
Data Layouts for Object-Oriented Programs

Martin Hirzel
IBM Watson Research Center

Hawthorne, NY
hirzel@us.ibm.com

ABSTRACT
Object-oriented programs rely heavily on objects and poin-
ters, making them vulnerable to slowdowns from cache and
TLB misses. The cache and TLB behavior depends on the
data layout of objects in memory. There are many possible
data layouts with different impacts on performance, but it
is not known which perform better. This paper presents a
novel framework for evaluating data layouts. The frame-
work both makes implementing many layouts easy, and en-
ables performance measurements of real programs using a
product Java virtual machine on stock hardware. This is
achieved by sorting objects during copying garbage collec-
tion; outside of garbage collection, program performance is
solely determined by the data layout that the sort key imple-
ments. This paper surveys and evaluates 10 common data
layouts with 32 realistic benchmark programs running on 3
different hardware configurations. The results confirm the
importance of data layouts for program performance, and
show that almost all layouts yield the best performance for
some programs and the worst performance for others.

Categories and Subject Descriptors: D.3.4 [Program-
ming Languages]: Processors—Compilers, Memory man-
agement (garbage collection)

General Terms: Languages, Measurement, Performance,
Experimentation, Algorithms

Keywords: data layout, data placement, spatial locality,
cache, TLB, memory subsystem, hardware performance coun-
ters, GC

1. INTRODUCTION
Object-oriented programs rely heavily on objects and poin-

ters, making them vulnerable to slowdowns from cache and
TLB misses. When the program traverses a pointer to access
an object, but the object is not currently in cache or TLB,
the processor has to wait many cycles for the data to arrive
from memory. A good data layout (mapping of objects to
memory addresses) can frequently prevent such wait times.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’07, June 12–16, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-639-4/07/0006 ...$5.00.

For example, it can put two objects on the same cache line
or TLB page, so a miss to one of them brings both into cache
or TLB. There are many different layouts to choose from,
but there has not been a good way to pick the right layout
given a program and platform. Previous layout evaluation
approaches fall into four categories.

The appeal-to-intuition approach evaluates a data layout
by intuitively arguing that it is good. For example, it seems
likely that a program will access data in the same order
it allocated them, so laying out objects in allocation order
sounds like a good idea.

The formal approach evaluates a data layout by first mak-
ing some simplifying assumptions about the program and
the platform, and then proving an optimality proposition.
However, Petrank and Rawitz showed that determining an
optimal layout (or even an approximation) is NP hard in
general [41].

The simulation approach evaluates a data layout by tak-
ing a trace of all object accesses of a program, then using it
to drive a cache, TLB, or paging simulator to determine the
number of misses for a given layout. Both Stamos [51] and
Blau [8] evaluated several data layouts for three Smalltalk
programs with paging simulation. Unfortunately, modern
hardware is complex, and simulated miss rates are only a
rough indicator of actual performance. For example, out-of-
order execution partially hides misses, whereas false sharing
in multiprocessor systems introduces new misses.

The brute-force approach evaluates data layouts by com-
paring full implementations of multiple layouts on real hard-
ware. Implementing a layout costs effort, thus authors usu-
ally only compare the new one proposed by the paper, and
the default layouts of their language runtime system.

This paper presents a novel framework that combines the
best of the simulation approach and the brute-force ap-
proach: use a simple implementation for each layout (like
in the simulation approach), while at the same time evalu-
ating the layouts on real hardware (like in the brute-force
approach). Each data layout is implemented by a stop-the-
world copying garbage collector. When the program needs
more memory, it stops and calls the garbage collector. When
the collector is done, it resumes the program. The program
without the garbage collector is commonly referred to as mu-
tator. The framework uses a simple garbage collector that is
easy to implement. The collector may be slow, but its per-
formance is not of interest for this paper. Collector perfor-
mance has been extensively studied elsewhere. This paper
is concerned with mutator performance, and the framework
makes it possible to measure that in a realistic way.

265

The contributions of this paper are:

• A versatile framework for evaluating data layouts for
object-oriented programs. The versatility is demon-
strated by implementing the 10 most common layouts
used in practice.

• A comprehensive study of the effect of each data layout
on program performance. The study measures time
and memory system performance of 32 programs on 3
hardware platforms.

The results show that mutator cache and TLB miss rates
commonly vary by 10-20% from layout to layout, and mu-
tator time commonly varies by 5-10%, sometimes more. Al-
most all layouts yield the best performance for some pro-
grams and the worst performance for others.

2. SORTING GARBAGE COLLECTION
This section presents a novel framework for easily imple-

menting data layouts in a garbage collector. The framework
enabled this paper to present the first comprehensive and
realistic evaluation of data layouts for object-oriented pro-
grams. It is based on copying garbage collection. Section 2.1
gives background and Section 2.2 presents the algorithm.

