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ABSTRACT
Algebras based on combinators, i.e., variable-free, have been
proposed as a better representation for query compilation
and optimization. A key benefit of combinators is that they
avoid the need to handle variable shadowing or accidental
capture during rewrites. This simplifies both the optimizer
specification and its correctness analysis, but the environ-
ment from the source language has to be reified as records,
which can lead to more complex query plans.

This paper proposes NRAe, an extension of a combinators-
based nested relational algebra (NRA) with built-in support
for environments. We show that it can naturally encode an
equivalent NRA with lambda terms and that all optimiza-
tions on NRA carry over to NRAe. This extension provides
an elegant way to represent views in query plans, and can
radically simplify compilation and optimization for source
languages with rich environment manipulations.

We have specified a query compiler using the Coq proof
assistant with NRAe at its heart. Most of the compiler, in-
cluding the query optimizer, is accompanied by a (machine-
checked) correctness proof. The implementation is automat-
ically extracted from the specification, resulting in a query
compiler with a verified core.

1. INTRODUCTION
Some recent development around query languages and

query processing is happening outside traditional database
management systems, e.g., language-integrated queries [15,
28], large-scale distributed processing infrastructure [3, 7,
29], NoSQL databases [30], or domain specific languages [34].
Understanding and guaranteeing correctness properties for
those new data processing capabilities can be important
when dealing with business critical or personal data. In
relational systems, rule-based optimizers and optimizer gen-
erators [10, 12, 13, 18, 24, 31] contribute to the high lev-
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els of performance and correctness confidence by enabling
the specification, verification, and implementation of query
compilers. This paper proposes to leverage modern theo-
rem proving technology as a foundation for building well-
specified and formally verified query compilers.

Although our motivation stems from new query compila-
tion scenarios, and specifically the extension of a rule-based
language with a query DSL, we believe the approach can
be applied in more traditional database contexts. As was
shown in compilers for language integrated queries [22], re-
lying on traditional database algebras can bring numerous
benefits. We follow a similar strategy and build on top of the
nested relational algebra (NRA) [14, 17] which has been suc-
cessfully used for building query compilers for nested data
models, notably for OQL and XQuery [27, 32].

As observed in prior work [12, 13], ensuring correctness
remains hard even with a rule-based approach, and we have
encountered similar challenges. Three of the main challenges
are (i) reasoning about scoping when variables are involved
as part of the optimization rules, (ii) providing tools to facil-
itate reasoning and correctness checking, and (iii) handling
code fragments as part of the rules. Although most of the
previously proposed techniques and optimizations for NRA
directly apply, those three challenges require special care
and are the focus of this paper.

Handling Environments. The first challenge is intrinsi-
cally difficult for any compiler1 and is the central focus of the
paper. Combinator-based algebras [12, 34] have been used
to eliminate variables in an attempt to facilitate reasoning.
However, they force the query translator to reify environ-
ments as part of the data being processed, which can result
in larger and more complex query plans.

This paper proposes NRAe, an extension to a combinator-
based nested relational algebra with native support for envi-
ronments. It avoids blow-ups in query plan size while facili-
tating correctness reasoning. This extension is conservative
in the sense that existing NRA optimizations can be applied
even to query plans containing the new constructs.

A Verified Query Compiler. To address the second chal-
lenge, we are developing a query compiler using the Coq
proof assistant [16] which we use for both the compiler spec-

1Proper handling of variable scoping is known as one of the
main difficulties in solving the POPLmark challenge [5].
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ification and correctness proofs. A Coq feature called ex-
traction [23] can then be used to automatically generate the
query compiler’s code from that specification. Let us first
illustrate the use of Coq for the implementation and verifi-
cation of a simple algebraic rewrite. Throughout the paper,
we will use the flower symbol _ to provide hyperlinks to the
corresponding source code.

As in rule-based optimizer generators, optimizations can
be written in Coq as rewrites on algebraic terms. As an
example, here is the Coq code for pushing down a selec-
tion operator over a union operator (based on the classic
distributivity law: σ〈q0〉(q1 ∪ q2) ≡ σ〈q0〉(q1) ∪ σ〈q0〉(q2)):

Definition select_union_distr_fun q := _
match q with
| NRAEnvSelect q0 (NRAEnvBinop AUnion q1 q2) =>

NRAEnvBinop AUnion (NRAEnvSelect q0 q1)
(NRAEnvSelect q0 q2)

| _ => q
end.

This code is written in a functional style and defines a func-
tion with name select_union_distr_fun and one parameter
q (the algebraic plan). The body of the function uses pat-
tern matching to check whether the terms in q are indeed a
selection over an union, in which case it applies the rewrite,
or not, in which case it leaves the plan unchanged. A key
difference with most rule-based optimizer generators, is that
Coq allows the query compiler developer to state (and also
prove) the correctness of this rewrite:

Proposition select_union_distr_fun_correctness q: _
select_union_distr_fun q ⇒ q.

Proof.
tprove_correctness p.
apply tselect_union_distr.

Qed.

This proposition states that for all query plans q, apply-
ing the function tselect_union_distr_fun returns an equiv-
alent query. Here the symbol ⇒ denotes a notion of type-
preserving equivalence which is used throughout our opti-
mizer and is formally defined later in the paper. The propo-
sition statement is followed by a proof script that is me-
chanically checked. The proof relies on an automated proof
tactic tprove_correctness which eliminates all trivial cases
except the important one which is solved using the lemma
tselect_union_distr. That lemma itself is simply a type
preserving variant of the distributivity law for selection over
union which we saw earlier:

Lemma tselect_union_distr q0 q1 q2 : _
σ〈 q0 〉(q1 ∪ q2) ⇒ σ〈 q0 〉(q1) ∪ σ〈 q0 〉(q2).

Proof. ... Qed.

Formal verification techniques have been applied to the
formalization of relational [6, 26] and non-relational [11, 34]
query languages, but have seldom been used with query com-
pilers implementation in mind. A notable exception is the
Coko-Kola project [12, 13] which relied on the Larch [20]
theorem prover. Using Coq allowed us to apply those tech-
niques beyond the query optimizer and prove correct a large
subset of the compilation pipeline, including translations be-
tween intermediate languages and type checking.

Code Fragments. The third challenge is handling the need
for code fragments as preconditions for rewrites. Here, we
simply take advantage of the expressive specification lan-
guage that Coq provides and which can be used to specify

and reason about complex conditions (type conditions, or-
dering conditions, etc.) on the algebraic plans. Take for
example the distinct elimination law:

Lemma tdup_elim q : nodupA q -> ]distinct(q) ⇒ q. _
Proof. ... Qed.

The predicate nodupA q holds when the query plan q al-
ways returns a collection without duplicates, and -> is the
syntax for logical implication in Coq. In contrast to tra-
ditional rule-based optimizers, the nodupA predicate is not
a subroutine written in a traditional programming language
but is written in Coq itself and has also been proved correct.

Overview. The next section illustrates the distinction be-
tween variable-based and combinator-based algebras, how
that distinction impacts algebraic equivalences, and intro-
duces NRAe through examples. The rest of the paper con-
tains the formal treatment for the proposed NRA extension
and its properties, applications, and implementation. This
paper makes the following main contributions:

• It describes a new approach to handling environments
in database algebras and defines NRAe, an extension
of a combinator-based nested relational algebra with
support for environments (Section 3).

• It extends the traditional notion of algebraic equiva-
lence for NRAe and defines algebraic rewrites for envi-
ronment manipulation. A main result is that all exist-
ing algebraic equivalences for the original combinator-
based NRA can be lifted “as is” to NRAe (Section 4).

• It shows that NRAe can be effectively compiled back
to traditional NRA and calculus. This confirms that
NRAe has the expected expressiveness and provides a
bridge for integration into existing systems (Section 5).

• It illustrates NRAe on several use cases. We show it
can naturally encode an equivalent NRA with lambda
terms. We also show how environment operators pro-
vide an elegant way to represent view declarations in
SQL or OQL (Section 6). Finally, we used NRAe to
radically simplify optimization for a query DSL built
on top of JRules [8] (Section 7).

There is more to a query compiler than its core algebra
and optimizer. In Section 8, we report on the status of our
effort in building Q*cert, an end-to-end, formally verified,
query compiler based on NRAe. We review aspects that
were left out of the main formal treatment in the paper,
notably: front-end support, code generation, type checking
and handling of user-defined types and functions.

