the low-level dynamic control
flow by examining the source lines from g_object new. After setting up a breakpoint at line 269,
the programmer must select one breakpoint event out of multiple ones because the program calls
pango_layout new several times. The programmer can discover the breakpoint by executing
where to print mixed-environment calling contexts:

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

B. LEE ET AL

blink> break pango-layout.c:269
blink> run
blink> where
[1] pango_layout_new (pango-layout.c:269)
2] gtk_tree_view_column_cell _get_size (gtktreeviewcolumn.c:2646)
3] Java_gtk_widget_size_request (o0s.c:16216)
4] Control.computeSize (Control.java:467)
5] SWTBug322222.success (SWTBug322222.java:14)
[6] SWTBug322222.main (SWTBug322222.java:6)
blink> continue
blink> where
[1] pango_layout_new (pango-layout.c:269)
[2] gtk_tree_view_column_cell_get_size (gtktreeviewcolumn.c:2646)
[3] Java_gtk_widget_size_request (0s.c:16216)
[4] Control.computeSize (Control.java:467)
[5]
[6]

SWTBug322222.fail (SWTBug322222.java:26)
SWTBug322222.main (SWTBug322222.java:7)

SWTBug322222.fail in the second calling context tells the programmer that the program in
execution is close to the origin of NULL because it appeared in the calling context at the segmenta-
tion fault. The programmer would single step through an indirect call to the generated machine code
to reach the origin of NULL at line 1265 in callback:

blink> step

blink> list
1162 jintLong callback (int index, ...)

1163 {
1257 done:
1259 if ((ex = (xenv)->ExceptionOccurred(env))) {
1260 (#env) —>DeletelLocalRef (env, ex);
=>1265 result = callbackData[index].errorResult;
1272 }
1285 return result;
1286 }

Characteristics of the pending Java exception. At the origin of NULL, the programmer would
like to find out what has activated the statement at line 1265. The source lines around line 1265 reveal
that a pending Java exception is responsible. The programmer would examine the Java exception.
To conclude whether or not the exception is acceptable, the programmer would examine what is in
the exception by evaluating a Jeannie expression:

blink> print jstr2cstr (' ((‘((xenv)->ExceptionOccurred(env))) .getMessage()))
====> "Acceptable"

The target Java method at the second callback. If the Java exception is feasible, the pro-
grammer is interested in finding the target of the Java method from callback. The programmer
can reverse the control decision at line 1210 in callback by clearing the pending exception with
a Jeannie expression:

blink> list
1162 jintLong callback (int index, ...)

1163 {
=>1210 if ((ex = (xenv)->ExceptionOccurred(env))) {
1211 (xenv) —>DeleteLocalRef (env, ex);
1212 goto donej;
1213 }

blink> print (xenv)->ExceptionClear (env)

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

DEBUGGING MIXED-ENVIRONMENT PROGRAMS WITH BLINK

The programmer would execute the single-stepping command several times and reach the target of
callback:

blink> list

=>1244 result = (%env)->CallIntLongMethodV (env, object, mid, wvl);
blink> step

2957 int pangoLayoutNewProc (...) {
=>2958

blink> where
[1] org.eclipse.swt.widgets.Display.pangoLayoutNewProc (Display.java:2958)

[2] CallIntMethodVv

[3] callback (callback.c:1244)

[4] g_object_new (gobject.c:1542)

[5] pango_layout_new (pango—-layout.c:269)

[6] gtk_tree_view_column_cell_get_size (gtktreeviewcolumn.c:2646)
[7] Java_gtk_widget_size_request (0s.c:16216)

[8] SWTBug322222.fail (SWTBug322222.java:26)

[9] SWIBug322222.main (SWITBug322222.java:7)

org.eclipse.swt.widgets.Display.pangoLayoutNewProc was the target method
in Java, and it was rewritten in C in the bug fix made to Eclipse 3.6.1.

