
RC24218 (W0701-124) January 25, 2007
Computer Science

IBM Research Report

Data Layouts for Object-oriented Programs

Martin Hirzel
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Data layouts for object-oriented programs ∗

Martin Hirzel
IBM Watson Research Center

Hawthorne, NY
hirzel@us.ibm.com

Abstract
Object-oriented programs rely heavily on objects and pointers,
making them vulnerable to slowdowns from cache and TLB misses.
The cache and TLB behavior depends on the data layout of objects
in memory. There are many possible data layouts with different
impacts on performance, but it is not known which perform bet-
ter. This paper presents a novel framework for evaluating data lay-
outs. The framework both makes implementing many layouts easy,
and enables performance measurements of real programs using a
product Java virtual machine on stock hardware. This is achieved
by sorting objects during copying garbage collection; outside of
garbage collection, program performance is solely determined by
the data layout that the sort key implements. This paper surveys
and evaluates 10 common data layouts with 32 realistic benchmark
programs running on 3 different hardware configurations. The re-
sults confirm the importance of data layouts for program perfor-
mance, and show that almost all layouts yield the best performance
for some programs and the worst performance for others.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Memory management (garbage
collection)

General Terms Languages, Measurement, Performance, Experi-
mentation, Algorithms

Keywords data layout, data placement, spatial locality, cache,
TLB, memory subsystem, hardware performance counters, GC

1. Introduction
Object-oriented programs rely heavily on objects and pointers,
making them vulnerable to slowdowns from cache and TLB misses.
When the program traverses a pointer to access an object, but the
object is not currently in cache or TLB, the processor has to wait
many cycles for the data to arrive from memory. A good data layout
(mapping of objects to memory addresses) can frequently prevent
such wait times. For example, it can put two objects on the same
cache line or TLB page, so a miss to one of them brings both into
cache or TLB. There are many different layouts to choose from,

∗ This research was funded in part by DARPA contract
No. NBCH30390004

but there has not been a good way to pick the right layout given a
program and platform.

Previous layout evaluation approaches fall into four categories.
The appeal-to-intuition approach evaluates a data layout by

intuitively arguing that it is good. For example, it seems likely that
a program will access data in the same order it allocated them, so
laying out objects in allocation order sounds like a good idea.

The formal approach evaluates a data layout by first making
some simplifying assumptions about the program and the platform,
and then proving an optimality proposition. However, Petrank and
Rawitz showed that determining an optimal layout (or even an
approximation) is NP hard in general [41].

The simulation approach evaluates a data layout by taking a
trace of all object accesses of a program, then using it to drive a
cache, TLB, or paging simulator to determine the number of misses
for a given layout. Both Stamos [51] and Blau [8] evaluated several
data layouts for three Smalltalk programs with paging simulation.
Unfortunately, modern hardware is complex, and simulated miss
rates are only a rough indicator of actual performance. For example,
out-of-order execution partially hides misses, whereas false sharing
in multiprocessor systems introduces new misses.

The brute-force approach evaluates data layouts by comparing
full implementations of multiple layouts on real hardware. Imple-
menting a layout costs effort, thus authors usually only compare
the new one proposed by the paper, and the default layouts of their
language runtime system.

This paper presents a novel framework that combines the best of
the simulation approach and the brute-force approach: use a simple
implementation for each layout (like in the simulation approach),
while at the same time evaluating the layouts on real hardware (like
in the brute-force approach). Each data layout is implemented by a
stop-the-world copying garbage collector. When the program needs
more memory, it stops and calls the garbage collector. When the
collector is done, it resumes the program. The program without the
garbage collector is commonly referred to as mutator. The frame-
work uses a simple garbage collector that is easy to implement.
The collector may be slow, but its performance is not of interest
for this paper. Collector performance has been extensively studied
elsewhere. This paper is concerned with mutator performance, and
the framework makes it possible to measure that in a realistic way.

The contributions of this paper are:

• A versatile framework for evaluating data layouts for object-
oriented programs. The versatility is demonstrated by imple-
menting the 10 most common layouts used in practice.

• A comprehensive study of the effect of each data layout on
program performance. The study measures time and memory
system performance of 32 programs on 3 hardware platforms.

The results show that mutator cache and TLB miss rates com-
monly vary by 10-20% from layout to layout, and mutator time
commonly varies by 5-10%, sometimes more. Almost all layouts

1

yield the best performance for some programs and the worst per-
formance for others.

2. Sorting garbage collection
This section presents a novel framework for easily implementing
data layouts in a garbage collector. The framework enabled this
paper to present the first comprehensive and realistic evaluation of
data layouts for object-oriented programs. It is based on copying
garbage collection. Section 2.1 gives background and Section 2.2
presents the algorithm.

2.1 Generational copying garbage collection
This paper is based on copying garbage collection with a genera-
tional collector [38, 55], since that is the most common approach
used in object-oriented systems. Generational collectors segregate
objects by age into generations. Younger generations are collected
more often than older generations, which reduces overall collec-
tor work, because most objects become unreachable while they are
still young. This paper employs a collector with two generations,
a copying young generation and a mark-sweep old generation. The
collector also implements numerous other techniques, among oth-
ers, parallelism [26] and tilted semi-spaces [39].

to-space

from-space

young
generation

old
generationsp

ac
e

copying

Figure 1. Generational copying garbage collection.

Figure 1 shows the memory layout. The young generation is
divided into into two semispaces. Only one semispace is active
for allocation. Garbage collection starts when the active semispace
is full. The collector traverses pointers from program variables
(roots) to discover reachable objects, which it copies to the other
semispace (from from-space to to-space) or to the old generation.
Figure 1 indicates copying by dotted arrows. After copying, the
collector updates all pointers to refer to the new copies (fix-up),
and discards the from-space originals. When the program resumes,
it uses to-space as the active semispace for allocation.

Each set of objects allocated between the same two collections
starts out in allocation-order, and once it survives the first collec-
tion, has the data layout implemented by the collector.

2.2 Object sorting
This section introduces the sorting garbage collector. The goal of
this algorithm is to easily produce different layouts when copying
objects. A layout is a mapping of objects to data addresses, defined
by the order of the object relative to each other. The key idea of the
algorithm is to produce this order by literally sorting the objects,
for example, with quicksort. That may make the collection slower,
but this paper is not concerned with collector performance, only
with the performance of the program between collections. Collector
performance has been extensively studied elsewhere.

Figure 2 illustrates the algorithm with an example. The algo-
rithm has four steps:

12

11

10d

9

5

6d

4

2

3

7d

1

8

remem-
bered
set

roots

survivor
array

young
generation

from-space

old
generation

young
generation

to-space

12

11

10d

9

5

6d

4

2

3

7d

1

8

old
generation

young
generation

to-space
survivor
array

young
generation

from-space

(a) populate (b) sort

12

11

10d

9

5c

3c

5

6d

4

2

3

7d

1

1c

2c

4c

8

young
generation

from-space

old
generation

young
generation

to-space
survivor
array

12

11

10d

9

5c

3c

5

6d

4

2

3

7d

1

1c

2c

4c

8

young
generation

from-space

old
generation

young
generation

to-space
survivor
array

remem-
bered
set

roots

(c) copy (d) fixup
Figure 2. Sorting garbage collection.

(a) Populate a survivor array with pointers to all objects in the
young generation that are reachable from roots or from the
remembered set. In the example, the survivor array points to the
objects 〈1, 3, 5, 2, 4〉. Objects 6d and 7d in the young generation
are dead, denoted by the little “d”.

(b) Sort the survivor array using any sort key (such as the address,
type, size, etc.), for example, using quicksort or heap sort. Fig-
ure 2(b) shows the sort key as a number in the object, so sorting
changes the survivor array from 〈1, 3, 5, 2, 4〉 to 〈1, 2, 3, 4, 5〉.
Figure 2(b) omits program pointers to avoid clutter.

(c) Copy survivor objects to to-space and to the old generation
in the order they are referenced by the survivor array. This
step also installs forwarding pointers in the object header. For
example, the copy of object 5 is object 5c in the old generation,
and object 5 has a forwarding pointer to object 5c.

(d) Fix up program pointers that referred to the objects in the young
generation to point to their copies in the old generation. For
example, in Figure 2(a), object 9 points to object 2 in from-
space. After fixup in Figure 2(d), object 9 points to object 2c in
to-space.

2

“1” Preserving PO Popularity
AO Allocation order PD Profile-directed
AS Allocation site RA Random
BF Breadth-first SZ Size
DF Depth-first TH Thread
HI Hierarchical TY Type

Table 1. Data layout abbreviations.

Section 3 describes several data layouts, and shows how they
can be implemented using the sorting garbage collection algorithm
presented here. Creating a different layout is as easy as using a
different sort key in Step (b).

3. Data layout descriptions
This section surveys common data layouts for object-oriented pro-
grams. Table 1 gives abbreviations for data layouts in this paper.

3.1 Depth-first layout (DF)
What: Perhaps the simplest copying garbage collector is Fenichel
and Yochelson’s algorithm, which traverses objects with a recursive
procedure [23]. The variables on the collector’s call stack keep
track of already copied objects that may contain pointers to not-yet
copied objects. Other depth-first copying collectors, such as Cheng
and Blelloch’s algorithm, are not recursive, but maintain the stack
as an explicit data structure and share it between parallel collector
threads [14]. Using a stack for the traversal leads to copying objects
in depth-first order. For example, in Figure 3(a), the collector first
copies object 1 and pushes pointers to objects 2 and 3 on a stack. It
then pops 3, copies it, and pushes its children 6 and 7. Assume that
each block (cache line or TLB page) can fit three objects. When the
collector pops and copies object 7, it fills up the first block; the next
object, object 15, goes on a new block. After that, the collector pops
and copies object 14 and then object 6, so objects 15, 14, and 6 go
on the same block.

Why: Depth-first layout yields good performance if the program
often accesses a parent object together with a child object that it
points to, such as in singly-linked lists. On the other hand, when
the program often accesses sibling objects, it will miss in the cache
or TLB, since depth-first layouts tend to put siblings on separate
blocks. Another drawback is the space overhead for the stack.

How: This paper implements the DF data layout using the algo-
rithm from Section 2.2: use an explicit stack to populate the sur-
vivor array, and omit the sort step.

3.2 Breadth-first layout (BF)
What: When the collector keeps objects in a FIFO-queue during
the reachability traversal, it copies them in breadth-first order (see
Figure 3(b)). Cheney’s breadth-first copying algorithm [13], and
its parallel variant by Imai and Tick [33], use the to-space copies
of the objects themselves as an implicit queue, thus avoiding the
space overhead for an explicit queue.

Why: Breadth-first copying yields good data locality if the pro-
gram often accesses sibling objects together. On the other hand, if
the program often accesses child objects, it will miss in the cache
or TLB, since breadth-first layouts tend to put parents and children
on separate blocks.

How: This paper implements BF data layout using the algorithm
from Section 2.2: use an explicit queue to populate the survivor
array, and omit the sort step.