Although not necessary to follow the paper, the reader can
consult the full compiler specification which we have made
available at https://querycert.github.io/sigmod17.

2. VARIABLES REVISITED
The treatment of variables and scoping in compilers is no-

toriously challenging, and a wide range of techniques have
been proposed to encode variables in a way that facilitates
reasoning, either for correctness or optimization purposes [5].
The topic has received less attention in the database con-
text. One area where issues related to variable handling
come to the fore is rule-based optimizers [10, 12, 13, 18, 24,
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T1 (lambdas): map(λa.(a.city))(map(λp.(p.addr))(P )) ≡ map(λp.((p.addr).city))(P )
T1c (combin.): χ〈In.a.city〉

(
χ〈[a:In]〉

(
χ〈In.p.addr〉

(
χ〈[p:In]〉(P )

)))
≡ χ〈In.p.addr.city〉

(
χ〈[p:In]〉(P )

)
T1e (NRAe): χ〈Env.a.city ◦e [a:In]〉

(
χ〈Env.p.addr ◦e [p:In]〉(P )

)
≡ χ〈Env.p.addr.city ◦e [p:In]〉(P )

A4 (lambdas): map(λp.([person : p, kids : filter(λc.(p.age > 25))(p.child)])(P )
A4c (combin.): χ〈[

person : In.p, kids : σ〈In.p.age>25〉

(
./d〈χ〈[c:In]〉(In.p.child)〉({In})

) ]〉(χ〈[p:In]〉(P )
)

A4e (NRAe): χ〈
[person : Env.p, kids : σ〈(Env.p.age>25) ◦e (Env⊕[c:In])〉(Env.p.child)] ◦e [p : In]

〉(P )

Figure 1: Three styles of nested relational algebra for T1 and A4 (Examples from Cherniack and Zdonik [12])

31]. Cherniack and Zdonik clearly describe the challenges
caused by variables in database algebras and propose a so-
lution based on combinators [12]. Figure 1 shows two exam-
ples from that paper. We use e.a (resp. [a1 : e1, . . . , an : en])
to denote record access (resp. record construction).

Lambdas vs. Combinators. Most internal database alge-
bras support some form of explicit binders, most commonly
expressed as lambdas [10, 12, 18]. Example T1 in Figure 1
shows an equivalence written in AQUA [24] that illustrates
how lambdas are used inside iterators with map (resp. fil-
ter) corresponding to functional map (resp. selection).

Both query plans in T1 return the content of the city
fields within the addr fields in the records returned by P .
The rewrite is a classic loop fusion: in lambda form, it can
be expressed using beta-reduction (or capture avoiding sub-
stitution) as suggested by Fegaras et al. [18]:

map(λx.(e))(map(λy.(u))(v)) ≡map(λy.(e[u/x]))(v)

Although techniques exist (e.g., [1]) to implement or rea-
son about binders and support such substitutions effectively,
most of them remain challenging to mechanize and prove
correct [5]. As Cherniack and Zdonik first pointed out [12],
it is also unnecessarily complex in the database context as
equivalent combinator-based algebras can avoid binders and
variables. We use Cluet and Moerkotte’s algebra [14] as
our starting point, because (i) it has been used successfully
for the compilation and optimization of nested query lan-
guages (notably OQL [14] and XQuery [27]), and (ii) it has
already been provided with a complete formalization [34] as
combinators. In addition to χ (map) and σ (selection), two
important combinators are In for accessing the input and ◦
for query composition. The following is a combinator-based
query plan equivalent to the example T1:

T1’: χ〈In.city〉
(
χ〈In.addr〉(P )

)
≡ χ〈In.addr.city〉(P )

One immediately notices that lambdas are gone and vari-
ables have been replaced by In (the implicit input). As
Cherniack and Zdonik pointed out, combinators enable al-
gebraic rewrites to be expressed without explicit variable
substitution or renaming, and without having to compute
(and prove correct) preconditions on the presence/absence
of free variables [12]. For instance, the previous map-fusion
rewrite can be expressed simply with query composition:

χ〈P1〉
(
χ〈P2〉(P )

)
≡ χ〈P1◦P2〉(P )

Reifying Environments. Despite those clear benefits, com-
binators come at a price: when the query plan actually re-
quires environments containing more than one value, those

have to be encoded in the structure of the query plan itself.
To illustrate this, consider example A4 from Figure 1 which
features a selection inside a map. Two variables (p and c)
are both in scope within the selection predicate. In algebras
with combinators, the absence of variables forces environ-
ments to be reified as records whose fields correspond to the
variables in scope.

Figure 1 shows a systematic encoding with reified envi-
ronments. Compared to T1’, T1c has an additional map
to create a record with field p corresponding to variable p,
and accessing that variable has been replaced by In.p and
similarly for variable a. Although this looks relatively in-
nocuous, the additional encoding required for example A4
is more complex. The initial variable p is reified similarly
as in T1c and passed as input to the nested plan within
the top-level map operator. But adding variable c to that
initial environment corresponds to a dependent join (writ-
ten ./d) combined with a map. The dependent join is an
operator introduced by NRA for nested queries, and the
semantics resemble a Cartesian product from relational al-
gebra, except that the second operand (χ〈[c:In]〉(In.p.child)
in our example) can depend on the value of records returned
by the first operand ({In} in our example). Here it is used
to build records with both p and c fields, encoding the ad-
dition of variable c to the environment. Despite the many
techniques developed for optimization of nested-relational
plans, the use of a dependent join and the additional nest-
ing is a heavy price to pay for such a simple example. In
our experience such encoding can inhibit optimization, mak-
ing the query optimizer harder to develop and to apply in
practical scenarios.

NRAe. To address those shortcomings, we define NRAe, an
extension of a nested relational algebra with combinators
that includes specific operators for environment manipula-
tion. It keeps the benefits of the combinator-based approach
for reasoning, but simplifies the encoding of source queries,
making existing optimization techniques more effective in
practice. The main intuition for the extension is as follows:
instead of using combinators with one implicit input (the
current value In), NRAe uses combinators with two implicit
inputs (one for the current value In and one for the reified
environment Env). To illustrate that idea, let us look again
at example T1 and the equivalent formulation T1e written
with NRAe. The environment is reified similarly as T1c

with a record containing a field p, but that environment is
passed using a special combinator ◦e, which sets the envi-
ronment part of the input. Once the environment has been
set, it can be accessed using the Env combinator. Similarly,
the encoding for A4 avoids additional nested maps and join
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operations. It sets the environment with ◦e and extends the
environment with record concatenation (Env ⊕ [c : In]).

In the rest of the paper, we formally define NRAe, study
its formal properties, and illustrate its use in practice.

3. NRAe

This section introduces NRAe, our extension of NRA that
supports environments. To do so, we first define a data
model for complex values, operators on that data model,
and a combinators-based NRA.

3.1 Data Model and Operators
Values in our data model are constants, bags, or records _:

d ::= c | ∅ | {di} | [ ] | [Ai : di]

Constants (c) includes integers, strings, etc. A bag is a mul-
tiset of values. Let ∅ denote the empty bag and {d1, ..., dn}
the bag with values d1, ..., dn. A record is a mapping from a
finite set of attributes to values, where attribute names are
drawn from a sufficiently large set A,B, .... Let [ ] denote
the empty record and [Ai : di] the record mapping Ai to di.
dom([Ai : di]) is the set of labels Ai.

Unary and binary operators are basic operations over the
data model. Unary operators include the following __:

� d ::= ident d returns d
| ¬d negates a Boolean
| {d} the singleton bag containing d
| flatten d flattens one level of a bag of bags
| [A : d] the record with attribute A of value d
| d.A the value of attribute A in record d
| d−A removes attribute A from record d
| πAi

(d) the projection of record d over Ai

Binary operators include the following __:

d1 � d2 ::= d1 = d2 compares two data for equality
| d1 ∈ d2 true if d1 is an element of bag d2
| d1 ∪ d2 the union of two bags
| d1 ⊕ d2 concatenates two records, favoring

d2 for overlapping attributes
| d1 ⊗ d2 returns a singleton with the record

concatenation if compatible,
and ∅ otherwise

Compatibility-based concatenation is used to capture uni-
fication in binders (with the same semantics as in a natural
join). Two records x and y are deemed compatible if common
attributes match: ∀A ∈ dom(x) ∩ dom(y), x(A) = y(A).