8.2. Language interface bugs

Languages interface bugs happen if a program violates one of the programming rules defined by
FFIs such as JNI and Python/C. These voluminous and complex programming rules (e.g., 1500+
rules in JNI [5]) are so hard for programmers that real-world multilingual programs are full of
language interface bugs. The effect of an interface bug is not defined, and it crashes a program
immediately or insidiously. Our subsequent work on dynamic bug detectors classifies all program-
ming rules into a modest number of classes and detects all interface bugs completely [S]. Blink
detects some of these bugs and suspends the program. This section focuses on how Blink helps
programmers diagnose the source of language interface bugs.

Table III presents interface bugs along with the program, bug type, and bug site in a few open-
source programs written in Java and C. PrepStmtTest, UnitTests, SWTExceptionState,
and UDFTest are from the source packages. SWTExceptionState is an artificially created
driver program to activate a bug inside Eclipse SWT 3.6.1. BadErrorChecking is an artificially
created standalone program to show that an exception state bug can crash JVMs.

Table IV compares Blink to production runs of Hotspot and J9 for each of the bugs in Table III.
We use runtime checking in Hotspot and J9 by configuring them with the -Xcheck : jni command
line option. Blink uses jdb and gdb.

In production runs with runtime checking, Hotspot and J9 behave differently, but neither JVM
helps the user find bugs. Hotspot tends to silently ignore bugs without terminating, whereas J9 either
crashes or reports errors. While seemingly improving stability, ignoring bugs in production runs
may corrupt state, which is clearly undesirable. The JVMs’ runtime checking does not help much
for two reasons. First, error messages are largely dependent on JVM internals and are inconsistent

Table III. Blink finds JNI bugs.

Main Java class Program Bug type Bug site (source file:line)
PrepStmtTest sqlite-jdbe 3.6.0 Null parameter ~ NativeDB.c:434

UnitTests Java-gnome 4.0.10 Null parameter ~ Environment.c:48

gconf .BasicGConfApp libgconf-2.16.2 Null parameter org_gnu_gconf_ConfClient.c:425
SWTExceptionState Eclipse SWT 3.6.1 Exception state os_structs.c:1691

UDFTest sqlite-jdbe 3.6.0 Exception state NativeDB.c:184
BadErrorChecking Blink-testsuite 1.14.3 Exception state =~ BadErrorChecking.c:21

Blink finds the four JNI bugs in PrepStmtTest, UnitTests, gconf .BasicGConfApp, and UDFTest.
Blink finds the JNI bug in SWTExceptionState when running the test case under Eclipse SWT 3.6.1.
BadErrorChecking exhibits exception handling bugs reportedly common in both user-level and system-level
JNI code [3, 4].

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

B.LEE ET AL.

Table IV. Blink detects JNI bugs and hits a breakpoint whereas other tools often crash or ignore the bugs.

Production run Runtime checking Debugging with J9
(-Xcheck:jni) Single Mixed
environment environment

Main Java class Hotspot 19 Hotspot J9 jdb gdb Blink
PrepStmtTest Running Crash Running Crash Crash Fault Breakpoint
UnitTests Running Crash Warning Warning Crash Fault Breakpoint
gconf .BasicGConfApp Running Crash Running Crash Crash Fault Breakpoint
SWTExceptionState Running Running Warning Warning Running Running Breakpoint
UDFTest Running Running Warning Warning Running Running Breakpoint
BadErrorChecking Running Crash Warning Error Crash Fault Breakpoint

Running: continue executing with undefined state. Crash: abort the JVM with a fatal error (e.g., segmentation
fault). Error: exit JVM with error message. Fault: suspended by debugger due to an error inside the JVM, which
becomes inoperable. Breakpoint: suspended by debugger, while JVM remains operable.

across the two JVMs. Second and more importantly, the JVMs cannot interpret code and data in
native code, where the JNI bugs originate.

Single-environment debuggers are also of limited use. The JNI bugs trigger segmentation faults,
which are machine-level events below the managed environment. As a result, the managed envi-
ronment debugger (jdb) cannot catch the failure. The unmanaged environment debugger (gdb)
catches this low-level failure, but detection is too late. For instance, the fault-inducing code never
appears in the calling contexts of any thread when gdb detects the segmentation fault for J9 running
BadErrorChecking.