3.3 Preserving layout (“1”)
What: Table 1 denotes the preserving layout by “1”, because it
keeps objects in the same order as they were before, making it a
one-element for composition of data layouts. Figure 3(c) shows an
example: survivor objects 〈1, 3, 6, 7, 9〉 are copied in the same or-
der they had before, while dead objects 〈2d, 4d, 5d, 8d〉 are omit-
ted. Since “1” does not put objects in a new order, it has the same
characteristics as the layout that existed before it, such as allocation
order (AO, next subsection).

Why: Preserving the data layout facilitates compaction without
a separate semi-space, giving the defragmentation of copying col-
lection without the twofold space overhead of a copy reserve. Pre-
serving is a good data layout if the data layout before copying was
already good. It can be achieved with sliding compaction collectors
[35, Lisp 2 collector, Section 5.4] and their parallel variants [1, 24].
The main drawback of sliding compaction algorithms is that they
usually require an extra pass over the heap. Shuf et al. show how to
preserve data layouts at the page granularity for locality purposes
without an extra pass [48].

How: This paper implements the “1” data layout using the algo-
rithm from Section 2.2: the sort key is the original address of the
object.

3.4 Allocation-order layout (AO)
What: The allocation-order layout places objects in memory in
the order in which the program allocates them. It is the natural
result of allocating from a large consecutive free area of memory
with a bump-pointer. Thus, the newest objects in any semi-space
copying collector (e.g., [13, 23]) are in allocation order. To keep
older objects in allocation order as well, use the preserving data
layout “1”, since preserving AO from before copying yields AO
after copying (AO · 1 = AO).

Why: When the program uses objects in the same order it allo-
cates them, AO yields good performance. In addition, it tends to in-
duce fixed deltas between the addresses of related objects, making
them amenable for prefetching [2, 34]. On the other hand, when a
program accesses objects in a different order than it allocates them,
performance suffers. Also, preserving allocation order tends to cost
more collector time than the simpler DF and BF layouts.

How: This paper uses AO for all young objects with one bump
pointer per program thread, and preserves it as in Section 3.3.

3.5 Segregating by allocation site (AS)
What: Unlike the AO layout, the AS layout does not keep objects
allocated by different static instructions in the program together,
even when they are allocated in consecutive order dynamically. In
the example in Figure 3(d), objects 〈x1, x6, x7〉 were allocated by
instruction x, and objects 〈y3, y9〉 were allocated by instruction y.
Their copies 〈x1c, x6c, x7c〉 and 〈y3c, y9c〉 are segregated on dif-
ferent blocks.

Why: Segregation by allocation site is common in region-based
memory management. Originally implemented with static analysis
for functional languages [54], regions have also been used for C
with programmer annotations [25], for Java with dynamic analy-
sis [42] and static analysis [15], and for C with static analysis [37].
Each region contains objects from one or more allocation sites. In-
stead of freeing individual objects in a region with garbage collec-
tion, region-based memory management reclaims all objects in a
region together when the last one dies, thus saving the collector the
work of tracing individual objects. A weakness of regions is that
they waste space when dead objects are kept around by objects in
the same region that are still alive. Segregation by allocation site

3

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

depth-first1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

breadth-first

(a) Depth-first (b) Breadth-first

1 2d 3 4d 5d 6 7 8d 9 preserving

1c 3c 6c 7c 9c

x1 2d y3 4d 5d x6 x7 8d y9 sorting

x1c x6c x7c y3c y9c

(c) Preserving (d) Sorting

1 2 3d 4 5d 76 98d

1c 6c 2c 7c 9c 4c

(e) Size

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

hierarchical
1

2
3

8

11
129

10

5

4

6 7

001 010

111

110

100

101

(f) Hierarchical (g) Thread
Figure 3. Data layouts.

has also been advocated for locality purposes [29, 37], though no
performance benefit from reduced cache or TLB misses has been
demonstrated.

How: This paper implements the AS data layout using the al-
gorithm from Section 2.2: the sort key is the allocation site, and
among objects from the same allocation site, the sort key is the cur-
rent address. The challenge is to make allocation sites available at
garbage collection time, without perturbing the mutator too much.

For the AS layout, this paper uses an allocation site tracer de-
signed for minimum mutator overhead. The instructions for allo-
cating an object are instrumented with additional instructions for
storing the object address and the allocation site into a thread-local
buffer that is not part of the garbage collected heap. Before the
collector from Section 2.2 sorts the survivor array, it drains all the
thread-local buffers, constructing a map from object addresses in
from-space to allocation sites. Step (b) sorts the survivor array by
looking up the allocation sites of objects as the sort key. Step (c)
copies the survivors, and simultaneously creates a new map from
objects in to-space of the young generation to allocation sites. At
the next collection, this to-space map, together with the thread-local
buffers for new allocation, yields the next set of sort keys.

Table 2 shows how much mutator overhead the instructions
in the allocation sequence for recording the object address and
allocation site cause. The experiment did not actually sort the
survivor array, so the data layouts with and without the allocation-

antlr 5.8% ipsixql 7.5% montecarlo 0%
banshee 0% jack 2.8% mpegaudio -2.3%
bloat 0% javac 4.6% mtrt 6.0%
chart 5.6% javalex -0.6% pmd 0%
cloudscape 0% jbytemark 4.9% pseudojbb05 0%
compress 0% jess 4.9% raytracer 0%
daikon 0% jpat 0% saber 0%
db 0% kawa 0% soot 7.7%
eclipse 8.5% luindex 0% xalan 0%
fop 0% lusearch 6.6% xerces 2.2%
hsqldb 3.6% moldyn 0%

Table 2. Mutator time slowdown caused by allocation-site tracer,
on a 2-processor AMD machine at heap size 4×.

site tracer are identical, to isolate from locality effects. Table 2
shows that the overhead tends to be on the order of 0-10%. We are
still investigating why mpegaudio and javalex experience speedups.
Because the goal of this paper is to measure locality effects in
isolation, later tables subtract out the overhead of the tracer from
AS numbers.

3.6 Segregating by size (SZ)
What: Non-copying collectors have to find holes for allocating
new objects between previously allocated objects. A popular ap-
proach for quickly finding holes of the right size is to use free lists

4

that are segregated by size [18]. When such a freelist consists of
entire blocks, the collector can further exploit that, for example, by
keeping mark bits in parallel instead of in object headers (e.g., [9]).

Why: Advocates of copying garbage collection often accuse seg-
regation by size of destroying locality. To isolate that effect, this
paper investigates segregation by size in a copying collector.

How: This paper implements the SZ data layout using the algo-
rithm from Section 2.2: the sort key is object size (Figure 3(e)).

3.7 Segregating by type (TY)
What: While segregating by size already enables keeping mark
bits in parallel instead of in object headers, segregating by type
takes this further: it makes it possible to keep type information per
page instead of per object. Furthermore, based on a pointer anal-
ysis, type segregation can save the collector some work exploring
reachable objects [29, 47].

Why: Segregating by type may yield better locality if the program
tends to access objects of the same type together.

How: This paper implements the TY data layout using the algo-
rithm from Section 2.2: the sort key is the class pointer of the object
(see Figure 3(d)).

3.8 Hierarchical layout (HI)
What: Hierarchical garbage collection divides the heap into
blocks (for example of size 4KB, which is the page size in many
systems), and treats the objects in each block as a separate queue
for Cheney scan [13]. Whenever possible, it scans in a block that
has free space at the end for copying objects that are connected to
the objects already in the block. Figure 3(f) illustrates the hierar-
chical data layout.

Why: Moon [40] and Wilson et al. [56] designed hierarchical
garbage collection to achieve both the parent→ child locality of
DF and the sibling locality of BF by copying a subtree to the same
block as its root whenever possible.

How: This paper does not use the algorithm from Section 2.2 to
implement the HI layout. Instead, it uses the parallel HI garbage
collector implementation of Siegwart and Hirzel [50].

3.9 Thread-based layout (TH)
What: In multi-threaded programs, multiple mutator threads al-
locate and mutate objects in parallel. Any scalable memory man-
ager uses thread-local buffers for allocation, since otherwise, each
thread has to contend on a lock each time it allocates an object.
Thread-local garbage collectors take this idea a step further: when
a set of objects is used by one mutator thread alone, it can col-
lect garbage without synchronizing with other threads [52]. Thread-
local heaps have not yet become practical or adopted in production
systems. The problem is that they require an escape analysis: an
analysis that shows which objects do not escape the thread that allo-
cated them. Steensgaard proposes a static escape analysis [52], but
until recently, no escape analysis dealt with the full semantics of
Java-like languages, such as reflection and native code. Kotzmann
and Mössenböck published the first such analysis in 2005 [36], so
thread-local heaps may become a reality soon.

Why: In addition to reducing collector synchronization overhead,
thread-local heaps may improve mutator locality, since they keep
the working set of a thread together, and could reduce false sharing.

How: This paper implements the TH data layout using the algo-
rithm from Section 2.2. The sort key of an object is the bit vector
describing from which mutator threads it is reachable. The mask

for thread x is 2x; if an object is reachable by both thread x and
thread y, its sort key is (2x or 2y). For example, in Figure 3(g), ob-
ject 9 is reachable both by thread 0 and by thread 2, and so its sort
key is (001or 100) = 101, which means that it will be colocated
with object 10. The implementation keeps an array of keys parallel
to the array of survivor pointers. It first marks all bits in all objects
reachable from global variables, since they can be accessed by any
thread. It then does several reachability traversals, one from each
thread’s roots, marking the bit corresponding to the given thread.

3.10 Popularity-based layout (PO)
What: A popular object is an object to which many other objects
point [32]. Popular objects impede incremental copying, because
moving them entails updating all pointers to them. Therefore, some
incremental copying collectors segregate them and treat them as a
special case [20]. Besides incremental compaction, another family
of algorithms for which popular objects are problematic is refer-
ence counting [7, 17]. On the other hand, popularity can be used
as a hint for the collector to save work [27]: popular objects live
longer than unpopular ones [30].

Why: From the locality perspective, if there are many pointers to
an object, that may indicate that it will be accessed a lot; when there
are few pointers, that may indicate that it will not be accessed much
longer in the future.

How: This paper implements the PO data layout using the algo-
rithm from Section 2.2: the reference count is the sort key. Ref-
erence counts are discovered during the reachability traversal of
Step (a), they are not maintained during mutation.

3.11 Profile-directed layouts (PD)
What: Many papers suggest data layouts that improve locality
based on some kind of profile of the program’s data accesses. Some
approaches target scientific computation with loops and arrays [11,
12, 21], others focus on object-oriented programs with objects,
virtual method calls, and pointers [8, 16, 19, 31, 51, 58]. What these
papers have in common is that all report significant improvements,
yet none of the techniques have been adopted in practice.

Why: While the effect of profile-oblivious approaches depends
on the program and the platform, a profile-directed approach can di-
rectly exploit observed behavior. Unfortunately, collecting a profile
costs overhead, and even profile-directed approaches can be easily
fooled [41].