We only gave here a few key operators, but those can be
easily extended (e.g, for arithmetic or aggregation). The
record operations are sufficient to support all the classic re-
lational and nested relational operators.

3.2 Combinator-based NRA
We first give a definition for the combinator-based NRA

which is the basis for our extension.

Definition 1 (NRA syntax_).

q ::= d | In | q2 ◦ q1 | � q | q1 � q2 | χ〈q2〉(q1)
| σ〈q2〉(q1) | q1 × q2 | ./d〈q2〉(q1) | q1 || q2

This algebra is the one from [14, 34]. Most operators
should be familiar to the reader, with the exception of ||,

which was introduced in [34] to handle aspects of error prop-
agation and which will be needed in Section 7.

Here, d returns constant data, In returns the context
value (usually a bag or a record), and q2 ◦ q1 denotes query
plan composition, i.e., it evaluates q2 using the result of q1
as input value. � and � are unary and binary operators
from Section 3.1. χ is the map operation on bags, σ is se-
lection, and × is the Cartesian product. The dependent join

./d〈q2〉(q1) evaluates q2 with its context set to each value
in the bag resulting from evaluating q1, then concatenates
records from q1 and q2 as in a Cartesian product. The ||
expression, called default, evaluates its first operand and re-
turns its value, unless that value is ∅, in which case it returns
the value of its second operand (as default).

Note that other NRA operators useful for optimization
(e.g., joins or group-by) can be defined in terms of this core
algebra. For example, the standard relational projection is
defined as ΠAi

(q) = χ〈
π
Ai

〉(q) _, and unnest, which will be

used in Section 5, is defined as:

ρB/{A} (q) = χ〈In−A〉

(
./d〈χ〈[B:In]〉(In.A)〉(q)

)
_

3.3 NRAe Syntax and Semantics
The following gives the syntax for NRAe, which is a proper

extension from the combinator-based NRA from Section 3.2.

Definition 2 (NRAe syntax_).

q ::= ... | Env | q2 ◦e q1 | χe〈q〉

We denote by NRA(q) the property that query q does not
use any of the new operators _: the set of plans q such that
NRA(q) is the standard NRA. Let Ie(q) _ (resp. Ii(q) _)
denote the property that query plan q ignores the environ-
ment Env (resp. the input data In).

Figure 2 gives an operational semantics for NRAe. It is de-
fined by a judgment of the form γ ` q @ d ⇓a d′ which reads
as: in the environment γ, the query q is evaluated against
the input data d and produces output data d′. The environ-
ment γ can be any value, but in most cases, it is a record
whose fields correspond to variable bindings. The rules for
the NRA constructs of NRAe are the same as the rules for
` q @ d ⇓a d′ used to define the semantics of NRA in [34].

Three operators are added to manipulate environments:
access to the environment (Env), composition over the en-
vironment (q2 ◦e q1), and map over the environment (χe〈q〉).
The semantics of Env is to return the current environment.
Hence, for example, if we want to access the value of the
variable A in the environment, we can write Env.A.

The semantics of q2 ◦e q1 is to evaluate q2 in the environ-
ment bound to the value returned by q1. It is similar to
query composition (◦) but changes the environment rather
than the input value. This construct is useful for example to
add a value d in the environment associated to the variable A
for the evaluation of a query q: q ◦e (Env ⊕ [A : d]), keep-
ing in mind that the record concatenation operator ⊕ favors
the right-most binding in case of conflict.

The last operator, χe, is dual to the standard map but
iterates over the environment rather than over the input
collection. It is mainly useful to handle the result of merging
two environments using the ⊗ operator. The expression:
χe〈q〉 ◦e (Env ⊗ [A : d]) merges a new binding for variable
A with value d to an existing environment, and passes the
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(Constant)
γ ` d0 @ d ⇓a d0

(ID)
γ ` In@ d ⇓a d

γ ` q1 @ d0 ⇓a d1 γ ` q2 @ d1 ⇓a d2
(Comp)

γ ` q2 ◦ q1 @ d0 ⇓a d2

γ ` q @ d ⇓a d0 � d0 = d1
(Unary)

γ ` � q @ d ⇓a d1

γ ` q1 @ d ⇓a d1 γ ` q2 @ d ⇓a d2 γ ` d1 � d2 = d3
(Binary)

γ ` q1 � q2 @ d ⇓a d3

γ ` q1 @ d ⇓a ∅
(Map ∅)

γ ` χ〈q2〉(q1) @ d ⇓a ∅

γ ` q1 @ d ⇓a {d1} ∪ s1 γ ` q2 @ d1 ⇓a d2 γ ` χ〈q2〉(s1) @ d ⇓a s2
(Map)

γ ` χ〈q2〉(q1) @ d ⇓a {d2} ∪ s2

γ ` q1 @ d ⇓a {d1} ∪ s1 γ ` q2 @ d1 ⇓a true γ ` σ〈q2〉(s1) @ d ⇓a s2
(SelT)

γ ` σ〈q2〉(q1) @ d ⇓a {d1} ∪ s2

γ ` q1 @ d ⇓a {d1} ∪ s1 γ ` q2 @ d1 ⇓a false γ ` σ〈q2〉(s1) @ d ⇓a s2
(SelF)

γ ` σ〈q2〉(q1) @ d ⇓a s2

γ ` q1 @ d ⇓a ∅
(Sel∅)

γ ` σ〈q2〉(q1) @ d ⇓a ∅
γ ` q1 @ d ⇓a ∅

(Prodl
∅)

γ ` q1 × q2 @ d ⇓a ∅
γ ` q2 @ d ⇓a ∅

(Prodr
∅)

γ ` q1 × q2 @ d ⇓a ∅

γ ` q1@d⇓a {d1}∪s1 γ ` q2@d⇓a {d2}∪s2 γ ` {d1}×s2@d⇓a s3 γ ` s1×({d2}∪s2) @d⇓a s4
(Prod)

γ ` q1 × q2 @ d ⇓a {d1 ⊕ d2} ∪ s3 ∪ s4

γ ` q1 @ d ⇓a {d1} ∪ s1 γ ` {d1}×q2@d1⇓a s2 γ ` ./d〈q2〉(s1) @ d ⇓a s3
(DJ)

γ ` ./d〈q2〉(q1) @ d ⇓a s2 ∪ s3

γ ` q1 @ d ⇓a ∅
(DJ∅)

γ ` ./d〈q2〉(q1) @ d ⇓a ∅

γ ` q1 @ d ⇓a d1 d1 6= ∅
(Default¬∅)

γ ` q1 || q2 @ d ⇓a d1

γ ` q1 @ d ⇓a ∅ γ ` q2 @ d ⇓a d2
(Default∅)

γ ` q1 || q2 @ d ⇓a d2

(Env)
γ ` Env @ d ⇓a γ

γ1 ` q1 @ d1 ⇓a γ2 γ2 ` q2 @ d1 ⇓a d2
(Compe)

γ1 ` q2 ◦e q1 @ d1 ⇓a d2

(Mape
∅)

∅ ` χe〈q2〉 @ d ⇓a ∅

d1 ` q2 @ d ⇓a d2 s1 ` χe〈q2〉 @ d ⇓a s2
(Mape)

{d1} ∪ s1 ` χe〈q2〉 @ d ⇓a {d2} ∪ s2

Figure 2: NRAe Semantics _. γ ` q @ d ⇓a d

resulting environment (if successful) to the subsequent query
q. Let us assume the environment Env contains the record
[A : 1, B : 3], the following shows an example where merge
succeeds (resp. fails) over the common variable B:

χe〈Env.A+Env.C〉 ◦e (Env ⊗ [B : 3, C : 4])⇒ {5} _

χe〈Env.A+Env.C〉 ◦e (Env ⊗ [B : 2, C : 4])⇒ {} _

After the merge, the environment contains a collection, in
our example either {[A : 1, B : 3, C : 4]} or {}, and χe

accounts for that. This feature is an important advantage
of the combinators-based approach over a lambda-based ap-
proach: it allows it to capture environment unification which
is notably useful for rule-based languages, e.g., in Sparql or
the CAMP calculus in Section 7.

4. OPTIMIZATION
This section presents rewrites designed to optimize NRAe

query plans. We also prove that any existing NRA rewrites
can be applied to an NRAe query plan, even if subexpres-
sions manipulate the environment. First, we define a notion
of equivalence to capture rewrite correctness.