Blink stops the programs immediately after it detects the JNI error conditions, because it
understands both environments. At the point of failure, programmers can inspect all the mixed-
environment runtime state. We next discuss these errors in more detail, grouping them in two
categories: (i) null parameters and (ii) exception state checking.

Null parameters. Semantics for JNI functions are undefined when their arguments are
(jobject) OXFFFFFFFF or NULL [16]. Hotspot ignores these errors, and J9 crashes in
gconf .BasicGConfApp and UnitTests, which pass NULL to the NewStringUTF JNI
function (Table IV). NewStringUTF takes a C string and creates an equivalent Java string.
Returning NULL for a NULL input may improve reliability but violates the specification of
NewStringUTF:

Returns NULL if and only if an invocation of this function has thrown an exception. [16]

When Hotspot returns NULL, it should also post an exception. In addition, returning NULL may
mislead JNI programmers into believing that NewStringUTF returns a null Java string when
the input parameter is NULL [26]. J9 crashes and presents a low-level error message with register
values and a stack trace. The error message does not include any clue to the cause of the bug. The
JVM runtime checking does improve the error message.

Blink detects the NULL parameter and presents the Java and C state on entry to the JNI function.
Given the JNI failure in PrepStmtTest, a mixed-environment calling context tells the program-
mer that NewStringUTF does not return a null Java string for a NULL input with the following
useful error message:

JNI warning

NULL parameter to JNI Function: NewStringUTF

blink> list

434 return (*env)->NewStringUTF (

435 env, (const charx)sglite3_column_text (toref (stmt), col));
blink> where

[1] Java_org_sqglite_NativeDB_column_ltext (NativeDB.c:434)

[2] org.sglite.RS.getString (RS.java:241)

[3] org.sqglite.PrepStmtTest.set (PrepStmtTest.java:196)

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

DEBUGGING MIXED-ENVIRONMENT PROGRAMS WITH BLINK

Missing exception state checking. JNI does not define the JVM’s behavior when C code calls
a JNI function with an exception pending in the JVM. Consider this C source code from the
BadErrorChecking micro benchmark.

16. #include <jni.h>
17. JNIEXPORT void Java_BadErrorChecking call (JNIEnv xenv, jobject obj)

19. jclass cls = (xenv)->GetObjectClass (env, obj);

20. jmethodID mid = (%env)->GetMethodID (env, cls, "foo", "()V");
21. (xenv) ->CallVoidMethod (env, obj, mid);

22. mid = (*env)->GetMethodID (env, cls, "bar", "()V");

23. (xenv) ->CallVoidMethod (env, obj, mid);

24. }

At the call to Java in line 21, the target Java method foo may raise an exception and then continue
with the C code in line 22, while the JVM has a pending exception. JNI rules require that the C code
either returns immediately to the most recent Java caller or invokes the ExceptionClear JNI
function. Consequently, the call to the JNI function GetMethodID in line 22 leaves the JVM state
undefined. In fact, Hotspot keeps running while J9 crashes. This rule applies to 209 JNI functions
out of 229 functions in JNI 6.0.

Writing the corresponding error checking code is tedious and error prone. Previous work [3, 4]
reports hundreds of bugs in JNI glue code. We briefly inspected the Java-gnome 4.0.10 code base and
found two cases of missing error checking. One case never happens unless the JVM implements one
JNI function incorrectly. The other case happens only when the JVM runs out of memory, throwing
an OutOfMemoryError exception, which is rare and thus hard to find and test. For these reasons,
we created the BadErrorChecking micro benchmark.

The intermediate agent in Blink detects calls to JNI functions while an exception is pending and
asks Blink to stop the debuggee. Blink then warns the user of missing error checking and presents
the calling context.

JNI warning: Missing Error Checking: GetMethodID
[1] Java_BadErrorChecking_call (BadErrorChecking.c:22)
[2] BadErrorChecking.main (BadErrorChecking.java:5)

blink> _

9. RELATED WORK

This section describes how our paper advances the state of the art in building mixed-environment
debuggers and how Blink compares to prior work.

9.1. Mixed-environment debuggers

One contribution of this paper is an implementation of the most portable and powerful debugger
for Java and C to date. Blink’s power and portability derives from composing existing powerful and
portable debuggers. In retrospect, this idea may seem obvious, but we believe that it was previously
unclear whether composition could provide fully featured debugging across language environments.