How: This paper does not implement any profile-directed data
layouts, since none have been adopted in practice. However, papers
introducing PD data layouts tend to compare them to one of the 10
profile-oblivious layouts in this paper, often using some of the same
benchmarks as the 32 benchmarks in this paper, so the reader can
make a comparison across papers.

3.12 Random layout (RA)
What: While bad for locality, random layouts can improve secu-
rity in type unsafe languages. Bhatkar et al. proposed address ran-
domization to hinder exploits of buffer overrun vulnerabilities [4],
and Berger and Zorn combine randomization with replication [3].

Why: The random layout serves as a worst-case comparison for
what happens when there is no correlation between the order in
which the program accesses objects and the order in which a layout
places objects in memory. If some layouts are much better than
random, a layout that causes nearly as many cache and TLB misses
random is clearly a bad layout. On the other hand, if no layout
performs better than random, then the program is probably not
affected much by memory subsystem performance; maybe, the

5

working set is small, or there is little pointer-chasing. Random
layouts have been used for evaluating data layouts in the past [8,
51]. Furthermore, in some cases randomization actually benefits
locality, since a non-random layout may cause pathological cache
conflicts or false sharing situations.

How: This paper implements the RA data layout using the algo-
rithm from Section 2.2: the sort key is a random number.

4. Methodology
All layouts were implemented and measured in an internal devel-
opment version of IBM’s product Java virtual machine, J9.

Name Suite Description Parallel? MB
antlr DaCapo parser generator 2.0
banshee other XML parser 69.5
bloat DaCapo bytecode optimizer 16.1
chart DaCapo pdf graph plotter 14.3
cloudscape other relational database 4.7
compress jvm98 Lempel-Ziv compressor 7.0
daikon other dynamic invariant detector 7.2
db jvm98 in-memory database 11.2
eclipse DaCapo development environment y 14.0
fop DaCapo XSL-FO to pdf converter 9.1
hsqldb DaCapo in-memory JDBC database y 173.8
ipsixql Colorado in-memory XML database 2.5
jack jvm98 parser generator 1.3
javac jvm98 Java compiler 20.5
javalex other lexer generator 1.0
jbytemark other bytecode-level benchmark 6.0
jess jvm98 expert shell system 2.1
jpat Ashes protein analysis tool 1.0
kawa other Scheme compiler 2.6
luindex DaCapo text indexing for search 2.2
lusearch DaCapo keyword search in text y 7.1
moldyn JavaGrande molecular dynamics sim. y 4.1
montecarlo JavaGrande Monte Carlo simulation y 480.5
mpegaudio jvm98 audio file decompressor 1.0
mtrt jvm98 multi-threaded raytracer y 8.7
pmd DaCapo source code analyzer 15.7
pseudojbb05 jbb05 business benchmark y 123.9
raytracer JavaGrande 3D ray tracer y 4.2
saber other J2EE source error checker 25.5
soot other bytecode analyzer 32.8
xalan DaCapo XSLT processor 27.5
xerces other XML parser 3.1

Table 3. Benchmark programs.

Table 3 shows the benchmark suite, consisting of 32 Java pro-
grams: pseudojbb05, which runs SPECjbb2005 for a fixed number
of transactions1; the 7 SPECjvm98 programs2; 10 DaCapo bench-
marks version 2006-08 [6]; and several other big Java programs.
The DaCapo benchmark jython triggered a bug in our internal ver-
sion of J9, so this paper omits it. To reduce the effect of noise on the
results, each run contains several iterations (application invocations
within one JVM process invocation). For each SPECjvm98 bench-
mark, a run contains around 10 to 20 iterations at input size 100.
Except for eclipse, each run of a DaCapo benchmark in this paper
contains two or more iterations on the largest input. Column “Par-
allel” indicates whether the program has multiple parallel threads

1 http://www.spec.org/jbb2005/
2 http://www.spec.org/osg/jvm98/

L1 Cache L2 Cache TLB
AMD Intel AMD Intel AMD Intel

Associativity 2 4 16 8 4 8
Block size 64 B 64 B 64 B 64 B 4 KB 4 KB

Capacity/blocks 1,024 128 16K 8K 512 64
Capacity/bytes 64K 8K 1,024K 512K 2,048K 256K

Table 4. Memory hierarchy parameters per core.

(“y”). Column “MB” gives the minimum heap size in which the
program runs without throwing an OutOfMemoryError. The rest of
this paper reports heap sizes as n× this minimum heap size.

The experiments in this paper were performed on three Linux
machines: a 2-processor AMD machine and a 4-processor AMD
machine (both with AMD Opteron 270 cores clocked at 2GHz),
and a 2-processor Intel Pentium 4 Xeon clocked at 3.06GHz with
simultaneous multithreading (which makes it look like 4 proces-
sors to the operating system). The 2-processor AMD has just one
dual-core chip, the 4-processor AMD has 2 dual-core chips, and the
2-processor Intel has 2 single-core chips. Table 4 shows the con-
figuration of the data caches and TLBs for each core. In all cases,
a cache block is a 64B line, and a TLB block is a 4KB page. The
capacity in bytes is the product of the block size and the capacity
in blocks. For example, with 64 blocks of 4KB each, the TLB on
each Intel core buffers translations for 256 KB of memory.

5. Data layout evaluation
This section presents measurements of the impact of data layouts
on program performance.

5.1 Effect of data layouts on mutator time
Mutator time is the total program runtime minus the pause times
for stop-the-world garbage collection. Since this paper uses the
garbage collector to apply the data layout, mutator time isolates
the locality effect of the layout. To reduce noise, each combination
of a benchmark, layout, and machine ran 9 times, and the results
use the arithmetic mean of the 6 fastest runs. Since the data from
all 32 benchmark programs from Table 3 takes too much space,
this section only summarizes it; later sections show more detail,
including results at heap sizes different from 4×.

AO AS BF DF HI PO RA SZ TH TY
Best 21 21 18 21 18 18 6 16 18 12
Average 1.3 1.6 1.6 2.0 1.8 1.8 9.4 2.5 1.4 3.4
Worst 16.3 18.0 20.1 18.9 11.7 17.4 53.9 15.4 12.4 18.7

(a) 2-processor AMD.
Best 20 19 18 24 22 14 8 16 19 20
Average 1.4 4.0 2.3 2.2 2.2 2.1 11.7 3.4 1.4 3.9
Worst 13.7 50.8 29.9 34.2 29.9 13.2 88.5 19.2 9.6 41.6

(b) 4-processor AMD.
Best 24 19 20 20 17 17 9 14 21 12
Average 1.7 5.2 3.8 1.5 3.8 2.8 21.1 4.5 1.9 5.5
Worst 11.3 54.6 55.4 14.1 24.2 22.2 163.0 30.8 12.7 57.7

(c) 2-processor Intel.

Table 5. Mutator time overhead compared to best, at heap size 4×.

Table 5 shows the results. Each column corresponds to one
data layout; Table 1 is the abbreviation key. Rows “#Best” show
for how many benchmarks this layout had the best performance.
This count includes benchmarks for which this layout performed
as well as the best layout for that benchmark, according to Stu-
dent’s t-test at 95% confidence (the t-test compares two sets of
numbers, in this case, the execution times of repeated runs of both
benchmark/layout combinations). Rows “Average” show the aver-
age mutator slowdown percentages of this layout compared to the

6

best layout for each benchmark, and Rows “Worst” show the max-
imum mutator slowdown percentages compared to the best layouts
for each benchmark.

Rows “Average” and “Worst” in Table 5 show that the 4-processor
AMD machine is more layout sensitive than the 2-processor AMD
machine. That is because more cores share the same amount of
memory bandwidth. As multi-core machines with deep memory
hierarchies become more common, this effect will increase in the
next few years, increasing the importance of data layouts. The
2-processor Intel machine is the most sensitive to data layouts,
since it has smaller caches and a smaller TLB on the one hand and
a faster clock speed on the other hand. Comparing the 2-processor
Intel to the 2-processor AMD suggests that given the same num-
ber of processors, buying larger caches and TLBs is effective in
reducing problems caused by data layouts.

Table 5 shows that on average, any particular layout except the
random layout (RA) is from 1.3% to 5.5% slower than the best
layout, and any particular layout has worst-case scenarios where
mutator time is at least 9.6%, and often even 20% to 50%, slower
than with the best layout for that benchmark. On average, the
RA layout increases mutator time by 9.4% to 21.1%, and in the
worst case, by up to 163%. For a few benchmarks, RA is as good
as the best layout, indicating that those programs are data layout
oblivious. But in general, all non-random layouts are significantly
better than RA.

Looking at individual layouts, depth-first (DF) is most fre-
quently the best layout, and segregating by type (TY) is most rarely
the best layout. Allocation order (AO) has the best average per-
formance, and TY causes the highest average mutator slowdown.
When segregating by thread (TH), the worst cases are the most be-
nign, all other layouts encountered worse worst-cases.

5.2 Effect of data layouts on cache and TLB misses
This section shows how data layouts affect the L1 cache, L2 cache,
and TLB miss rates of the mutator. The misses are counted by
hardware performance counters on the 2-processor AMD machine,
using the PAPI library [10]. The Java virtual machine accumulates
the counts from all threads before and after each collection, and
separates the counts by whether they happen during mutation. This
methodology causes no measurable performance penalty, hence the
results come from the same runs as those for Section 5.1.

AO AS BF DF HI PO RA SZ TH TY
Best 18 14 14 22 18 15 7 15 21 15
Average 14.7 8.2 9.6 2.8 10.3 17.7 69.5 17.2 13.9 18.1
Worst 227.1 90.9 114.6 24.6 104.1 220.4 1,288.1 216.8 221.1 313.3

(a) L1 data cache.
Best 18 17 15 24 13 16 6 14 15 16
Average 11.6 9.6 12.3 7.3 18.9 13.9 126.8 36.1 12.5 40.7
Worst 148.0 54.1 78.6 96.5 87.1 107.8 1,346.9 810.2 150.4 1,013.4

(b) L2 cache.
Best 20 21 13 25 15 12 2 9 22 11
Average 28.8 45.2 23.3 6.9 12.0 27.0 984.5 32.8 30.2 32.5
Worst 466.5 692.4 223.8 90.4 107.4 344.5 16,125.3 209.7 479.7 228.7

(c) TLB.

Table 6. Mutator miss rate increases compared to best, on
2-processor AMD at heap size 4×.

Table 6 shows the results. The meaning of the rows and columns
is the same as in Table 5. The level 1 cache is the least affected by
the data layout, the level 2 cache is more strongly affected, and
the TLB is most strongly affected. On average, most layouts have
5-10% higher miss rates than the best layout for a benchmark, and
in the worst case, they cause in the hundreds of % more misses
(over a factor of 2 increase). Looking at the numbers for the depth-
first layout (DF) confirms the conclusions from Section 5.1.

To conclude, as expected, data layouts have a large impact on
miss rates, explaining the wall-clock time differences. The percent-
age differences in miss rates are larger than the percentage differ-
ences in time. Hence, measuring miss rates is useful for explaining
performance, but can not replace actual time measurements.