4.1 Equivalences
The semantics of equivalences we use to define and prove

correctness follows the classic notion of strong equivalence
as defined in [2] (rather than weak equivalence).

Definition 3 (Equivalence_). Two plans q1 and q2
are equivalent (q1 ≡ q2) iff for any environment γ and for
any input data d, evaluating q1 and q2 over data d in envi-
ronment γ returns the same value. I.e., ∀γ, d

(∃d1, γ ` q1 @ d ⇓a d1 ⇐⇒ ∃d2, γ ` q2 @ d ⇓a d2)∧
∀d1, d2, (γ ` q1 @ d ⇓a d1) ∧ (γ ` q2 @ d ⇓a d2) =⇒ d1 = d2

As in most database optimizers, we only consider rewrit-
ing for well-typed algebraic plans. In our context, we focus
on directed equivalences, where the direction indicates the
way those are used in the optimizer. Since we have omitted
treatment of type checking from the paper, we leave that
definition somewhat informal.

Definition 4 (Typed Rewrites_). We say a query
plan q1 rewrites to query plan q2, written q1 ⇒ q2 iff, given a
well-typed q1, then q2 is also well typed, and for all well-typed
input data and environments, they return the same value.

The corresponding equivalence and typed rewrite relation
are defined similarly for NRA __.

Both plan equivalence and typed rewrites are contextual:
given any plan C1, and a sub-plan q which is a sub-expression
of C, replacing q1 by q2 (where q1 ≡ q2 or q1 ⇒ q2) yields a
new C2 such that C1 ≡ C2 or C1 ⇒ C2 as appropriate. In
the mechanization, this is expressed as a set of proofs that
each type of expression preserves plan equivalence and typed
rewrites. For example, swapping two equivalent sub-plans
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Environment constructs removal
q ◦e Env ⇒ q _
Env ◦e q ⇒ q _

if Ie(q1), q1 ◦e q2 ⇒ q1 _
χ〈Env〉

(
σ〈q〉({In})

)
◦e In ⇒ σ〈q〉({In}) ◦e In _

if Ie(q1), χ〈Env〉
(
σ〈q1〉({In})

)
◦e q2 ⇒ χ〈q2〉

(
σ〈q1〉({In})

)
_

χe〈Env〉 ◦ q ⇒ Env _

χe〈q1〉 ◦
e {q2} ⇒ {q1 ◦e q2} _

if Ii(q1), χe〈q1〉 ◦
e q2 ⇒ χ〈q1◦eIn〉(q2) _

◦e pushdown
(�(q1)) ◦e q2 ⇒ �(q1 ◦e q2) _
(q1 � q2) ◦e q ⇒ (q1 ◦e q) � (q2 ◦e q) _

if Ii(q), χ〈q1〉(q2) ◦e q ⇒ χ〈q1◦eq〉(q2 ◦
e q) _

if Ii(q), σ〈q1〉(q2) ◦e q ⇒ σ〈q1◦eq〉(q2 ◦
e q) _

(q1 ◦e q2) ◦e q ⇒ q1 ◦e (q2 ◦e q) _
if Ie(q1), (q1 ◦ q2) ◦e q ⇒ q1 ◦ (q2 ◦e q) _

if Ie(q1), q1 ◦e q2 ⇒ q1 _
if Ie(q1), (Env ⊗ q1) ◦e q ⇒ q ⊗ q1 _

σ〈q〉({In}) ◦e In ⇒ σ〈q◦eIn〉({In}) _

Figure 3: Rewrites for NRAe

inside a map operator yields an equivalent plan __. These
proofs, when taken together, establish that plan equivalence
and typed rewrites are contextual, and enables rewriting
sub-expressions freely, which is critical for optimization.

Note that, as in the relational context, plan equivalence
implies typed rewrites as long as the result is well-typed
(assuming the source is) __. Our implementation includes
a full type checker and the correctness proofs for all the
rewrites used in the optimizer have been verified for both un-
typed and typed cases (depending on the specific rewrites).

4.2 Lifting NRA Rewrites
One of the most important properties of NRAe is the abil-

ity to reuse existing known equivalences from NRA. This is
a strong result since we allow lifting equivalences over query
plans that may contain environment manipulations. To il-
lustrate that idea, let us consider a simple selection push-
down equivalence from the relational literature:

σ〈q0〉(q1 ∪ q2) ≡ σ〈q0〉(q1) ∪ σ〈q0〉(q2)

For NRA, q0 is an arbitrary query plan returning a Boolean
value. Our lifting result shows that if such an equivalence
is true for any well typed q0, q1, q2 in NRA, then it is also
true for any well typed q0, q1, q2 in NRAe.

This result relies on the fact that the NRA equivalences
are effectively a form of parametric polymorphism in terms
of q0, q1, q2. To properly express this, we need a stronger
notion of equivalence which is parametric. We first define
parametric plans for both the NRA and NRAe, which are
query plans with some plan variables, along with parametric
plan instantiation. We use the set PV = {$q0, . . . , $qn} to
denote plan variables.

Definition 5 (Parametric Plan__). A parametric
plan c over plan variables $q0, . . . , $qn is an expression in the
NRA (resp. NRAe) grammar extended with plan variables
$q0, . . . , $qn.

For example, σ〈$q0〉($q1 ∪ $q2) denotes a parametric plan
over plan variables $q0 , $q1, $q2.

Definition 6 (Plan Instantiation__). Given a
parametric plan c over plan variables $q0, . . . , $qn, the in-
stantiation of c with q0, . . . , qn, denoted c[q0, . . . , qn], is the
query plan obtained by substituting $qi by qi in c.

We can now define parametric equivalence, which states
that two parametric plans are equivalent if every plan in-
stantiation for those two plans are equivalent.

Definition 7 (Parametric equiv.__). Given two
parametric plans c1 and c2 over $q1, . . . , $qn, we say that
they are parametric equivalent iff, for every plans q1, . . . , qn:

c1[q0, . . . , qn] ≡ c2[q0, . . . , qn]

We use c1 ≡c c2 and c1 ≡ec c2 to denote parametric equiva-
lence for the NRA and NRAe respectively.

For example, the following holds for the NRA:

σ〈$q0〉($q1 ∪ $q2) ≡c σ〈$q0〉($q1) ∪ σ〈$q0〉($q2) _

Most relational or nested relational equivalences are in
fact parametric. Formalizing parametric equivalence enables
the precise statement of the following key lifting theorem:

Theorem 1 (Equiv. Lifting_). Every parametric
NRA equivalence is also a parametric NRAe equivalence:

c1 ≡c c2 =⇒ c1 ≡ec c2

This result and corresponding proof are non-trivial and
deserve a few comments. First, recall that every NRA op-
erator is also an NRAe operator. This means the theorem
statement is well-formed in the sense that the operators in
c1 and c2 are also NRAe operators that can be used on the
right-hand side. Second, the proof fundamentally relies on
the ability to translate NRAe back to NRA (Theorem 2 in
Section 5). It also relies on the observation that the part
of the query that was lifted from NRA cannot change the
environment. The instantiated NRAe expressions can inter-
act with the environment, but modifications are local. The
proof can thus treat the environment as mostly constant.

4.3 NRAe Rewrites
In addition to NRA optimizations lifted to NRAe, we de-

veloped additional optimizations for our extended algebra.
We report on two categories of rewrites, which are given in
Figure 3. The first category contains rewrites that remove
environment manipulation constructs. For example, in the
first rewrite (q ◦e Env⇒ q), it is possible to get rid of the
composition over the environment because it replaces the
value of the environment for the evaluation of q by itself.