The closest work to compositional debugging is by White, who describes a manual technique
for mixed-environment debugging for Java and C that attaches single-environment debuggers to the
same process [27, 28]. The resulting system is limited because it cannot examine a mixed stack, can-
not step into cross-environment calls, and cannot set breakpoints in one environment when stopped
in the other, all of which Blink supports.

There are three mixed-environment debuggers (dbx, XDI, and the Visual Studio debugger) that
are practical but, unlike this paper, do not use a compositional approach. These debuggers are not
easily extended nor are they portable.

The dbx debugger extends an existing C debugger for Java [7]. XDI extends an existing Java
debugger for C [6]. Both XDI and dbx are powerful, but they are less portable than Blink. XDI
works only with the Harmony JVM, which is a non-standard JVM.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

B.LEE ET AL.

Dbx works only with Oracle’s JVM on Solaris and on Linux with limited functionality. Blink is
more portable: it supports multiple JVMs (HotSpot and J9) and C debuggers (cdb and gdb) on
both Linux and Windows.

The Visual Studio debugger debugs C# and C in the CLR [8]. It is also extensible through debug
engines [29]. However, in contrast to Blink, where multiple debuggers attach to a single mixed-
environment program, each Visual Studio debug engine is responsible for one program. The CLR
provides two debugging APIs: one native and one managed. To handle a mixed-environment pro-
gram, a debug engine must use both APIs. Given two CLR debuggers, one for the native API and
one for the managed API, our compositional approach would yield a mixed-environment debugger.

9.2. Single-environment multilingual debuggers

Some multilingual debuggers require all the languages to implement a single interface in the same
environment [23, 30, 31]. For example, the GNU debugger, gdb, can debug C together with a subset
of Java statically compiled by gcj [30]. Many real-world Java applications however exceed the
gcj subset and require a full JVM to run. Compared to these approaches, ours is the only one that
leverages independently developed debuggers.

9.3. Portable debuggers

Portability of debuggers depends on their construction mechanisms: reverse engineering or instru-
mentation. In the reverse engineering model, debuggers interpret machine-level state with symbol
tables emitted by compilers and generalize the symbol table formats to add more platforms. For
instance, dbx, gdb, and 1db recognize portable symbol table formats including dbx ‘stabs’ [31],
DWARF [32], and even PostScript [22]. In the instrumentation model, a debuggee process exe-
cutes its debugger code. By construction, the instrumentation-based debuggers are as portable as
the languages of the in-process debuggers. For instance, TIDE [33], sm1d [34], and Hanson’s
machine-independent debuggers [35] do not need any extra effort for additional platforms. However,
instrumentation causes a factor 34 slowdown, which may impede adoption.

Blink leverages portability of its component debuggers, and the construction mechanisms are
portable. The evaluation of Jeannie mixed-environment expressions in Section 4.2 is platform
independent. The intermediate agent has only 10-20 lines of low-level assembly code.

9.4. Advanced mixed-language debugger features

The following subsections discuss work related to Blink’s advanced debugger features.

9.4.1. Mixed-language interpreters. One contribution of this paper is Blink’s REPL for mixed
Java and C expressions. Debuggers that support multiple languages, such as gdb, often include an
interpreter for expressions in each language. Blink is novel in that it interprets expressions by del-
egating subexpressions to the appropriate single-language debuggers. Blink’s REPL uses a syntax
for embedding Java in C and vice versa that was developed in an earlier paper on Jeannie [10].
The Jeannie paper described the language and its compiler but did not describe an interpreter or
a debugger.