2.1 Generational copying garbage collection
This paper is based on copying garbage collection with a

generational collector [38, 55], since that is the most com-
mon approach used in object-oriented systems. Genera-
tional collectors segregate objects by age into generations.
Younger generations are collected more often than older gen-
erations, which reduces overall collector work, because most
objects become unreachable while they are still young. This
paper employs a collector with two generations, a copying
young generation and a mark-sweep old generation. The col-
lector also implements numerous other techniques, among
others, parallelism [26] and tilted semi-spaces [39].

to-space

from-space

young
generation

old
generationsp

ac
e

copying

Figure 1: Generational copying garbage collection.

Figure 1 shows the memory layout. The young gener-
ation is divided into into two semispaces. Only one semis-
pace is active for allocation. Garbage collection starts when
the active semispace is full. The collector traverses pointers
from program variables (roots) to discover reachable objects,
which it copies to the other semispace (from from-space to
to-space) or to the old generation. Figure 1 indicates copy-
ing by dotted arrows. After copying, the collector updates
all pointers to refer to the new copies (fix-up), and discards
the from-space originals. When the program resumes, it uses
to-space as the active semispace for allocation.

Each set of objects allocated between the same two col-
lections starts out in allocation-order, and once it survives

the first collection, has the data layout implemented by the
collector.

2.2 Object sorting
This section introduces the sorting garbage collector. The

goal of this algorithm is to easily produce different layouts
when copying objects. A layout is a mapping of objects to
data addresses, defined by the order of the object relative
to each other. The key idea of the algorithm is to produce
this order by literally sorting the objects, for example, with
quicksort. That may make the collection slower, but this pa-
per is not concerned with collector performance, only with
the performance of the program between collections. Col-
lector performance has been extensively studied elsewhere.

12

11

10d

9

5

6d

4

2

3

7d

1

8

remem-
bered
set

roots

survivor
array

young
generation

from-space

old
generation

young
generation

to-space

12

11

10d

9

5

6d

4

2

3

7d

1

8

old
generation

young
generation

to-space
survivor
array

young
generation

from-space

(a) populate (b) sort

12

11

10d

9

5c

3c

5

6d

4

2

3

7d

1

1c

2c

4c

8

young
generation

from-space

old
generation

young
generation

to-space
survivor
array

12

11

10d

9

5c

3c

5

6d

4

2

3

7d

1

1c

2c

4c

8

young
generation

from-space

old
generation

young
generation

to-space
survivor
array

remem-
bered
set

roots

(c) copy (d) fixup

Figure 2: Sorting garbage collection.

Figure 2 illustrates the algorithm with an example. The
algorithm has four steps:

(a) Populate a survivor array with pointers to all objects
in the young generation that are reachable from roots
or from the remembered set. In the example, the sur-
vivor array points to the objects 〈1, 3, 5, 2, 4〉. Objects
6d and 7d in the young generation are dead, denoted
by the little “d”.

266

“1” Preserving PO Popularity
AO Allocation order PD Profile-directed
AS Allocation site RA Random
BF Breadth-first SZ Size
DF Depth-first TH Thread
HI Hierarchical TY Type

Table 1: Data layout abbreviations.

(b) Sort the survivor array using any sort key (such as
the address, type, size, etc.), for example, using quick-
sort or heap sort. Figure 2(b) shows the sort key as a
number in the object, so sorting changes the survivor
array from 〈1, 3, 5, 2, 4〉 to 〈1, 2, 3, 4, 5〉. Figure 2(b)
omits program pointers to avoid clutter.

(c) Copy survivor objects to to-space and to the old gener-
ation in the order they are referenced by the survivor
array. This step also installs forwarding pointers in
the object header. For example, the copy of object 5
is object 5c in the old generation, and object 5 has a
forwarding pointer to object 5c.

(d) Fix up program pointers that referred to the objects
in the young generation to point to their copies in the
old generation. For example, in Figure 2(a), object 9
points to object 2 in from-space. After fixup in Fig-
ure 2(d), object 9 points to object 2c in to-space.

Section 3 describes several data layouts, and shows how
they can be implemented using the sorting garbage collec-
tion algorithm presented here. Creating a different layout is
as easy as using a different sort key in Step (b).

3. DATA LAYOUT DESCRIPTIONS
This section surveys common data layouts for object-orien-

ted programs. Table 1 gives abbreviations for data layouts
in this paper.

3.1 Depth-first layout (DF)
What: Perhaps the simplest copying garbage collector is

Fenichel and Yochelson’s algorithm, which traverses objects
with a recursive procedure [23]. The variables on the collec-
tor’s call stack keep track of already copied objects that may
contain pointers to not-yet copied objects. Other depth-first
copying collectors, such as Cheng and Blelloch’s algorithm,
are not recursive, but maintain the stack as an explicit data
structure and share it between parallel collector threads [14].
Using a stack for the traversal leads to copying objects in
depth-first order. For example, in Figure 3(a), the collector
first copies object 1 and pushes pointers to objects 2 and 3
on a stack. It then pops 3, copies it, and pushes its chil-
dren 6 and 7. Assume that each block (cache line or TLB
page) can fit three objects. When the collector pops and
copies object 7, it fills up the first block; the next object,
object 15, goes on a new block. After that, the collector
pops and copies object 14 and then object 6, so objects 15,
14, and 6 go on the same block.