5.3 Layout similarities and differences

3.3

4.1

6.4

7.7

9.9

31.9

SZ HI AO PO TH DF TY BF AS RA0

Figure 4. Layout clusters, on 2-processor AMD at heap size 4×.

This section explores how similar or distinct the layouts are.
Consider a pair of layouts x and y. This paper uses 32 benchmarks,
so the mutator time of the layouts constitutes vectors ~x and ~y in
32-dimensional space. Euclidian distance quantifies the difference
δxy between layouts x and y as δxy =

√∑
b
(xb − yb)2, where

b ranges over the 32 benchmarks. Figure 4 shows the result of
agglomerative hierarchical clustering, which starts bottom-up with
each layout in its own cluster, and successively combines the most
similar pair of clusters until there is only one cluster left. The y-
axis of Figure 4 shows the similarity, where the similarity between
two clusters is the Euclidian distance between their average vector.
The y-axis scales linearly up to 10, but then jumps to 31.9 to keep
the figure easier to read.

Three layouts are based on inter-object connectivity: DF colo-
cates parents with children, BF colocates siblings, and HI does
both. These three layouts have distinct characteristics. This paper
implements the remaining seven layouts (AO, AS, PO, RA, SZ, TH,
and TY) using the sorting garbage collection algorithm from Sec-
tion 2.2. In many cases, the primary sort key does not define a total
order: for example, there are many objects with the same popular-
ity (PO) or the same size (SZ). In these cases, the object address
serves as a secondary sort key, or tie-breaker. Since objects are al-
located with a bump-pointer allocator, using the object address as
a secondary sort key means that within each equivalence class, ob-
jects remain more or less in allocation order (AO). Figure 4 shows
that AO is similar to PO and TH. This indicates that segregating by
popularity or by thread has little impact on locality. On the other
hand, AO, AS, SZ, and TY are all quite distinct from each other.
This indicates that allocation sites, sizes, and types matter a lot for
locality.

To conclude, while PO and TH differ little from their foundation
AO, the remaining layouts are quite distinct from each other.

5.4 Program sensitivity to data layouts
This section explores for which benchmark programs data layouts
matter the most, and which layouts are best for them. Table 7
is based on the same experiments as Section 5.1. Table 7 sorts
benchmarks in descending order by average slowdown, and shows

7

Benchmark Best Avg. Worst RA
1. bloat AS, BF 11.4 DF 18.9 17.4
2. db AO, TH 10.1 BF 20.1 47.6
3. eclipse more than 3 5.1 SZ 15.4 11.0
4. chart BF, HI 3.0 SZ 5.8 6.5
5. pmd more than 3 2.9 AS 8.2 7.7
6. antlr AS, HI 2.7 AO 5.1 2.6
7. raytracer more than 3 2.7 TY 11.6 30.8
8. saber more than 3 2.5 TY 6.7 6.0
9. mtrt DF, PO, TH 2.4 AS 7.0 52.9

10. ipsixql AS, BF, DF 2.3 HI 4.5 7.6
(a) 2-processor AMD at heap size 4×.

Benchmark Best Avg. Worst RA
1. db AO, PO, TH 19.0 DF 34.2 49.7
2. raytracer HI 14.9 AS 50.8 88.5
3. bloat AS, TH 11.4 HI 18.2 15.9
4. eclipse more than 3 6.2 SZ 14.8 9.4
5. pseudojbb05 more than 3 3.0 AS 8.2 16.5
6. mtrt AO, DF, PO 2.6 AS 9.9 55.5
7. soot DF, HI, TY 2.5 AS 6.6 4.5
8. chart more than 3 2.2 SZ 6.2 7.6
9. banshee AS, PO, TY 2.2 SZ 4.9 4.4

10. moldyn more than 3 2.0 BF 5.0 48.7
(b) 4-processor AMD at heap size 4×.

Benchmark Best Avg. Worst RA
1. db AO, TH 26.6 TY 57.7 91.2
2. bloat DF, HI 10.1 PO 22.2 23.6
3. hsqldb AO, DF, TH 6.3 SZ 14.7 26.9
4. ipsixql BF, DF 6.1 AO 11.3 19.6
5. mtrt AO, DF, TH 5.6 AS 19.6 126.5
6. pseudojbb05 DF, HI, TH 5.4 PO 8.8 29.1
7. lusearch AO, HI 5.3 TY 10.2 7.3
8. raytracer AO, DF, HI 5.1 TY 15.2 35.1
9. pmd more than 3 5.0 HI 12.0 16.0

10. moldyn more than 3 4.8 AS 15.2 163.0
(c) 2-processor Intel at heap size 4×.

Table 7. Mutator time overhead compared to best, for the 10 most
layout-sensitive programs on each machine.

the 10 benchmarks with the largest average slowdown for each
machine. Column “best” shows which layout is best for a program,
or indistinguishable from the best with Student’s t-test. Column
“Avg.” shows the average slowdown that layouts other than random
(RA) incur compared to the best layout for that benchmark. Column
“Worst” indicates which layout except RA performs worst for the
benchmark, and by how much it is worse than the best. Column
“RA” shows how much longer the mutator takes with random
layout instead of the best layout for that program.

Most of these programs experience mutator slowdowns of 5%
to 10% when the average layout is used instead of the best. Except
for size (SZ) and random (RA), each layout is the best for at least
one program on one machine. Usually, even the worst non-random
layout is better than RA, but there are exceptions, presumably
caused by interference. Except for segregating by thread (TH),
each layout is worst among the non-random layouts for at least
one program on one machine. Given that almost all layouts are
sometimes best and sometimes worst, this paper found no “silver
bullet” for the data locality problem.

The four programs db, bloat, raytracer, and mtrt are among the
10 most data layout sensitive programs on all three machines. They
come from three different benchmark suites (SPECjvm98, DaCapo,
and JGF-thread). These programs may serve as good first tests
when experimenting with data layouts, but papers using only few
benchmarks for evaluation risk missing important special cases.

The results for the 2 vs. 4-processor AMD in Table 7 indicate
that multiprocessing increases program sensitivity to data layouts.

5.5 Towards a limit for data layout impact

Benchmark Sign Residual Limit RA
1. bloat 0 + 172.4 17.4
2. db + + 5.5 -21.7 47.6
3. eclipse + 0 43.7 -5.0 11.0
4. chart + + 8.7 -0.2 6.5
5. pmd + 0 11.9 -1.6 7.7
6. antlr − − 4.7 2.6
7. raytracer + + 39.5 -63.0 30.8
8. saber + + 5.1 -3.2 6.0
9. mtrt + + 9.0 -3.7 53.9

10. ipsixql + + 3.4 -3.3 7.6
(a) 2-processor AMD.

Benchmark Sign Residual Limit RA
1. db + 0 139.3 -39.2 49.7
2. raytracer + + 35.4 -27.5 86.6
3. bloat + 0 157.0 15.9
4. eclipse − − 11.1 8.3
5. pseudojbb05 + + 1.8 -34.0 16.5
6. mtrt + + 15.2 -11.3 55.5
7. soot 0 + 20.1 4.5
8. chart + 0 11.8 -1.3 7.6
9. banshee + + 5.4 -2.4 4.4

10. moldyn + + 4.9 -2.5 48.6
(b) 4-processor AMD.

Benchmark Sign Residual Limit RA
1. db + + 265.9 -79.5 91.2
2. bloat 0 + 162.0 23.6
3. hsqldb 0 + 7.1 -6.6 26.9
4. ipsixql + + 8.9 -36.8 19.6
5. mtrt + + 54.2 -21.0 126.5
6. pseudojbb05 + 0 15.2 -74.9 29.1
7. lusearch 0 + 27.5 -15.6 7.3
8. raytracer + 0 4.8 -3.6 35.1
9. pmd + + 28.7 -25.1 16.0

10. moldyn 0 + 164.7 -2.2 163.0
(c) 2-processor Intel.

Table 8. Estimated limit mutator time compared to best observed,
at heap size 4×.

How much more speedup could a better data layout yield be-
yond the best time from the 10 layouts investigated in this pa-
per? Determining the exact speedups of an optimal data layout is
NP-hard [41]. The speedups come from reducing cache and TLB
misses, so an upper limit for the speedup is the time that remains
when there are no misses. In practice, hardware is too complex to
measure even that exactly, because the effect of misses can not be
isolated from other effects in the processor’s pipeline. This section
takes an educated guess at that upper limit by extrapolating from
the data of the 10 studied layouts.

The idea is to do linear regression on the different runtimes
and on the different miss rates. Linear regression is appropriate if
you assume a more-or-less fixed stall penalty per miss. Formally,
let x1 be the number of L2 cache misses, x2 the number of TLB
misses, and y the time in seconds. The model assumes that there
are coefficients a0, a1, and a2 such that

a0 + a1 · x1 + a2 · x2 = y

Intuitively, a0 is the time if there are no misses, a1 is the L2
cache latency, and a2 is the TLB latency. This model disregards
L1 cache misses, because the L1 latency is small and varies wildly
depending on how well the instruction level parallelism in the CPU
hides it. For each benchmark program, the experiments from earlier
in this paper measured the misses and times (x1, x2, and y) for
each layout. Since there are 10 layouts, the measurements form 10-

8

dimensional vectors (~x1, ~x2, and ~y). Linear regression determines
coefficients a0, a1, and a2 that minimize the error in the model.

Table 8 shows the results of the regression for the 10 most
layout-sensitive benchmarks on each machine. The benchmarks
appear in order of descending average slowdown as reported in
Table 7. Column “Sign” shows whether the coefficients a1 and
a2 were positive (+), negative (−), or zero. In theory, they should
always be positive, but in some cases, they were not. If just one of
them was negative, it was set to zero and the regression repeated
with the remaining variables. If both a1 and a2 were negative, or
if a0 was higher than the smallest component of vector ~y, column
“Limit” is blank. Column “Residual” shows the error reported by
the regression, as a percentage of a0. Lower residuals mean that the
results are more accurate. For example, on the 2-processor AMD
machine, the results for db, saber, and ipsixql are trustworthy, but
the result for bloat is not meaningful. Column “Limit” shows the
estimated percent speedup in the limit compared to the best layout.
If B is the mutator time of the best layout, column “Limit” shows
(a0 − B)/B in percent. For example, on the 2-processor AMD
machine, db could be 21.7% faster than with the best layout if there
were no cache and TLB misses. For bloat, a0 was higher than B,
so the value is blank; it was not trustworthy anyway, because the
residual is high. Finally, Column “RA” shows the percent slowdown
of the random layout compared to the best, like in Table 7.

Table 8 highlights lines with residuals under 10% in bold face.
Those are the cases where the linear regression fit the observed data
well, and has a small error. With the best layouts for the respective
programs, db on the 2-processor AMD spends 21.7% of its time
stalled in misses; pseudojbb05 on the 4-processor AMD spends
34.0% of its time stalled in misses; and ipsixql on the 2-processor
Intel spends 36.8% of its time stalled in misses.