Some of the rewrites use the predicates introduced in Sec-
tion 3.3 that test if a query ignores the context data (Ii(q))
or the environment (Ie(q)). For example, the third rewrite
(if Ie(q1), q1 ◦e q2 ⇒ q1) shows that if the query on the left
of a composition over the environment does not access the
value of the environment, then it is not necessary to replace
the value of the environment by the value of q2. Like the
nodupA example in the introduction, the Ii(q) and Ie(q)
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JdKa = d

JInKa = In.D

Jq2 ◦ q1Ka = Jq2Ka ◦ ([E : In.E]⊕ [D : Jq1Ka])

J�qKa = �JqKa
Jq1 � q2Ka = Jq1Ka � Jq2Ka

Jχ〈q2〉(q1)Ka = χ〈Jq2Ka〉
(
ρD/{T1} ({[E : In.E]⊕ [T1 : Jq1Ka]})

)
Jσ〈q2〉(q1)Ka = χ〈In.D〉

(
σ〈Jq2Ka〉

(
ρD/{T1} ({[E : In.E]⊕ [T1 : Jq1Ka]})

))
Jq1 × q2Ka = Jq1Ka × Jq2Ka

J./d〈q2〉(q1)Ka = χ〈In.D⊕In.T2〉

(
./d〈χ〈[T2:In]〉(Jq2Ka)〉

(
ρD/{T1} ({[E : In.E]⊕ [T1 : Jq1Ka]})

))
Jq1||q2Ka = Jq1Ka||Jq2Ka
JEnvKa = In.E

Jq2 ◦e q1Ka = Jq2Ka ◦ ([E : Jq1Ka]⊕ [D : In.D])

Jχe〈q2〉Ka = χ〈Jq2Ka〉
(
ρE/{T1} ({[T1 : In.E]⊕ [D : In]})

)
Figure 4: From NRAe to NRA _. JqKa = q′

predicates are written in Coq and proved correct, showcas-
ing the ability to use code fragments in pre-conditions.

The ◦e pushdown category is central to the processing of
the context. It corresponds to changing the scope for the
environment. The general idea here is to push down the
context close to the place where it is being used in order to
eliminate it, which happens when the composition reaches a
leaf. For instance if ◦e gets pushed down all the way to an
In it can be eliminated since the environment is not used.

5. TRANSLATING FROM NRAe

This section defines the translations of NRAe to NRA and
to the Named Nested Relational Calculus (NNRC). The first
translation is useful to show that NRAe shares the same
expressiveness as NRA, which is desirable since it establishes
that we have not inadvertently targeted a more expressive
language. The second translation provides a useful bridge to
a representation with variables which can prove useful e.g.,
for code generation. We will come back to that second point
in Section 8 where we describe our implementation.

From NRAe to NRA. We first consider the relationship be-
tween NRAe and NRA. Figure 4 defines the translation func-
tion JqKa from NRAe to NRA. It relies on the encoding of
the two inputs of NRAe (In and Env) as a record with two
fields: D for the input datum and E for the environment.
This record is the single input In of NRA. Therefore, the
translation of In (resp. Env) corresponds to accessing field
D (resp. E).

This encoding surfaces in the translation of most NRAe

constructs. For example, the translation of composition
needs to reconstruct the encoding of the input before the
evaluation of the second part of the query:

Jq2 ◦ q1Ka = Jq2Ka ◦ ([E : In.E]⊕ [D : Jq1Ka])

This translation lifts each element of the collection which is
mapped into a record containing the environment as field E
and the element of the collection as field D.

The translation uses the unnest operator ρB/{A} (q) de-
fined in Section 3.2. Unsurprisingly, this re-introduces some

of the nesting/complexity that was eliminated by supporting
environments in NRAe. The correctness of the translation
is established by Theorem 2.

Theorem 2 (NRAe to NRA Correctness_).

γ ` q @ d1 ⇓a d2 ⇐⇒ ` JqKa @ ([E : γ]⊕ [D : d1]) ⇓n d2

We mentioned in Section 3.3 that NRA queries have the
same behavior evaluated with either NRA or NRAe seman-
tics _. Therefore, in conjunction with Theorem 2, we have
a proof that NRAe has the same expressiveness as NRA.

From NRAe to NNRC. We present the translation of NRAe

to the Named Nested Relational Calculus (NNRC) [35], with
a bag semantics. The syntax of the calculus is _:

e ::= x | d | �e1 | e1 � e2 | let x = e1 in e2
| {e2 | x ∈ e1} | e1 ? e2 : e3

Expressions can be variables (x), constants (d), operators
(�e1 or e1 � e2), dependent sequencing (let x = e1 in e2),
bag comprehensions ({e2 | x ∈ e1}), or conditionals (e1 ? e2 :
e3). The bag comprehension {e2 | x ∈ e1} constructs a bag
where each element is the result of the evaluation of e2 in an
environment in which x is bound to an element of the bag
created by the evaluation of e1. We use the formal semantics
of NNRC given in [34] _.

Figure 5 defines the translation function JqKxd,xe from
NRAe to NNRC. The translation function is parameterized
by two variables xd and xe that are used to encode the input
value and the environment. So, for example, the translation
of In (resp. Env) returns the corresponding variable xd
(resp. xe). This translation makes explicit the handling of
the input and the environment. For example, in the trans-
lation of the composition the result of the evaluation of the
first expression becomes the input of the second expression:

Jq2 ◦ q1Kxd,xe = let x = Jq1Kxd,xe in Jq2Kx,xe x is fresh

The translation of NRAe to NNRC is similar to the trans-
lation of NRA to NNRC presented in [34] _. However, the
two inputs of NRAe can be translated directly to NNRC
without encoding. Both translations are proved correct __.
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JdKxd,xe = d

JInKxd,xe = xd

J�qKxd,xe = �JqKxd,xe
Jq1 � q2Kxd,xe = Jq1Kxd,xe � Jq2Kxd,xe
Jq2 ◦ q1Kxd,xe = let x = Jq1Kxd,xe in Jq2Kx,xe x is fresh

Jχ〈q2〉(q1)Kxd,xe = {Jq2Kx,xe | x ∈ Jq1Kxd,xe} x is fresh

Jσ〈q2〉(q1)Kxd,xe = flatten ({Jq2Kx,xe ? {x} : ∅ | x ∈ Jq1Kxd,xe}) x is fresh

Jq1 × q2Kxd,xe = flatten ({{x1 ⊕ x2 | x2 ∈ Jq2Kxd,xe} | x1 ∈ Jq1Kxd,xe}) x1 is fresh ∧ x2 is fresh

J./d〈q2〉(q1)Kxd,xe = flatten ({{x1 ⊕ x2 | x2 ∈ Jq2Kx1,xe} | x1 ∈ Jq1Kxd,xe}) x1 is fresh ∧ x2 is fresh

Jq1 || q2Kxd,xe = let x = Jq1Kxd,xe in ((x = ∅) ? Jq2Kxd,xe : x) x is fresh

JEnvKxd,xe = xe

Jq2 ◦e q1Kxd,xe = let x = Jq1Kxd,xe in Jq2Kxd,x x is fresh

Jχe〈q2〉Kxd,xe = {Jq2Kxd,x | x ∈ xe} x is fresh

Figure 5: From NRAe to NNRC _. JqKxd,xe = e

6. TRANSLATING QUERIES TO NRAe

We now consider how to use NRAe as the target for a
query language. Because of space considerations, we focus
on the following specific aspects: the complexity of the initial
translation, the ability to optimize the resulting plan, and
the practical benefits of NRAe’s environment support.

NRAλ. Our first example is the nested relational algebra
with explicit lambdas we used in the introduction to moti-

vate the work. The syntax of NRAλ is the following _, where
the data model and operators are the same as for NRAe:

l ::= x | d | �l | l1 � l2 |map (f) l
| d-join (f) l | l1 × l2 | filter (f) l

f ::= λx.l

The semantics of NRAλ are unsurprising _. The main
operations behave as in NRAe, except that dependent oper-
ators are expressed explicitly as functions (λx.l), which can
access their input (as well as any other variables in scope).
The scoping rules are standard. Proceeding as for NRAe,

we can define an equivalence relation on NRAλ similar to

Definition 3 _. This can be used to prove the NRAλ map
fusion equivalence given in Figure 1 _.

JxKl = Env.x

JdKl = d

J�lKl = �JlKl
Jl1 � l2Kl = Jl1Kl � Jl2Kl

Jmap (f) lKl = χ〈JfKf 〉(JlKl)

Jd-join (f) lKl = ./d〈JfKf 〉(JlKl)

Jl1 × l2Kl = Jl1Kl × Jl2Kl
Jfilter (f) lKl = σ〈JfKf 〉(JlKl)

Jλx.lKf = JlKl ◦e (Env ⊕ [x : In])

Figure 6: From NRAλ to NRAe _ JlKl = q JfKf = q

The full translation from NRAλ to NRAe is both small
and straightforward and is given in Figure 6. Functions f
are translated into an NRAe expression that adds the cur-
rent input (the argument to the lambda) to the environment
with the appropriate name. The rules for record concatena-
tion correctly enforce local shadowing as needed. Variable
lookups are translated into accesses of fields of the envi-
ronment. This simple translation is easily proved correct
(semantics preserving) _, validating the suitability of NRAe

for supporting languages with variables. Note that an al-
ternative encoding into NRA would be significantly more
complex and harder to prove correct.