9.4.2. Mixed-language bug checkers. Another contribution of this paper is Blink’s dynamic error
checker for JNI calls. The closest related work is the -Xcheck: jni flag, which turns on dynamic
error checking in Oracle’s and IBM’s JVMs. Table 3 in [3] summarizes how each JVM behaves
for a variety of bugs with and without this flag. For example, the flag traps uses of invalid local
references, or double-frees of resources. Blink provides similar functionality in a JVM-independent
way and, as an added benefit, provides a stack trace and breakpoint for debugging the problem.
There are various static bug checkers for Java and C. Static analyses are a valuable asset for
detecting bugs early. However, they suffer from false positives: not every reported bug is an actual
bug. As a dynamic checker, Blink has no false positives. Each existing static JNI bug checker is
designed to look only for some class of bugs, and some yield false negatives even for their chosen

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

DEBUGGING MIXED-ENVIRONMENT PROGRAMS WITH BLINK

class of bugs. J-Saffire infers and checks Java types from C code [13]. Kondoh and Onodera check
type-state properties on JNI code based on BEAM [3]. Tan and Croft use static analyses to study
security issues in Java’s standard library [4]. Of course, static multilingual bug checkers are not
restricted to Java and C. For example, Quail performs string analysis for Java/SQL safety [36].
Static analysis is complementary to dynamic debugging, which helps find some bugs static analysis
misses.

An alternative to finding bugs in mixed-language programs is to rewrite those programs in a
language that prevents some bugs from occurring in the first place. For example, SWIG [37] gener-
ates stubs for C to be called from Tcl. SafeJNI [38] combines Java with CCured [39] instead of C.
Jeannie [10] provides a type-checked syntactic embedding for Java and C. While these approaches
provide good long-term solutions, they also require substantial code rewrites.

10. CONCLUSIONS

Debugging is difficult and time consuming and requires good tooling support. While there are
many interactive debuggers for single-environment programs, there is a lack of debuggers for multi-
environment programs. Unfortunately, most programs in modern languages, such as Java, require
multiple environments, because they use legacy languages, such as C, for low-level code. This
paper presents a language interposition approach and implements it in Blink, a debugger for Java
and C. Blink is constructed by composing existing single-environment debuggers for Java and C. We
show that interposing a modest amount of functionality between language transitions is sufficient to
leverage the execution control, context management, and data inspection of component debuggers,
creating one debugger that understands multilingual programs and their environments. We proto-
type the interposition approach and show it works for five of six commonly used languages. Our
compositional approach makes it easier to implement, port, and even add advanced features. This
paper describes the design and implementation of Blink, an advanced, fully functional multilingual
debugger for Java and C, and some practical experiences using Blink on real-world bugs.

ACKNOWLEDGEMENTS

Much of this work was performed while Lee and McKinley were at the The University of Texas at Austin and
supported by the National Science Foundation (SHF-0910818), Samsung Foundation of Culture, Microsoft,
and CISCO. Any opinions, findings, and conclusions expressed herein are the authors’ and do not necessarily
reflect those of the sponsors.

REFERENCES

1. Furr M, Foster JS. Checking type safety of foreign function calls. ACM Programming Language Design and
Implementation (PLDI), Chicago, IL, USA, 2005; 62-72.

2. Furr M, Foster JS. Polymorphic type inference for the INI. European Symposium on Programming (ESOP), Vienna,
Austria, 2006; 309-324.

3. Kondoh G, Onodera T. Finding bugs in Java native interface programs. ACM International Symposium on Software
Testing and Analysis (ISSTA), Seattle, WA, USA, 2008; 109-118.

4. Tan G, Croft J. An empirical security study of the native code in the JDK. Usenix Security Symposium (SS), San Jose,
CA, USA, 2008; 365-377.

5. Lee B, Wiedermann B, Hirzel M, Grimm R, McKinley KS. Jinn: synthesizing dynamic bug detectors for foreign
language interfaces. ACM Programming Language Design and Implementation (PLDI), Toronto, ON, Canada, 2010;
36-49.

6. Providin V, Elford C. Debugging native methods in Java applications. EclipseCon User Conference, Santa Clara,
CA, USA, March 2007. Available from: http://www.eclipsecon.org/2007/index59af.html?page=sub/&id=4129.

7. Sun Microsystems Inc. Debugging a Java application with dbx, 2007. Available from: http://docs.oracle.com/cd/
E19205-01/819-5257 [last accessed 26 May 2014].

8. Stall M. Mike Stall’s.NET debugging blog. Available from: http://blogs.msdn.com/jmstall/default.aspx [last accessed
26 May 2014].