In some cases, the regression found that the approximation error
would be minimal when setting either a1 (the L2 cache latency)
or a2 (the TLB latency) to be negative. Obviously, latencies are
always positive. Probably, the reason for this discrepancy is that
raw miss counts can be misleading. In practice, not all misses
are equally expensive in time. The latency of an individual miss
depends on many factors, including the ability to speculate past
it with out-of-order execution, the pressure on the memory bus,
whether the cache line is already on its way into the cache due
to an earlier miss, etc. Hence, data locality studies should measure
wall-clock time in seconds, and bare miss counts should be taken
with a grain of salt.

To conclude, this section estimates that even when each pro-
gram uses the data layout that is best for that program out of the
10 layouts investigated in this paper, some programs stall on cache
or TLB for up to 36.9% of their time. For others, the remaining stall
time is closer to 3%. Better data layouts may be able to eliminate
some of those misses, but not all, since some are compulsory.

6. Methodology evaluation
This paper advocates a novel methodology for evaluating data lay-
outs. Whereas Section 5 evaluated layouts with the methodology,
this section evaluates the methodology itself.

6.1 Garbage collector parallelism
The framework from Section 2 uses sequential garbage collection
algorithms, whereas multi-processor scalability dictates the use of
parallel algorithms in practice. Collector parallelism should not
have much effect on mutator locality in a stop-the-world setting.
But if the effect were large, that would make the results of this pa-
per less generalizable. Table 9 compares the program performance
using sequential [13] vs. parallel [33] BF collection. A “0” in Ta-
ble 9 means that the Student t-test found no statistically relevant
difference between the performance of runs with parallel BF and

antlr 0% ipsixql 0% montecarlo 0%
banshee 0% jack 0% mpegaudio -1.5%
bloat 0% javac 1.2% mtrt 3.3%
chart 0% javalex 1.0% pmd 0%
cloudscape 0% jbytemark 0% pseudojbb05 0%
compress 0% jess 0% raytracer 2.2%
daikon 0% jpat 0% saber -2.9%
db -1.5% kawa 0% soot -1.4%
eclipse 0% luindex 0% xalan 0%
fop 0% lusearch 0% xerces 0%
hsqldb 0% moldyn 0%

Table 9. Mutator time slowdown (positive) or speedup (negative)
when using parallel BF instead of sequential BF, on a 2-processor
AMD machine at heap size 4×.

the runs with sequential BF. Table 9 shows that while collector par-
allelism sometimes degrades mutator performance (e.g., by 2.2%
for raytracer) and sometimes improves it (e.g., by 1.5% for db), for
most programs, the difference is negligible.

6.2 Implementation effort
The introduction of this paper claims the versatility of the frame-
work for evaluating data layouts as a central contribution. The ver-
satility was demonstrated by implementing 9 layouts using sorting
garbage collection, in addition to the layouts already in the system.
This section further quantifies the versatility using LOC (lines of
code) as a metric for implementation effort. The implementation of
the sorting garbage collector touched four source code files of the
underlying garbage collector, adding a total of 226 LOC to them.
The rest of the sorting garbage collector implementation resides in
separate files with a total of 845 LOC. The sorting garbage collec-
tor implements 9 data layouts (AO, AS, DF, PO, RA, SZ, TH, TY,
and a sequential BF layout). That makes 119 LOC per data layout.

6.3 Sensitivity of results to heap size
Thus far, all experiments in this paper were conducted at a heap size
of 4× the minimum in which the program runs without throwing
an OutOfMemoryError. However, heap sizes affect the amount of
memory over which the program’s working set can spread out, and
can thus affect locality. This section explores whether the results
from heap size 4× generalize to smaller heaps (2×) and larger
heaps (10×).

AO AS BF DF HI PO RA SZ TH TY
Best 16 18 19 22 18 17 7 15 21 17
Average 1.8 1.8 1.9 1.7 1.8 1.8 8.7 2.8 1.4 2.3
Worst 14.3 18.8 19.5 15.1 12.8 9.5 45.7 12.4 12.2 18.7

(a) Heap size 2× (50% occupancy).
Best 21 21 18 21 18 18 6 16 18 12
Average 1.3 1.6 1.6 2.0 1.8 1.8 9.4 2.5 1.4 3.4
Worst 16.3 18.0 20.1 18.9 11.7 17.4 53.9 15.4 12.4 18.7

(b) Heap size 4× (25% occupancy).
Best 21 17 20 21 19 21 6 13 21 17
Average 0.9 2.5 1.2 0.9 1.1 1.0 8.4 2.3 1.0 1.8
Worst 7.5 17.9 17.3 9.9 11.9 9.4 59.5 13.6 10.9 16.6

(c) Heap size 10× (10% occupancy).

Table 10. Mutator time overhead compared to best, on 2-processor
AMD machine.

Table 10 shows the results. Table 10 has the same format as
Table 5 in Section 5.1. At all heap sizes, depth-first (DF) is most
frequently the best layout, and allocation order (AO) has one of the
best average performances. The average as well as the worst-case
of RA is close on all heap sizes. While performance varies in the
details, the overall conclusions from earlier sections generalize to
different heap sizes as well.

9

6.4 Overhead of sorting garbage collection

IT AO AS BF DF HI PO RA SZ TH TY
2× 15.9 31.3 25.2 23.4 23.7 16.3 31.3 25.1 36.4 31.2 33.2
4× 13.7 29.8 25.7 21.3 21.4 14.0 29.9 25.6 36.1 29.7 32.1

10× 9.0 24.3 20.2 16.4 16.2 9.6 25.0 20.6 31.2 23.8 27.5

Table 11. Garbage collector time as a percentage of total runtime,
on 2-processor AMD machine.

This paper intentionally sacrifices garbage collector efficiency
for simplicity. The reward is the ability to compare many layouts on
many benchmarks in a realistic setting — in a stock language run-
time system running unperturbed on stock hardware. Nevertheless,
readers may be curious just how slow the sorting copying garbage
collector from Section 2.2 is.

Table 11 shows the percentage of execution time that the av-
erage program spends in garbage collection. Column IT is the
overhead of the fastest copying garbage collector currently in the
system, which is the parallel breadth-first algorithm by Imai and
Tick [33]. There is one row each for small (2×), medium (4×), and
large (10×) heaps. In small heaps, the program exhausts memory
more quickly, and thus triggers more frequent garbage collection,
leading to higher overhead.

In a medium-sized heap, going from IT to BF increases garbage
collection time from 13.7% to 21.3% of total execution time. This
is in part caused by going from a parallel to a sequential algorithm,
and in part by the fact that BF is implemented in the framework
from Section 2, with an additional pass and additional metadata. In
a medium-sized heap, going from BF to other sorting garbage col-
lectors increases garbage collection time from 21.3% to 36.1% of
total execution time. These collector time slowdowns are expected.
This paper does not advocate using sorting copying garbage collec-
tion in practice, but if that is desired, a good start for engineering
a more efficient version would be the parallel compactor by Abua-
iadh et al. [1].

6.5 Cache and TLB warmup after garbage collection

antlr 0% ipsixql 0% montecarlo 0%
banshee 0% jack 0% mpegaudio 0%
bloat 0% javac -2.3% mtrt 0%
chart 2.8% javalex 0% pmd 3.5%
cloudscape 0% jbytemark 0% pseudojbb05 0%
compress 0% jess 0% raytracer 0%
daikon 0% jpat 0% saber 0%
db 0% kawa 0% soot 0%
eclipse 0% luindex 0% xalan 0%
fop 0% lusearch 0% xerces 0%
hsqldb 0% moldyn 0%

Table 12. Mutator time slowdown (positive) or speedup (negative)
when flushing caches and the TLB after every garbage collection
with parallel BF, on a 2-processor AMD machine at heap size 4×.

Besides changing the layout of the mutator’s data, garbage
collection also has another effect on mutator locality: it evicts
the mutator’s working set from the caches and TLB. Sweeney
et al. [53, Section 5.5.2] observed that programs suffer increased
cache misses immediately after garbage collection, when the mu-
tator warms up the memory hierarchy. This section determines an
upper bound on additional cache perturbation (beyond that caused
by regular garbage collection) caused by the methodology of this
paper. The experiment for finding this upper bound is to flush all
caches and the TLB after each garbage collection by streaming
through a large array that contains no mutator data.

AO AS BF DF HI PD PO RA SZ TH TY
(this paper)

√ √ √ √ √ √ √ √ √ √

Stamos [51]
√ √ √ √ √

Blau [8]
√ √ √

Shuf et al. [48]
√ √ √

Blackburn et al. [5]
√ √

Huang et al. [31]
√ √ √

Abuaiadh et al. [1]
√ √

Table 13. Data layout comparisons.

Table 12 compares mutator performance with and without
flushing caches and the TLB. The baseline is the parallel breadth-
first algorithm by Imai and Tick [33]. Table 12 shows that flushing
caches after garbage collection causes little additional mutator time
degradation, indicating that either garbage collection itself already
flushes the caches, or that the effect of flushing caches is negligible
compared to other performance effects in the system. In either case,
effects of the methodology of this paper on mutator warmup can be
safely ignored.

7. Related work
The most comprehensive studies of data layouts for object-oriented
programs were by Stamos [51] and Blau [8]. Both use trace-driven
simulators to measure page faults for several layouts of a Smalltalk
image. Since main memories were small and generational garbage
collectors were not wide-spread, paging tended to overwhelm any
other locality effects. Both Stamos and Blau found that a PD layout
that puts objects in the order in which they will be accessed in the
future yields the best performance. They demonstrated that DF, BF,
and TY perform worse than PD and better than RA for the three
benchmarks studied. This paper differs in that it measures wall-
clock time and miss rates of native execution on stock hardware;
it evaluates more different layouts on more different benchmarks;
and it focuses on cache and TLB performance instead of paging.

More recently, a number of papers have introduced garbage col-
lectors for Java that were at least in part motivated by data local-
ity, and have compared different data layouts on stock hardware.
Table 13 gives an overview of the layouts considered. This pa-
per differs in that it compares more layouts, on more benchmarks
and more hardware platforms. Shuf et al. propose two techniques,
one in the allocator to improve locality, and one in the collector
to preserve locality [48]. The allocator technique is based on iden-
tifying pairs of objects that should be placed together, leaving a
hole next to the first one allocated, and placing the second one into
that hole when it gets allocated. The collector technique achieves
an approximate PR layout with less effort than sliding compact-
ing collectors. Blackburn et al. compare mark-sweep, copying, and
reference counting collectors, and note that AO has an advantage
over SZ [5]. Huang et al. introduce a PD layout based on field ac-
cess frequency, and find that its performance usually matches the
better of BF and DF [31]. Abuaiadh et al. experiment with differ-
ent parallel compacting collectors, and find that preserving AO with
a table-based algorithm is better for locality than using a two-finger
algorithm, which essentially produces an RA layout [1].