This validates the original intuition that we can model
traditional variable scoping constructs. It can be useful for
adapting rewrites from the literature which often make use
of explicit lambda terms [10, 18, 24], or to support language
integrated queries written with closures. For instance, the
following LINQ [28] expression in C#:

Persons.Where(p => p.age < 30).Select(p => p.name)

corresponds directly to the NRAλ expression _:

map (λp.(p.name)) (filter (λp.(p.age < 30)) (Persons))

SQL. To further evaluate the suitability of NRAe as a target
for query compilation, we implemented a translation from a
subset of SQL to NRAe. A full formal specification for SQL
being a large undertaking, our focus here is on validating
the compiler and optimizer. That infrastructure relies on an
AST for a subset of SQL _, along with a translation from
that subset to NRAe _. The compiler supports full select-
from-where blocks including group by and order by, nested
queries, set operations (union, intersect, except), exists, be-
tween, view definitions, with clauses, case expressions, com-
parisons, aggregations, and essential operators on atomic
types, including dates and aggregate operations. With that
feature set, the compiler handles all TPC-H queries with the
exception of one: TPC-H query 13 which uses a left outer
join which we currently do not support.2

2Although our compiler handles null values, we do not have
a full specification for the null value semantics in SQL.
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Figure 7: TPC-H benchmarks.

We used Q*cert to compile the 21 TPC-H queries that
we support, targeting JavaScript as a backend for execu-
tion. Since the translation from SQL to NRAe has not been
proven correct, we instead inspected the query results to en-
sure they were as expected according to the SQL semantics.
Figure 7 reports on query size and depth for the NRAe in-
termediate representation (with SQL size for comparison),
as well as compilation times. The number of operations is
relatively large (in the hundreds of operators), but validates
that the translation to the algebra does not introduce any
unexpected blow up. Compilation time is under two seconds
for all queries, with most of the time spent on optimiza-
tion (translation time is negligible).

As an additional evaluation, we also tried the compiler on
TPC-DS queries (without checking for correctness), which
are significantly more complex due to some use of rollup
and windowing notably. We could compile 37 out of 99
queries, all of which compiled in under 4 seconds except for
TPC-DS query 66 which took about 11 seconds. A specific
investigation of that query shows a much larger NRAe plan
(around 2200 operators), and most of the compilation time
is spent on rewriting.

OQL. The Q*cert compiler also implements a frontend for
a reasonable subset of OQL _, which is of interest as it pro-
vides a clean model for queries over nested relational data
and objects, along with aggregation. We implemented the
“classic” translation from OQL to NRA proposed in [14]
for that subset. That fragment includes select-from-where
statements, aggregation, object access, casting and object
creation, and arbitrary nesting. We wrote a formal seman-
tics for that fragment _ in order to prove the translation to
NRAe correct _. Note that most of the translation for OQL
does not use environment operators. This is a useful feature
of the approach we propose: additional operations on the
environment can be used at the discretion of the compiler
developer when deemed useful. In the OQL case, all existing
NRA optimization [14], e.g., for query decorrelation, can be
applied as-is on the resulting plans.

View declarations. One case where we found environment
operations to be particularly convenient is in supporting
view declaration (and undeclarations). Since we used a sim-
ilar mechanism for both SQL and OQL views, we illustrate
it here only on a SQL example.

The intuition is straightforward: when a view is being
defined, it is simply added to the environment with the view
name bound to the corresponding query plan. Consider the
following simple SQL view definition (inspired by TPC-H
query 15):

create view revenue0 (supplier_no, total) as
select l_suppkey, sum(l_extendedprice) from lineitem;
group by l_suppkey

select s_name, total
from supplier, revenue0
where s_suppkey = supplier_no

and total = select max(total_revenue) from revenue0;

The corresponding translation to NRAe has the structure
qstmt ◦e [revenue0 : qview], where qview is the query plan for
the view definition, and qstmt is the query plan for the main
SQL statement. Within the main SQL statement, access to
the revenue0 view is done by using environment access as
Env.revenue0. This approach cleanly handles views that
rely on previously defined views, as well as dropping views.

In SQL, we also use the same approach to support with-as
clauses. Generally speaking, NRAe operations provide a nat-
ural way to represent let bindings within the query plans.
In other words, NRAe provides a simple way to represent
shared sub-plans in the query and can naturally be used
to handle SQL views, with-as clauses, or could be used to
capture common sub-expression elimination rewrites.

7. TRANSLATING RULES TO NRAe

The second application is a translation from a query DSL
of JRules [8] to NRAe. It is the original motivation of the
work [4]. While building a compiler for this language, we
faced an explosion of the size of intermediate NRA queries.
This section reports on how NRAe overcomes this problem.

From CAMP to NRAe. To illustrate how NRAe simplifies
the compilation of a production rule language, we use the
Calculus for Aggregating Matching Patterns (CAMP) intro-
duced in [34]. The syntax of the CAMP calculus _ is:

p ::= d | �p | p1 � p2 | it | env | let it = p1 in p2
| let env += p1 in p2 |map p | assert p | p1||p2

We present here an intuitive semantics of CAMP; the for-
mal semantics of the calculus is defined in [34] on the same
data model we use for NRAe. The language operates over an
implicit datum being matched and an environment. The it
construct obtains the implicit datum and env the environ-
ment. The let it = p1 in p2 construct uses the value of p1 as
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Figure 8: CAMP tests.
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Figure 9: Comparison of the direct translation from CAMP to NRA with translation through NRAe.

implicit datum for p2 and let env += p1 in p2 updates the
environment for the evaluation of p2. The map p construct
maps a pattern p over the implicit datum it. The assert p
construct can introduce match failure and p1||p2 can recover
from this kind of failure.

In [34], the translation from CAMP to NRA relies on two
principles. (1) To encode the notion of recoverable errors,
the output is always a bag. This bag is guaranteed to be
either empty (representing a recoverable error) or a singleton
of the datum. (2) The two inputs it and env of CAMP
are encoded in the single input In of NRA. In is always a
record with two fields, E and D, storing the environment
and datum.

In translating from CAMP to NRAe, we keep the first
principle but eschew the second. Consider the translation
of it and env. When we go from CAMP to NRA, we have
to project the field corresponding to the value we want to
access (JpKr is the translation function of a pattern p):

JitKr = {In.D} JenvKr = {In.E}

This result is wrapped in a bag to encode the pattern match-
ing semantics. When going from CAMP to NRAe, the two
inputs of CAMP can be mapped to the two inputs of NRAe.
Hence, the translation of it and env becomes:

JitKr = {In} JenvKr = {Env}

This direct mapping of the CAMP inputs to the NRAe

inputs simplifies the translation of other CAMP constructs.
The complete translation function _ is given in Appendix A
and has been proven correct _. This simplification is simi-

lar to the one observed in the examples with lambdas from
Section 2. The ability to represent the environment opera-
tions directly in the algebra avoids having to encode them
through nested queries. This allows the optimizer to sim-
plify the query plan much more effectively.

Experiments. We report on experiments compiling several
CAMP programs in Figure 8. The first test, p01, is the
example given as Figure 6 in [34], p02 is an example of select,
p03 is a join, p04 and p05 are joins with negation, p06 to
p08 are simple aggregations, and p09 to p14 are joins with
aggregation.

Figures 8a and 8b show the size and the depth of the
intermediate queries when compiling a CAMP program to
NNRC. Compared to the TPC-H benchmark queries, the
NRAe queries coming from CAMP programs have a similar
size but they have a deeper level of nesting. The optimizer
is much more effective on these queries than on the queries
from the TPC-H benchmark. This is because CAMP pro-
grams were our primary goal and there are optimization tai-
lored to remove translation artifacts from CAMP to NRAe.

In term of compilation time (Figure 8c), compared to
the TPC-H benchmark, the proportion spent in the NRAe

optimizer is higher than the one spent in the NNRC opti-
mizer because more NRAe optimizations are triggered and
the NNRC terms to optimize are smaller. The compilation
time remains on the order of a few seconds.