9. Rosenberg JB. How Debuggers Work: Algorithms, Data Structures, and Architecture. John Wiley & Sons: New York,
NY, USA, 1996.

10. Hirzel M, Grimm R. Jeannie: granting Java native interface developers their wishes. ACM Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), Montreal, Quebec, Canada, 2007; 19-38.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

http://www.eclipsecon.org/2007/index59af.html?page=sub/&id=4129
http://docs.oracle.com/cd/E19205-01/819-5257
http://docs.oracle.com/cd/E19205-01/819-5257
http://blogs.msdn.com/jmstall/default.aspx

11.

12.

13.

14.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.
32.

33.

34.

35.
36.

37.

38.

39.

B.LEE ET AL.

Grimm R. xtc — eXTensible C. Available from: http://www.cs.nyu.edu/rgrimm/xtc/ [last accessed 26 May 2014].
Lee B, Hirzel M, Grimm R, McKinley KS. Debug all your code: portable mixed-environment debugging.
ACM Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), Orlando, FL, USA, 2009;
207-226.

Furr M, Foster JS. Checking type safety of foreign function calls. ACM Transactions on Programming Languages
and Systems (TOPLAS) 2008; 30(4):18:1-18:63.

Tan G, Morrisett G. ILEA: inter-language analysis across Java and C. ACM Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), Montreal, Quebec, Canada, 2007; 39-56.

. Zeller A. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann: San Francisco, CA, USA,

October 2005.

. Liang S. The Java Native Interface: Programmer’s Guide and Specification. Addison-Wesley: Boston, MA, USA,

1999.

Lind-Nielsen J. BuDDy, July 2004. Available from: http://buddy.sourceforge.net/ [last accessed 26 May 2014].
Grimm R. Better extensibility through modular syntax. ACM Programming Language Design and Implementation
(PLDI), Ottawa, Ontario, Canada, 2006; 38-51.

Oracle Corporation. JVM™ tool interface, version 1.1, 2006. Available from: http://docs.oracle.com/javase/6/docs/
platform/jvmti/jvmti.html [last accessed 26 May 2014].

Oracle Corporation. Java SE HotSpot at a glance. Available from: http://www.oracle.com/technetwork/java/javase/
tech/index-jsp-136373.html [last accessed 26 May 2014].

Bailey C. Java technology. IBM style: introduction to the IBM developer kit, May 2006. Available from: http://web.
archive.org/web/20110214002653/http://www.ibm.com/developerworks/java/library/j-ibmjaval.html [last accessed
26 May 2014].

Ramsey N, Hanson DR. A retargetable debugger. ACM Programming Language Design and Implementation (PLDI),
San Francisco, CA, USA, 1992; 22-31.

Ryu S, Ramsey N. Source-level debugging for multiple languages with modest programming effort. International
Conference on Compiler Construction (CC), Edinburgh, UK, 2005; 10-26.

Blackburn SM, Garner R, Hoffmann C, Khang AM, McKinley KS, Bentzur R, Diwan A, Feinberg D, Frampton D,
Guyer SZ, Hirzel M, Hosking A, Jump M, Lee H, Eliot J, Moss B, Moss B, Phansalkar A, Stefanovi¢ D, VanDrunen
T, von Dincklage D, Wiedermann B. The DaCapo benchmarks: Java benchmarking development and analysis.
ACM Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), Portland, OR, USA, 2006;
169-190.

Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks, March 1999. Available from: http://www.
spec.org/jvm98 [last accessed 26 May 2014].

Sun Microsystems Inc. Bug database Bug 4207056 was opened 1999-01-29. Available from: http://bugs.java.com/
[last accessed 26 May 2014].

White M. Debugging integrated Java and C/C++ code, November 2001. Available from: http://web.archive.org/web/
20041205063318/www-106.ibm.com/developerworks/java/library/j-jnidebug/ [last accessed 26 May 2014].

White M. Integrated Java technology and C debugging using the Eclipse platform. JavaOne Conference, San
Francisco, CA, USA, 2006.

Visual Studio debugger extensibility. Available from: http://msdn.microsoft.com/en-us/library/bb161718(VS.80).
aspx [last accessed 26 May 2014].