A number of papers study the interplay of garbage collection
with the memory subsystem, without specifically looking at differ-
ent data layouts. Zorn uses traces from 4 Lisp programs to sim-
ulate cache misses, and finds that copying collectors suffer more
when cache associativity is low than mark-sweep collectors [61].
Reinhold uses traces from 5 Scheme programs to simulate cache
misses with or without garbage collection, and concludes that most
misses happen during object allocation [43]. Diwan et al. use traces
from 8 SML programs to perform a cycle-accurate simulation of the
memory subsystem, and make recommendations for hardware de-

10

signs to minimize the cost of bump-pointer allocation [22]. Shuf
et al. use traces from 7 Java programs to simulate caches and
TLBs, and correlate misses back to field kinds and object types
in Java [49]. Hertz, Zhang, et al. look at the interaction of garbage
collection with paging on real hardware [28, 58].

Data layouts have been studied not just for object-oriented or
functional garbage-collected languages, but also for scientific and
imperative code. Rubin et al. present a framework based on trace-
driven simulation for automatically selecting from a set of lay-
out transformations to be applied manually by a programmer [44].
Zhang et al. present and simulate a piece of hardware that can
remap data to a different layout [59]. Shen et al. use that to change
the data layout dynamically based on locality phases they discover
from a training run [46]. Zhong et al. use a training run for array
regrouping and structure splitting [60]. Shen et al. perform a static
analysis to decide when to apply these techniques [45]. Zhong,
Zhang, et al. demonstrate techniques for finding “affinity hierar-
chies”: the hierarchy defines nested groups of affine objects that
should be colocated for locality [60, 57].

8. Conclusions
This paper surveys and evaluates 10 common data layouts for
object-oriented programs. The methodology is to produce differ-
ent data layouts by using the copying garbage collector alone, and
then evaluate their performance by measuring mutator performance
alone. This gives realistic performance results, since the mutator
runs unperturbed, while at the same time making the collector im-
plementation simple enough to experiment with a variety of al-
gorithms. This paper presents the sorting garbage collection algo-
rithm, which can produce a variety of common data layouts.

The results show that mutator cache and TLB miss rates com-
monly vary by 10-20% from layout to layout, and sometimes the
differences are much higher. Mutator time commonly varies by
5-10%, sometimes more. This confirms the importance of data
layouts for the performance of object-oriented programs. For the
benchmarks in this paper, depth-first and allocation-order layouts
often perform quite well, but they — like all other layouts investi-
gated — have worst-cases where they cause large slowdowns.

This paper estimates that even when each program uses the data
layout that is best for that program out of the 10 layouts investigated
in this paper, some programs still spend up to 36.8% of their time
stalled in cache or TLB misses. One direction of future work is to
to investigage data layouts in allocators, since garbage collection
only affects objects that survive long enough to get copied. There
is no silver bullet for spatial locality in object-oriented programs,
and there are several common layouts with diverse behavior.

Acknowledgments
I thank Peter Sweeney for encouraging me to write Section 5.5.
I thank Rajan for explaining statistical subtleties to me. I thank
Matthew Arnold, Amer Diwan, Michael Hind, Chengliang Zhang,
and the SIGMETRICS reviewers for their feedback.

Appendix: Detailed results
Tables 14 and 15 show percentages by which the layout C of
the current column is worse than the best layout B for the given
benchmark. They are computed as (C − B)/B, where B and
C stand for the metric indicated by the table caption. When the
difference fails Student’s t-test at 95% confidence, the table shows
a “0”.

References
[1] D. Abuaiadh, Y. Ossia, E. Petrank, and U. Silbershtein. An

efficient parallel heap compaction algorithm. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA),
2004.

[2] A.-R. Adl-Tabatabai, R. L. Hudson, M. J. Serrano, and S. Subra-
money. Prefetch injection based on hardware monitoring and object
metadata. In Programming Language Design and Implementation
(PLDI), 2004.

[3] E. D. Berger and B. G. Zorn. DieHard: Probabilistic memory
safety for unsafe languages. In Programming Language Design
and Implementation (PLDI), 2006.

[4] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques for
comprehensive protection from memory error exploits. In USENIX
Security Symposium, 2005.

[5] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities:
The performance impact of garbage collection. In Measurement and
Modeling of Computer Systems (SIGMETRICS), 2004.

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2006.

[7] S. M. Blackburn and K. S. McKinley. Ulterior reference counting:
Fast garbage collection without a long wait. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA),
2003.

[8] R. Blau. Paging on an object-oriented personal computer. In
Measurement and Modeling of Computer Systems (SIGMETRICS),
1983.

[9] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Software – Practice and Experience (SPE), 1988.

[10] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A
scalable cross-platform infrastructure for application performance
tuning using hardware counters. In IEEE SuperComputing (SC),
2000.

[11] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data
placement. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 1998.

[12] W. K. Chen, S. Bhansali, T. Chilimbi, X. Gao, and W. Chuang.
Profile-guided proactive garbage collection for locality optimization.
In Programming Language Design and Implementation (PLDI),
2006.

[13] C. J. Cheney. A nonrecursive list compacting algorithm. Communi-
cations of the ACM (CACM), 1970.

[14] P. Cheng and G. E. Blelloch. A parallel, real-time garbage collector. In
Programming Language Design and Implementation (PLDI), 2001.

[15] S. Cherem and R. Rugina. Region analysis and transformation for
Java programs. In International Symposium on Memory Management
(ISMM), 2004.

[16] T. M. Chilimbi and J. R. Larus. Using generational garbage collection
to implement cache-conscious data placement. In International
Symposium on Memory Management (ISMM), 1998.

[17] G. E. Collins. A method for overlapping and erasure of lists.
Communications of the ACM (CACM), 1960.

[18] W. T. Comfort. Multiword list items. Communications of the ACM
(CACM), 1964.

[19] R. Courts. Improving locality of reference in a garbage-collecting
memory management system. Communications of the ACM (CACM),
1988.

[20] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first garbage

11

collection. In International Symposium on Memory Management
(ISMM), 2004.

[21] C. Ding and K. Kennedy. Improving cache performance in dynamic
applications through data and computation reorganization at run time.
In Programming Language Design and Implementation (PLDI),
1999.

[22] A. Diwan, D. Tarditi, and J. E. B. Moss. Memory subsystem
performance of programs with intensive heap allocation. ACM
Transactions on Computer Systems (TOCS), 1995.

[23] R. R. Fenichel and J. C. Yochelson. A LISP garbage-collector for
virtual-memory computer systems. Communications of the ACM
(CACM), 1969.

[24] C. H. Flood, D. Detlefs, N. Shavit, and X. Zhang. Parallel garbage
collection for shared memory multiprocessors. In Java Virtual
Machine Research and Technology Symposium (JVM), 2001.

[25] D. Gay and A. Aiken. Memory management with explicit regions. In
Programming Language Design and Implementation (PLDI), 1998.

[26] R. H. Halstead, Jr. Multilisp: A language for concurrent symbolic
computation. Transactions on Programming Languages and Systems
(TOPLAS), 1985.

[27] B. Hayes. Using key object opportunism to collect old objects. In
Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 1991.

[28] M. Hertz, Y. Feng, and E. D. Berger. Garbage collection without
paging. In Programming Language Design and Implementation
(PLDI), 2005.

[29] M. Hirzel, A. Diwan, and M. Hertz. Connectivity-based garbage
collection. In Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2003.

[30] M. Hirzel, J. Henkel, A. Diwan, and M. Hind. Understanding the
connectivity of heap objects. In International Symposium on Memory
Management (ISMM), 2002.

[31] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng. The garbage collection advantage: improving program
locality. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2004.

[32] R. L. Hudson and J. E. B. Moss. Incremental collection of mature
objects. In International Workshop on Memory Management, 1992.

[33] A. Imai and E. Tick. Evaluation of parallel copying garbage collection
on a shared-memory multiprocessor. IEEE Transactions on Parallel
and Distributed Systems, 1993.

[34] T. Inagaki, T. Onodera, H. Komatsu, and T. Nakatani. Stride
prefetching by dynamically inspecting objects. In Programming
Language Design and Implementation (PLDI), 2003.

[35] R. Jones and R. Lins. Garbage collection: Algorithms for automatic
dynamic memory management. John Wiley & Son Ltd., 1996.

[36] T. Kotzmann and H. Mössenböck. Escape analysis in the context
of dynamic compilation and deoptimization. In Virtual Execution
Environments (VEE), 2005.

[37] C. Lattner and V. Adve. Automatic pool allocation: Improving
performance by controlling data structure layout on the heap. In
Programming Language Design and Implementation (PLDI), 2005.

[38] H. Lieberman and C. Hewitt. A real-time garbage collector based on
the lifetimes of objects. Communications of the ACM (CACM), 1983.

[39] P. McGachey and A. L. Hosking. Reducing generational copy reserve
overhead with fallback compaction. In International Symposium on
Memory Management (ISMM), 2006.

[40] D. A. Moon. Garbage collection in a large Lisp system. In LISP and
Functional Programming (LFP), 1984.

[41] E. Petrank and D. Rawitz. The hardness of cache conscious data
placement. In Principles of Programming Languages (POPL), 2002.

[42] F. Qian and L. Hendren. An adaptive, region-based allocator for Java.
In International Symposium on Memory Management (ISMM), 2002.

[43] M. B. Reinhold. Cache performance of garbage-collected programs.
In Programming Language Design and Implementation (PLDI),
1994.

[44] S. Rubin, R. Bodik, and T. M. Chilimbi. An efficient profile-
analysis framework for data layout optimizations. In Principles
of Programming Languages (POPL), 2002.

[45] X. Shen, Y. Gao, C. Ding, and R. Archambault. Lightweight reference
affinity analysis. In International Conference on Supercomputing
(ICS), 2005.

[46] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. In
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2004.

[47] Y. Shuf, M. Gupta, R. Bordawekar, and J. P. Singh. Exploiting prolific
types for memory management and optimizations. In Principles of
Programming Languages (POPL), 2002.

[48] Y. Shuf, M. Gupta, H. Franke, A. Appel, and J. P. Singh. Creating and
preserving locality of Java applications at allocation and garbage
collection times. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2002.

[49] Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh. Characterizing
the memory behavior of Java workloads: A structured view and
opportunities for optimizations. In Measurement and Modeling of
Computer Systems (SIGMETRICS), 2001.

[50] D. Siegwart and M. Hirzel. Improving locality with parallel
hierarchical copying GC. In International Symposium on Memory
Management (ISMM), 2006.

[51] J. W. Stamos. Static grouping of small objects to enhance
performance of a paged virtual memory. Transactions on Computer
Systems (TOCS), 1984.

[52] B. Steensgaard. Thread-specific heaps for multi-threaded programs.
In International Symposium on Memory Management (ISMM), 2000.

[53] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan,
D. Grove, and M. Hind. Using hardware performance monitors to
understand the behavior of Java applications. In Virtual Machine
Research and Technology Symposium (VM), 2004.

[54] M. Tofte. A brief introduction to regions. In International Symposium
on Memory Management (ISMM), 1998.