Figure 9 compares a direct translation from CAMP to
NRA with a compilation path that goes through NRAe. Fig-
ures 9a and 9b show for each of the examples the size and
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depth of NRA queries generated directly from CAMP or
from CAMP to NRAe and then to NRA. Figure 9c shows the
size of the NNRC expressions generated by going through
NRA and NRAe. All the numbers are given after optimiza-
tion.

The NRAe optimizer includes two distinct categories of
rewrites: (i) NRAe rewrites like the ones presented in Sec-
tion 4.3, and (ii) classic NRA rewrites lifted to NRAe (some
examples of rewrites are given Figure 12 in Appendix A).
The second class of rewrites can thus also be applied on
NRA queries.

A detailed analysis of the results shows that, for example,
for p01, while none of the rewrites dedicated to NRAe reduce
the depth, they allow the pure NRA rewrites to “kick in”,
e.g., allowing the optimizer to recognize subqueries of the
form χ〈In〉(q) which can be removed by the simple rewrite:
χ〈In〉(q) ⇒ q. As it turns out, this specific rewrite is never
triggered when we optimize the NRA query coming directly
from CAMP.

By comparing the NRAe opt bars of Figure 8a with the
through NRAe bars of Figure 9a, we can see that even before
optimization, the NRAe queries are much smaller than the
NRA queries. For example, p01 goes from a size of 78 in
NRAe to 417 in NRA. This difference make the generated
NNRC code much smaller (Figure 9c).

8. IMPLEMENTATION
The work presented in this paper is part of an effort in

applying recent theorem proving technologies for the design,
implementation and verification of query compilers. In this
section, we review the state of our implementation and go
over practical aspects that were omitted from the main part
of the paper. We also report on our experience in using theo-
rem proving technology for query compiler implementation.

The Q*cert Compiler. Figure 10 gives an overview of the
full compiler architecture. Each square box corresponds to
an intermediate representation specified using Coq. The red
coloring identifies the subset of the compiler that is accom-
panied by mechanically checked correctness proofs. Those
cover all parts described in this paper, except for the SQL
to NRAe translation. The compiler implementation is auto-
matically generated from the mechanized specification using
Coq’s extraction mechanism [23], ensuring that the compiler
matches the specification.

As of this writing, the implementation supports compila-
tion from JRules (our initial target and the most complete),

a fragment of SQL and OQL, and NRAλ. It can emit code
for execution in JavaScript or Java, for Spark, and for the
Cloudant NoSQL database. In each case, the emitted code
has to be linked with a small runtime library which imple-
ments core operations over the data model (e.g., record con-
struction/access, collection operations such as flatten, dis-
tinct, etc). The Java and JavaScript backends are useful for
testing and also serve as building blocks for the Spark and
Cloudant backends. For Cloudant, the compiler produces
map/reduce views containing JavaScript code.

From a front-end perspective, the system includes a parser

for OQL and NRAλ. JRules and SQL support rely on exist-
ing Java parsers for those languages, which pass an AST to
the compiler encoded as an S-expression. The named nested
relational calculus (NNRC) is the gateway to the backend

!NRA: NRA with Lambdas 
Rule: Rule Macros for CAMP 
CAMP: Calculus of 
Aggregating Matching 
Patterns

DNNRC: Distributed NNRC 
tDNNRC: Typed DNNRC 
NNRCMR: NNRC with Map/
Reduce 
CldMR: NNRC with Cloudant 
Map/Reduce

NRA = Nested Relational Algebra 
NRAe = NRA with Environments 
cNRAe: Core NRAe 

NNRC: Named Nested Relational 
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Figure 10: Q*cert compiler architecture.

part of the compiler. It is directly used to generate code
for Java and JavaScript, while code generation for Spark
and Cloudant rely on additional intermediate representa-
tions (DNNRC models distributed computation with Spark
Datasets, NNRCMR models map/reduce, and CldMR mod-
els Cloudant-specific map/reduce).

Data model and type system. In order to focus on the
novel features of NRAe, this paper uses a simple data model
of complex values with bags and records, and omits the
treatment of types. This is far from enough for practical
languages. For instance, OQL and JRules support class hi-
erarchies, and all our languages require support for null val-
ues, date comparisons, and arithmetic. The implementation
supports a rich data model that includes a notion of objects
as well as sum types in a way similar to [21, 33]. The com-
piler specification and correctness proofs are done over that
richer data model and type system. It is important to recall
that type correctness is used pervasively as a pre-condition
for algebraic rewrites and rely on type checking and type
soundness proofs for the intermediate languages.

To handle additional data types (e.g., dates), and provide
some modularity, the mechanization is parameterized over
a notion of “foreign” types and operators. From a Coq per-
spective, those are axioms that are assumed by the proof sys-
tem. A set of axioms for each foreign type typically includes
semantics and typing judgments, with correctness proper-
ties _. When the compiler is extracted, an implementation
of those axioms as regular code must be provided. Note that
this choice represents a trade-off, since Coq cannot ensure
the correctness of that part of the implementation.

Optimizer. Most of the formal treatment of the paper uses
algebraic equivalences to convey optimizations. As we men-
tioned in the introduction, those are used as part of the
proof of correctness for the optimizer itself. These optimiza-
tions are written as individual pattern-match based trans-
formations (with side conditions as needed), each of which
is proven to preserve semantics (and typing as appropriate).

The optimization infrastructure is parameterized by a list
of rewrites and a cost function. All possible rewrites are ap-
plied through a depth-first AST traversal and optimization
proceeds as long as the cost is decreasing. Despite being
simple by traditional databases standards, the optimizer in-
cludes on the order of a hundred rewrites. The cost is cur-
rently based on the size and depth of the query which means
there is a lot of room for improvements on that part of the
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implementation. Coq does not introduce specific limitations
as to the complexity of the optimizer, which could use a
search space and more complex cost model.

Finally, we have made some efforts to ensure that adding
new optimizations is relatively straightforward. As shown
in the introduction, each rewrite can be programmed and
proved individually. The infrastructure provides a tactic
that helps with this, in order to automatically reduce the
full proof to a proof of the individual type-directed rewrite.

Support for other languages. Our current compiler uses
well-known database representations which means it can eas-
ily be used to investigate or validate novel optimizations for
other use cases, as we have done for CAMP. The amount
of work required for adding a new language to the compiler
depends on the nature of the language. Q*cert makes a few
important assumptions: one is a data model based on nested
relations, the other is that type checking is assumed in most
of the optimizer support. As a result, the compiler should
be a good match for Spark (which we partially support),
Pig Latin [29], or JSON languages such as Jaql [7]. Addi-
tional work on typing for semi-structured data would make
languages such as JSONiq [19] or SQL++ [30] interesting
next steps. Languages such as XQuery would require signif-
icant changes to the compiler because of the complexity of
the XML data model.

Thoughts on Coq. Coq is a functional programming lan-
guage that fits well the task of writing compilers. Proofs can
be added gradually, extraction is robust, and the code gener-
ated benefits from the good quality of the OCaml compiler,
both in terms of stability and performances. The current
performance bottlenecks in our implementation are in the
optimizers, which can lead to an exponential number of it-
erations over the tree. However, it should be possible to use
memoization techniques to improve performances [9].

One of the pleasant surprises of our experience has been
the versatility of Coq, which we feel could be used to tackle a
range of database problems. For instance, similar techniques
could be used for: the specification of a query language after
the fact or during development (for documentation and pro-
totyping), ensuring the correctness of complex algorithms
(e.g., view maintenance), or building an end-to-end verified
compiler. This last scenario would certainly be a large un-
dertaking and would require addressing integration issues
with a real database engine.

9. RELATED WORK
There has been renewed interest in the formal verification

of database systems or query languages [6, 11, 25, 26, 34]. So
far, much of the work has focused on formalization [6, 11, 34]
or on evaluating challenges involved in mechanization [26].
The closest related work is that of Cherniack and Zdonik [12,
13], which focused on the formal specification of rule-based
query optimizers and used the Larch [20] theorem prover
to verify correctness. Our work extends that approach in
two ways: (i) we describe an alternative combinator-based
algebra with built-in support for environments and (ii) we
leverage recent advances in theorem proving technology to
specify a much larger part of the query compiler.