Bothner P. Compiling Java with GCJ, January 2003. Available from: http://www.linuxjournal.com/article/4860
[last accessed 26 May 2014].

Linton MA. The evolution of Dbx. Usenix Technical Conference, Anaheim, CA, USA, 1990; 211-220.

Free Standards Group. DWARF 3 debugging information format, December 2005. Available from: http://www.
dwarfstd.org/doc/Dwarf3.pdf [last accessed 26 May 2014].

van den Brand M, Cornelissen B, Olivier P, Vinju J. TIDE: a generic debugging framework — tool demonstration.
Electronic Notes in Theoretical Computer Science 2005; 141(4):161-165.

Tolmach AP, Appel AW. Debugging standard ML without reverse engineering. ACM LISP and Functional
Programming (LFP), Nice, France, 1990; 1-12.

Hanson DR. A machine-independent debugger—revisited. Software Practice Experience 1999; 29(10):849-862.
Tatlock Z, Tucker C, Shuffelton D, Jhala R, Lerner S. Deep typechecking and refactoring. ACM Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), Nashville, TN, USA, 2008; 37-52.

Beazley DM. SWIG: an easy to use tool for integrating scripting languages with C and C++. USENIX Tcl/Tk
Workshop (TCLTK), Monterey, CA, USA, 1996; 15-15.

Tan G, Appel AW, Chakradhar S, Raghunathan A, Ravi S, Wang D. Safe Java native interface. International
Symposium on Secure Software Engineering (ISSSE), Washington, DC, USA, 2006; 97-106.

Necula GC, McPeak S, Weimer W. CCured: type-safe retrofitting of legacy code. ACM Principles of Programming
Languages (POPL), Portland, OR, USA, 2002; 128-139.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)

DOI: 10.1002/spe

http://www.cs.nyu.edu/rgrimm/xtc/
http://buddy.sourceforge.net/
http://docs.oracle.com/javase/6/docs/platform/jvmti/jvmti.html
http://docs.oracle.com/javase/6/docs/platform/jvmti/jvmti.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://web.archive.org/web/20110214002653/http://www.ibm.com/developerworks/java/library/j-ibmjava1.html
http://web.archive.org/web/20110214002653/http://www.ibm.com/developerworks/java/library/j-ibmjava1.html
http://www.spec.org/jvm98
http://www.spec.org/jvm98
http://bugs.java.com/
http://web.archive.org/web/20041205063318/www-106.ibm.com/developerworks/java/library/j-jnidebug/
http://web.archive.org/web/20041205063318/www-106.ibm.com/developerworks/java/library/j-jnidebug/
http://msdn.microsoft.com/en-us/library/bb161718(VS.80).aspx
http://msdn.microsoft.com/en-us/library/bb161718(VS.80).aspx
http://www.linuxjournal.com/article/4860
http://www.dwarfstd.org/doc/Dwarf3.pdf
http://www.dwarfstd.org/doc/Dwarf3.pdf

	Debugging mixed-environment programs with Blink
	Summary
	INTRODUCTION
	MOTIVATION: A LANGUAGE INTERFACE BUG
	DEBUGGER COMPOSITION APPROACH
	Debugger features
	Intermediate agent
	Language transition interposition
	Debugger context switching
	Soft-mode debugging

	ADVANCED FEATURES
	Environmental transition checker
	Exception checking
	Null checking

	Jeannie mixed-environment expressions
	Implementing the backtick command
	Read–eval–print loop

	BLINK IMPLEMENTATION
	Controlling component debuggers
	Blink debugger agent
	Context management
	Execution control
	Data inspection

	GENERALIZATION
	EVALUATION
	Methodology
	Building Blink
	Construction effort
	Portability
	Portability tests

	Time and space overheads

	DEBUGGING MIXED-ENVIRONMENT PROGRAMS
	Bugs with a cause–effect chain across execution environments
	Language interface bugs

	RELATED WORK
	Mixed-environment debuggers
	Single-environment multilingual debuggers
	Portable debuggers
	Advanced mixed-language debugger features
	Mixed-language interpreters
	Mixed-language bug checkers

	CONCLUSIONS
	REFERENCES