[55] D. Ungar. Generation scavenging: A non-disruptive high performance
storage reclamation algorithm. In Software Engineering Symposium
on Practical Software Development Environments (SESPSDE), 1984.

[56] P. R. Wilson, M. S. Lam, and T. G. Moher. Effective “static-graph”
reorganization to improve locality in a garbage-collected system. In
Conference on Programming Language Design and Implementation
(PLDI), 1991.

[57] C. Zhang, C. Ding, M. Ogihara, Y. Zhong, and Y. Wu. A hierarchical
model of data locality. In Principles of Programming Languages
(POPL), 2006.

[58] C. Zhang, K. Kelsey, X. Shen, C. Ding, M. Hertz, and M. Ogihara.
Program-level adaptive memory management. In International
Symposium on Memory Management (ISMM), 2006.

[59] L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. Schaelicke, J. B.
Carter, W. C. Hsieh, and S. A. McKee. The Impulse memory
controller. IEEE Transactions on Computers, 2001.

[60] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array regrouping
and structure splitting using whole-program reference affinity. In
Programming Language Design and Implementation (PLDI), 2004.

[61] B. G. Zorn. The effect of garbage collection on cache performance.
Technical report, University of Colorado at Boulder, 1991.

12

AO AS BF DF HI PO RA SZ TH TY Benchmark AO AS BF DF HI PO RA SZ TH TY
5.1 0 1.7 2.5 0 4.0 2.6 4.7 3.2 3.4 antlr 0 0 6.1 0 5.2 2.0 14.1 5.8 0 4.8

0 0 0 0 0 0 0 0 0 0 banshee 0 0 0 0 0 0 110.9 0 0 0
16.3 0 0 18.9 10.8 17.4 17.4 10.5 12.4 16.0 bloat 173.6 0 18.7 0 0 70.4 1241.2 16.5 209.6 0

3.8 3.7 0 2.8 0 4.2 6.5 5.8 2.4 4.5 chart 58.7 0 38.4 40.7 24.0 59.3 174.9 56.5 57.7 69.4
0 0 0 0 0 0 0 0 0 11.4 cloudscape 0 0 0 0 0 0 47.1 28.4 0 0
0 0 0 0 0 0.7 0 0 0.7 0.7 compress 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 7.1 0 0 0 daikon 466.5 210.2 24.5 0 31.4 344.5 432.2 209.7 479.7 178.8
0 18.0 20.1 10.2 11.7 0.7 47.6 11.9 0 18.7 db 0 211.3 223.8 14.5 25.8 3.4 574.5 94.7 0 228.7
0 0 0 9.0 0 11.5 11.0 15.4 0 10.1 eclipse 0 0 0 48.2 56.6 15.4 24.5 0 0 0
0 1.8 1.7 0 0 0 0 0 0 2.2 fop 1.5 2.7 7.0 0 4.7 6.3 9.4 8.1 1.9 3.5
0 0 0 0 0 2.2 2.4 3.0 0 3.0 hsqldb 0 76.5 27.8 0 0 28.7 272.4 117.1 0 110.8

3.9 0 0 0 4.5 3.3 7.6 2.8 3.6 2.6 ipsixql 3.6 5.8 0 0 3.2 4.5 97.9 6.8 4.0 5.1
0 0 1.7 2.1 1.8 0 3.5 1.9 0 2.6 jack 0 0 8.9 10.3 7.5 4.7 41.7 15.9 0 18.0
0 3.4 2.1 0 2.9 1.5 13.5 4.7 0.9 3.0 javac 13.8 63.6 23.3 0 10.2 20.1 543.1 47.5 13.3 56.9

2.4 0.7 0.6 0 1.5 2.3 2.5 0 2.2 0 javalex 2.3 0 4.7 0 3.8 9.7 29.2 6.2 3.8 4.3
0 0 0 0 1.1 0 1.4 1.2 0 0 jbytemark 0 0 0 0 8.3 0 0 0 0 0

3.1 0 0 0 0 0 7.8 0 2.8 0 jess 0 0 8.1 0 6.9 0 65.2 8.4 0 8.0
2.3 3.3 2.9 0 0 3.0 2.0 3.3 2.6 1.9 jpat 93.8 103.2 104.1 0 0 97.9 108.3 111.7 91.9 86.6

0 1.6 0 0 0 0 1.3 0 0 0 kawa 0 8.0 6.0 0 0 0 18.5 7.5 0 3.8
0 1.3 0 0 0 0 1.4 0 0 0.7 luindex 2.1 0 0 2.9 0 2.8 13.4 0 0 3.2
0 0 0 6.8 5.2 0 0 0 0 0 lusearch 0 0 7.8 0 0 0 24.6 11.4 0 12.5
0 0 0 0 0 0 36.8 0 0 0 moldyn 0 37.8 23.8 0 36.0 0 10145.2 16.7 0 0
0 0 0 0 1.6 0 1.6 0 0 0 montecarlo 0 0 0 0 5.9 0 23.2 0 0 3.3

0.9 2.7 2.4 1.7 0 1.4 0 0 2.1 1.6 mpegaudio 0 0 0 0 0 0 8.2 11.3 0 0
1.9 7.0 1.6 0 5.1 0 53.9 3.0 0 2.9 mtrt 9.5 692.4 59.0 0 39.4 29.9 16125.3 104.2 0 96.3

0 8.2 5.3 0 4.1 0 7.7 0 4.0 4.3 pmd 0 0 0 0 0 26.6 396.5 0 0 0
0 0 0 0 0 0 11.1 0 0 0 pseudojbb05 13.8 34.0 19.3 14.0 0 18.8 215.0 49.3 13.7 38.0
0 0 1.8 0 2.6 0 30.8 8.1 0 11.6 raytracer 0 0 0 0 0 0 33.7 0 0 0
0 0 5.2 5.4 0 0 6.0 0 4.8 6.7 saber 0 0 6.3 0 6.4 5.4 45.7 6.3 0 4.5

1.2 0 1.5 1.8 0 1.8 4.7 2.3 2.4 2.5 soot 82.3 0 127.4 90.4 107.4 103.3 494.0 99.6 90.2 98.5
0 0 0 0 1.4 0 5.2 1.2 0 0 xalan 0 0 0 0 0 0 84.8 9.0 0 4.3

1.4 0 2.0 2.5 2.9 2.8 7.7 1.8 2.1 0 xerces 0 0 0 0 0 11.6 88.2 0 0 0
(a) Time slowdown. (b) TLB miss rate increase.

AO AS BF DF HI PO RA SZ TH TY Benchmark AO AS BF DF HI PO RA SZ TH TY
0 2.6 0 0 0 0 3.7 1.8 0 0 antlr 0 0 5.9 0 4.1 0 17.2 0 0 4.4
0 0 11.3 0 0 14.8 0 0 0 0 banshee 0 28.6 0 0 0 0 0 0 0 0

155.7 90.9 27.9 0 13.0 147.2 182.0 145.1 162.3 69.7 bloat 0 25.8 34.2 0 16.9 21.1 67.8 30.3 13.2 21.9
3.6 4.8 3.8 3.0 3.1 3.2 10.1 0 4.2 4.3 chart 53.2 42.1 5.0 0 16.1 53.9 214.7 46.1 54.5 54.2

0 0 0 0 0 0 10.6 0 0 0 cloudscape 0 0 0 0 0 0 0 21.3 0 0
0 0.7 0 0.6 0 0 0 0 0 0 compress 0 1.3 0 0 0 0 1.1 1.0 0 0

7.7 20.4 0 0 0 12.6 8.5 25.0 13.5 10.7 daikon 0 0 0 0 0 0 21.6 0 10.1 0
0 47.8 57.8 24.6 33.8 4.5 67.7 27.6 0 52.7 db 0 53.2 67.2 55.8 65.4 4.8 107.9 42.9 0 56.7

13.6 10.8 10.3 12.6 17.0 13.8 0 0 0 0 eclipse 17.4 0 19.8 0 22.1 0 23.5 28.1 0 0
0 0 0 0 0 0 7.5 0 0 9.4 fop 0 8.9 11.0 0 12.1 0 39.5 10.4 5.1 11.0

7.2 0 0 4.3 0 0 11.4 15.7 5.9 15.1 hsqldb 0 0 0 0 68.8 0 15.0 0 0 6.5
11.9 0 0 0 6.9 7.4 16.2 8.5 12.1 0 ipsixql 148.0 0 14.5 0 81.3 103.2 181.2 55.7 150.4 0

0 0 0 23.6 27.1 0 36.9 0 0 27.7 jack 0 0 0 0 0 0 33.9 0 0 0
0 9.9 6.8 0 4.9 4.4 33.6 8.0 0 10.9 javac 21.1 31.1 23.1 0 14.7 22.6 146.4 24.1 20.7 31.2

227.1 9.3 19.4 0 104.1 220.4 263.3 26.4 221.1 0 javalex 14.3 0 4.7 6.9 11.7 11.7 20.9 9.8 16.0 6.5
13.4 0 0 10.7 0 0 0 0 0 0 jbytemark 0 0 0 4.8 12.5 0 4.4 0 5.0 4.2

0 15.7 5.1 0 0 5.5 37.6 17.2 0 12.9 jess 7.7 8.2 0 0 4.1 11.3 43.9 0 7.3 0
1.4 2.3 2.2 0 0 1.2 0 0 0 0 jpat 13.0 0 14.1 0 0 16.7 0 22.1 12.3 0

0 0 0 0 0 0 0 0 0 0 kawa 0 5.0 6.5 0 0 0 11.7 0 0 4.8
0 5.2 3.3 0 0 2.2 13.0 3.7 0 6.7 luindex 4.6 3.6 0 0 0 5.0 19.2 8.2 5.9 7.3
0 0 3.2 3.7 0 0 6.2 4.6 0 6.4 lusearch 0 0 0 24.9 0 0 0 0 0 16.8
0 9.8 0 0 0 6.1 17.0 0 9.2 0 moldyn 0 54.1 0 96.5 51.1 0 1346.9 0 0 0
0 0 0 0 0 0 0 0 0 3.9 montecarlo 0 0 0 0 0 0 0 0 0 0
0 0 8.1 0 4.2 0 34.0 0 0 0 mpegaudio 0 0 0 0 0 0 0 0 0 0

3.0 5.1 8.7 0 3.9 0 86.6 14.6 2.1 9.9 mtrt 10.5 0 16.0 0 34.9 11.6 135.3 0 0 12.3
6.7 0 0 0 5.4 4.8 15.1 4.7 0 7.2 pmd 25.0 16.6 28.7 0 31.8 21.1 112.5 9.9 17.0 29.0
7.4 8.3 6.5 2.7 0 10.1 30.3 10.1 6.0 12.2 pseudojbb05 9.2 20.0 13.6 9.9 0 11.9 56.7 21.4 9.5 22.2

0 0 114.6 0 100.2 100.2 1288.1 216.8 0 313.3 raytracer 0 0 78.6 0 87.1 107.8 1193.7 810.2 28.0 1013.4
0 5.9 0 0 0 0 4.7 0 0 0 saber 14.7 0 0 0 5.3 10.7 19.2 0 17.5 0

3.5 3.0 5.1 0 2.8 0 8.3 0 3.0 0 soot 7.5 2.9 12.3 3.0 8.8 2.6 36.6 2.7 5.7 0
0 0 5.1 0 0 0 8.3 12.9 0 4.9 xalan 0 0 0 0 0 0 31.5 6.1 0 0

8.3 10.0 6.5 5.1 4.1 7.5 22.0 8.4 6.7 0 xerces 25.4 7.2 39.9 32.2 57.2 30.3 154.6 4.6 21.3 0
(c) L1 data cache miss rate increase. (d) L2 cache miss rate increase.