How to best deal with variables and environments in alge-
braic compilers has received relatively little attention. For

SPJ (Select-Project-Join) queries, variables can be elimi-
nated at translation time and equivalences can be simply
defined for a given static environment [2]. For query lan-
guages over complex or nested data, reification of the envi-
ronment as a record is appealing in that existing relational
techniques can be readily applied. This idea has notably
been used in algebraic compilers for query languages over
nested or graph data such as OQL [14] and XQuery [27, 32].
Full reification enables relational optimizations, but can re-
sult in large or highly nested plans in those languages as
well. The algebra from [14] does combine environments and
reification, but assumes that environments are fixed for the
purpose of defining plan equivalence.

Dealing with bindings is also important for the formal-
ization of programming languages. The POPLmark chal-
lenge [5] has helped spur an assortment of techniques for
representing and reasoning about bindings. These are all
focused on traditional bindings, as introduced by functions.
Our work uses explicit reified environments instead. It en-
ables support for the standard shadowing semantics for oc-
currences of a variable while also supporting unification se-
mantics, where the value of the variable added to the envi-
ronment has to be compatible with previous occurrences.

10. CONCLUSION
This paper introduced NRAe, the Nested Relational Alge-

bra with Environments, which provides the foundation for a
formally verified query compiler written using the Coq proof
assistant. NRAe extends a combinators-based nested rela-
tional algebra with explicit environment support in a way
that facilitates the specification and verification of algebraic
rewrites. A lifting theorem shows that all existing NRA opti-
mizations also apply to NRAe. We showed how the resulting
compiler can be used for both traditional queries and for a
query DSL in the context of a rules language.

Theorem proving techniques have greatly matured in re-
cent years, and we feel that their application to databases
could prove useful in a number of ways (for specification,
prototyping, or to provide correctness guarantees in scenar-
ios where security or privacy are important). We are cur-
rently working on further improvements to our compiler in-
frastructure, notably to the optimizer and backend, in order
to support code-generation for distributed query plans.

Acknowledgments. We would like to thank the anonymous
reviewers for their comments and suggestions which greatly
helped us improve the content and presentation of this work.
We also thank Guillaume Baudart, Stefan Fehrenbach, and
Erik Wittern for their feedback on earlier drafts. Finally, we
send this _ to Florence Plateau.

11. REFERENCES
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy.
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APPENDIX
A. CAMP

Section 7 discussed the CAMP calculus, which was origi-
nally described in [34] as a useful intermediate language for
compiling rule-based languages. Section 7 reported on the
results of translating and optimizing CAMP through NRAe.
In this appendix, we formalize the translation from CAMP
to NRAe, and present some important NRA optimizations
that help simplify the resulting NRAe.

The paper that introduced the CAMP calculus presents
a translation into NRA in Figure 10 of [34]. This required
encoding the input as a record with two components D and
E representing the current data and environment. NRAe

avoids the need for such an encoding, as the CAMP envi-
ronment can be directly represented using the NRAe envi-
ronment. Figure 11 presents the full translation from CAMP
to NRAe (on the right). For comparison, the original trans-
lation from [34] is presented in parallel (on the left).

Consider for example the translation of map p. When we
go to NRAe, the translation produces a corresponding map

in NRAe, and uses a flattening to account for the fact that
the result of translating p will return a collection:

Jmap pKr =
{

flatten
(
χ〈JpK〉(In)

)}
When we go to NRA, in addition to the flattening, the input
must be manipulated to iterate on the data part and keep
the environment. The translation function is:

Jmap pKr ={
flatten

(
χ〈JpK〉

(
ρD/{T} ({[E : In.E]⊕ [T : In.D]})

))}
where ρB/{A} (q) is the unnest operator from Section 3.2.

In addition to the NRAe specific optimizations presented
in Figure 3, many standard NRA optimizations are useful
for optimizing translated CAMP. Figure 12 presents a num-
ber of these optimizations, which serve to eliminate inef-
ficiencies introduced either by the structure of the CAMP
language or naive translation. Similarly, Figure 13 presents
more complex NRAe optimizations that target common pat-
terns produced by compilation from CAMP.
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NRA CAMP NRAe

{d} = JdKr = {d}
χ〈�In〉(JpKr) = J�pKr = χ〈⊕In〉(JpKr)(
χ〈In.T1�In.T2〉 = Jp1 � p2Kr =

(
χ〈In.T1�In.T2〉

χ〈[T1:In]〉(Jp1K)× χ〈[T2:In]〉(Jp2K)
)

χ〈[T1:In]〉(Jp1K)× χ〈[T2:In]〉(Jp2K)
){

flatten
(
χ〈JpK〉 = Jmap pKr =

{
flatten

(
χ〈JpK〉(In)

)}(
ρD/{T} ({[E : In.E] ∗ [T : In.D]})

) )
)
}

χ〈[ ]〉
(
σ〈In〉(JpKr)

)
= Jassert pKr = χ〈[ ]〉

(
σ〈In〉(JpKr)

)
Jp1K||Jp2K = Jp1||p2Kr = Jp1Kr||Jp2Kr
{In.D} = JitKr = {In}
flatten

(
χ〈Jp2Kr〉 = Jlet it = p1 in p2Kr = flatten

(
χ〈Jp2K〉(Jp1Kr)

)(
ρD/{T} ({[E : In.E] ∗ [T : Jp1Kr]})

) )
{In.E} = JenvKr = {Env}
flatten

(
χ〈Jp2Kr〉( = Jlet env += p1 in p2Kr = flatten

(
χe〈Jp2K〉 ◦e flatten

(
χ〈In⊗Env〉(Jp1K)

) )
χ〈[E:In.E2]∗[D:In.D]〉(
ρE2/{T2}(χ〈In∗[T2:In.E+In.E1]〉(

ρE1/{T1} ({In ∗ [T1 : Jp1Kr]})))))
)

Figure 11: From CAMP to NRA _ and NRAe _ JpKr = q

[a : q].a ⇒ q _
(q1 ⊕ [a2 : q2]).a2 ⇒ q2 _

if a1 6= a2, (q ⊕ [a2 : q2]).a1 ⇒ q.a1 _
if a1 6= a2, ([a1 : q1]⊕ q).a2 ⇒ q.a2 _

[ ]⊗ q ⇒ {q} _
q ⊗ [ ] ⇒ {q} _

{[a1 : q1]} × {[a2 : q2]} ⇒ {[a1 : q1]⊕ [a2 : q2]} _
In ◦ q ⇒ q _

(�(q1)) ◦ q2 ⇒ �(q1 ◦ q2) _
(q2 � q1) ◦ q ⇒ (q2 ◦ q) � (q1 ◦ q) _

if Ii(q1), q1 ◦ q2 ⇒ q1 _

χ〈q1〉(q2) ◦ q ⇒ χ〈q1〉(q2 ◦ q) _
flatten(χ〈χ〈{q3}〉(q1)〉(q2)) ⇒ χ〈{q3}〉

(
flatten(χ〈q1〉(q2))

)
_

χ〈p1〉(flatten(p2)) ⇒ flatten(χ〈χ〈p1〉(In)〉(p2)) _

χ〈p1〉
(
flatten(χ〈p2〉(p3))

)
⇒ flatten(χ〈χ〈p1〉(p2)〉(p3)) _

flatten({q}) ⇒ q _
flatten(χ〈{q1}〉(q2)) ⇒ χ〈q1〉(q2) _

χ〈In〉(q) ⇒ q _
χ〈q1〉

(
χ〈q2〉(q)

)
⇒ χ〈q1◦q2〉(q) _

χ〈q1〉({q2}) ⇒ {q1 ◦ q2} _
χ〈q2〉

(
σ〈q1〉({q})

)
⇒ χ〈q2◦q〉

(
σ〈q1◦q〉({In})

)
_

Figure 12: NRA rewrites for CAMP.

flatten(χe〈χ〈Env〉(σ〈q1〉({In}))〉) ◦
e χ〈Env〉

(
σ〈q2〉({In})

)
⇒ χ〈Env〉

(
σ〈q1〉

(
σ〈q2〉({In})

))
_

(χe〈q〉) ◦e (Env ⊗ [a : In]) ⇒ χ〈(q◦Env.a)◦eIn〉(Env ⊗ [a : In]) _

flatten(χe〈q〉) ◦e (Env ⊗ [a : In]) ⇒ flatten(χ〈(q◦Env.a)◦eIn〉(Env ⊗ [a : In])) _

χ〈Env⊗In〉
(
σ〈q1〉(Env ⊗ q2)

)
⇒ χ〈{In}〉

(
σ〈q1〉(Env ⊗ q2)

)
_

Figure 13: NRAe rewrites for CAMP.
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