Table 14. Mutator results compared to best, on 2-processor AMD at heap size 4×.

13

AO AS BF DF HI PO RA SZ TH TY Benchmark AO AS BF DF HI PO RA SZ TH TY
3.8 0 0 0 0 3.2 0 4.2 4.4 3.9 antlr 2.3 2.0 1.5 0 0 3.4 3.3 3.4 0 4.4

0 0 0 4.5 5.7 0 4.3 0 0 0 banshee 3.8 0 2.0 3.0 3.4 0 4.4 4.9 2.8 0
11.1 14.0 11.0 0 0 22.2 23.6 13.3 12.7 6.9 bloat 13.7 0 10.4 13.6 18.2 13.2 15.9 16.6 0 16.6

0 0 0 0 0 0 11.8 6.0 0 6.3 chart 0 0 0 0 0 4.0 7.6 6.2 5.7 4.1
0 0 0 0 0 0 0 0 0 8.1 cloudscape 0 0 0 0 0 0 0 3.0 3.2 0
0 0 2.3 3.8 0 0 0 0 0 0 compress 0 0.7 1.3 0 0 0 0 0 0 0
0 0 0 0 11.9 0 17.3 0 0 0 daikon 2.8 0 0 0 0 0 7.1 0 2.2 0
0 54.6 55.4 14.1 24.2 2.7 91.2 30.8 0 57.7 db 0 26.8 29.9 34.2 29.9 0 49.7 18.8 0 31.5
0 0 0 0 0 0 7.0 10.8 7.6 0 eclipse 0 0 0 10.6 0 10.3 9.4 14.8 9.6 10.6

1.4 0 0 1.8 1.5 0 3.3 2.0 0 0 fop 0 0 0 0 0 1.0 2.4 1.1 0 0
0 13.7 4.6 0 4.1 7.7 26.9 14.7 0 11.8 hsqldb 2.0 3.8 0 0 0 0 4.4 0 1.8 2.7

11.3 0 0 11.2 8.8 19.6 5.3 10.7 1.7 ipsixql 2.9 0 0 0 1.9 2.1 5.5 2.1 3.4 0
0 0 0 0 0 0 2.1 0 0 0 jack 0 0 0 0 0 0 3.2 0 0 0
0 3.4 3.6 0 5.1 3.1 19.3 4.8 6.0 javac 0 0 0 0 0 0 9.3 0 0 0
0 3.4 2.6 2.5 0.8 0.6 0 2.4 0 2.9 javalex 1.7 0 0 0 1.8 2.1 2.4 0.6 2.0 0.8
0 0 0 2.1 2.8 0 2.1 0 0 1.6 jbytemark 0 1.9 1.1 1.2 0.7 1.0 1.6 1.0 0 0

2.0 0 1.2 0 3.1 25.8 1.3 2.8 3.8 jess 2.6 0 0 0 0 2.4 6.0 0 0 2.2
0 0 0 0 0 0 0 0 0 0 jpat 0 0 2.3 0 0 2.5 0 0 0 0
0 4.7 0 1.3 8.8 0 0 0 2.2 3.0 kawa 0 0 0 1.9 0 0 2.6 0 0 0
0 0 0 1.8 0 0 0 0 0 0 luindex 0 0 0 0 0 0 0 0 0 0
0 4.8 5.0 5.9 0 6.2 7.3 7.3 8.5 10.2 lusearch 0 7.3 0 0 0 0 0 0 5.4 0

10.3 15.2 12.3 5.6 0 0 163.0 0 0 0 moldyn 3.6 4.0 5.0 0 3.7 1.5 48.7 0 0 0
0 0 0 0 0 0 0 0 0 0 montecarlo 0 2.8 2.0 2.1 0 1.7 0 0 0 0
0 0 0 0 0 0 3.0 0 0 0 mpegaudio 0 0 0 0 0 0 0 0 0 0
0 19.6 4.9 0 6.6 2.9 126.5 8.6 0 7.8 mtrt 0 9.9 3.2 0 4.8 0 55.5 2.0 1.2 2.4

7.2 0 8.9 0 12.0 9.7 16.0 0 0 7.6 pmd 0 0 0 0 0 8.0 10.4 4.9 0 0
8.1 8.1 6.9 0 0 8.8 29.1 7.9 0 8.8 pseudojbb05 0 8.2 3.8 0 0 3.5 16.5 5.2 0 6.3

0 13.3 3.0 0 0 3.1 35.1 8.9 2.0 15.2 raytracer 3.8 50.8 6.3 4.6 0 4.8 88.5 19.2 2.7 41.6
0 0 0 0 11.1 0 0 0 0 0 saber 0 0 0 0 0 0 0 0 0 0
0 0 0 0 9.4 4.6 11.0 5.8 0 3.9 soot 3.7 6.6 3.8 0 0 2.5 4.5 4.4 1.7 0
0 0 0 3.7 5.0 4.0 17.5 5.3 2.4 3.2 xalan 0 2.0 1.8 0 2.5 2.0 5.5 0 0 1.7
0 0 0 0 0 0 13.5 4.8 3.9 5.7 xerces 2.7 0 0 0 3.5 2.7 9.4 0 2.9 0

(a) 2-processor Intel at heap size 4×. (b) 4-processor AMD at heap size 4×.
AO AS BF DF HI PO RA SZ TH TY Benchmark AO AS BF DF HI PO RA SZ TH TY
2.0 0 0 0 0 2.6 2.2 3.3 2.6 2.1 antlr 1.6 4.2 2.2 0 0 2.7 2.4 2.8 0 2.6

0 0 0 0 0 0 4.5 2.1 0 0 banshee 2.8 0 0 2.8 3.9 0 3.9 0 0 0
14.3 0 0 0 0 0 10.2 9.2 12.2 0 bloat 0 0 0 6.0 0 0 12.1 7.9 0 0

0 0 0 0 4.4 2.8 9.0 0 0 0 chart 0 0 0 0 0 0 0 0 0 0
0 0 0 15.1 0 0 0 0 0 0 cloudscape 0 0 0 0 0 0 0 6.0 0 0
0 0.7 0 0 0 0.8 0 0 0 0 compress 0 0 0 0.9 1.4 0 1.2 0 1.1 0

5.2 0 0 0 0 0 5.9 0 4.8 0 daikon 0 0 0 0 0 8.3 11.6 0 0 6.5
0.3 18.8 19.5 10.6 12.8 1.0 45.7 12.4 0 18.7 db 0 17.9 17.3 9.9 11.9 1.7 47.1 11.0 0 16.6

0 0 5.5 5.9 0 8.4 0 8.9 0 0 eclipse 0 10.5 0 0 0 9.4 12.8 13.6 10.9 0
2.7 0 2.8 1.5 2.5 3.8 3.5 3.2 2.6 1.9 fop 2.7 0 0 0 0 1.2 2.0 2.3 0 1.6
1.8 3.1 0 0 0 2.4 8.0 2.7 0 3.3 hsqldb 0 2.9 0 0 0 1.5 1.9 2.9 0 0
7.8 0 4.9 4.4 9.4 4.9 6.6 0 ipsixql 2.8 0 0 0 3.1 2.9 3.9 2.3 3.2 0

0 0 0 0 0 0 3.5 1.4 0 2.4 jack 0 2.6 1.8 1.0 0 0 5.8 1.6 0 2.2
1.5 4.7 0 0 1.9 0 10.5 2.8 0 2.2 javac 0 1.4 1.1 0.5 1.1 1.0 4.2 2.6 2.9 3.8
2.5 0 0 0 0.8 2.3 1.6 0 2.6 0.7 javalex 2.2 0 0 0 1.2 2.0 4.6 0.6 2.0 0
5.5 5.5 5.8 5.9 5.8 6.0 6.4 7.1 6.2 5.8 jbytemark 0 1.4 0 1.5 0 0 0 0 0 0

0 0 0 0 0 6.1 0 0 2.0 jess 0 0 0 0 0 0 7.4 0 0 1.7
4.0 3.4 4.6 3.4 0 2.5 4.1 4.9 1.9 4.6 jpat 0 0.9 0.7 1.2 1.0 0 0.5 0.5 0.3 0.7

0 1.3 0 0 1.4 0 0 0 0 0 kawa 0.9 1.4 1.4 1.8 1.0 1.2 1.2 1.4 0 0.8
0 0 0 0 0 0 0 0 0 0 luindex 0 0 0 0 0 0 0 0 0 0
0 4.9 0 0 3.9 0 0 0 0 3.4 lusearch 0 5.8 0 0 0 0 0 0 0 0
0 0 9.2 0 0 0 17.2 9.4 0 0 moldyn 0 0 6.1 0 0 0 0 0 5.5 0
0 2.4 1.5 0 2.1 0 2.0 1.1 0 0 montecarlo

1.4 2.1 1.4 1.7 0 1.9 4.0 0 0 2.2 mpegaudio 0 0 0 0 0 0 2.8 0 0 0
1.1 6.0 0 0 0 0 41.9 1.8 0.9 0 mtrt 1.3 5.2 1.2 0 2.1 0 59.5 3.0 0.9 3.0
3.7 0 4.5 0 6.2 9.5 13.8 0 0 0 pmd 0 11.8 0 0 0 0 6.5 0 0 0

0 0 0 0 0 0 14.3 0 0 0 pseudojbb05 0 0 0 0 0 0 14.1 3.0 0 3.3
0 0 2.8 0 2.9 2.0 33.2 8.5 0 13.2 raytracer 0 9.8 0 0 0 0 33.5 6.1 0 11.0
0 0 0 5.0 3.7 0 0 5.5 4.1 9.0 saber 7.5 0 0 0 0 0 8.8 0 0 0

1.6 2.5 1.3 0 0 0 5.8 0 0 0 soot 1.8 0 1.7 0 2.2 0 2.8 0 2.0 0
0.8 0 0.7 0 0 0 5.8 0 1.6 1.0 xalan 0 0.9 0 1.9 0 3.0 1.0 0 1.4

0 0 2.0 1.7 3.4 1.5 9.7 0 0 0 xerces 2.9 0 1.5 2.1 2.6 0 5.9 3.3 1.9 1.9
(c) 2-processor AMD at heap size 2×. (d) 2-processor AMD at heap size 10×.

Table 15. Mutator time slowdown compared to best.

14