Why: Depth-first layout yields good performance if the
program often accesses a parent object together with a child
object that it points to, such as in singly-linked lists. On
the other hand, when the program often accesses sibling
objects, it will miss in the cache or TLB, since depth-first
layouts tend to put siblings on separate blocks. Another
drawback is the space overhead for the stack.

How: This paper implements the DF data layout using
the algorithm from Section 2.2: use an explicit stack to pop-
ulate the survivor array, and omit the sort step.

3.2 Breadth-first layout (BF)
What: When the collector keeps objects in a FIFO-queue

during the reachability traversal, it copies them in breadth-
first order (see Figure 3(b)). Cheney’s breadth-first copying
algorithm [13], and its parallel variant by Imai and Tick [33],
use the to-space copies of the objects themselves as an im-
plicit queue, thus avoiding the space overhead for an explicit
queue.

Why: Breadth-first copying yields good data locality if
the program often accesses sibling objects together. On the
other hand, if the program often accesses child objects, it
will miss in the cache or TLB, since breadth-first layouts
tend to put parents and children on separate blocks.

How: This paper implements BF data layout using the
algorithm from Section 2.2: use an explicit queue to popu-
late the survivor array, and omit the sort step.

3.3 Preserving layout (“1”)
What: Table 1 denotes the preserving layout by “1”, be-

cause it keeps objects in the same order as they were before,
making it a one-element for composition of data layouts.
Figure 3(d) shows an example: survivor objects 〈1, 3, 6, 7, 9〉
are copied in the same order they had before, while dead
objects 〈2d, 4d, 5d, 8d〉 are omitted. Since “1” does not put
objects in a new order, it has the same characteristics as the
layout that existed before it, such as allocation order (AO,
next subsection).

Why: Preserving the data layout facilitates compaction
without a separate semi-space, giving the defragmentation
of copying collection without the twofold space overhead of
a copy reserve. Preserving is a good data layout if the data
layout before copying was already good. It can be achieved
with sliding compaction collectors [35, Lisp 2 collector, Sec-
tion 5.4] and their parallel variants [1, 24]. The main draw-
back of sliding compaction algorithms is that they usually
require an extra pass over the heap. Shuf et al. show how
to preserve data layouts at the page granularity for locality
purposes without an extra pass [48].

How: This paper implements the “1” data layout using
the algorithm from Section 2.2: the sort key is the original
address of the object.

3.4 Allocation-order layout (AO)
What: The allocation-order layout places objects in mem-

ory in the order in which the program allocates them. It is
the natural result of allocating from a large consecutive free
area of memory with a bump-pointer. Thus, the newest ob-
jects in any semi-space copying collector (e.g., [13, 23]) are in
allocation order. To keep older objects in allocation order as
well, use the preserving data layout “1”, since preserving AO
from before copying yields AO after copying (AO ·1 = AO).

Why: When the program uses objects in the same order
it allocates them, AO yields good performance. In addition,
it tends to induce fixed deltas between the addresses of re-
lated objects, making them amenable for prefetching [2, 34].
On the other hand, when a program accesses objects in a
different order than it allocates them, performance suffers.
Also, preserving allocation order tends to cost more collector
time than the simpler DF and BF layouts.

267

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

depth-first1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

hierarchical

(a) Depth-first (b) Breadth-first (c) Hierarchical

1 2d 3 4d 5d 6 7 8d 9 preserving

1c 3c 6c 7c 9c

x1 2d y3 4d 5d x6 x7 8d y9

x1c x6c x7c y3c y9c

(d) Preserving (e) Sorting

1 2 3d 4 5d 76 98d

1c 6c 2c 7c 9c 4c

1

2
3

8

11
129

10

5

4

6 7

001 010

111

110

100

101

(f) Size (g) Thread

Figure 3: Data layouts.

How: This paper uses AO for all young objects with one
bump pointer per program thread, and preserves it as in
Section 3.3.

3.5 Segregating by allocation site (AS)
What: Unlike the AO layout, the AS layout does not

keep objects allocated by different static instructions in the
program together, even when they are allocated in consec-
utive order dynamically. In the example in Figure 3(e), ob-
jects 〈x1, x6, x7〉 were allocated by instruction x, and ob-
jects 〈y3, y9〉 were allocated by instruction y. Their copies
〈x1c, x6c, x7c〉 and 〈y3c, y9c〉 are segregated on different blocks.

Why: Segregation by allocation site is common in region-
based memory management. Originally implemented with
static analysis for functional languages [54], regions have
also been used for C with programmer annotations [25], for
Java with dynamic analysis [42] and static analysis [15], and
for C with static analysis [37]. Each region contains objects
from one or more allocation sites. Instead of freeing individ-
ual objects in a region with garbage collection, region-based
memory management reclaims all objects in a region to-
gether when the last one dies, thus saving the collector the
work of tracing individual objects. A weakness of regions is
that they waste space when dead objects are kept around by
objects in the same region that are still alive. Segregation
by allocation site has also been advocated for locality pur-
poses [29, 37], though no performance benefit from reduced
cache or TLB misses has been demonstrated.

How: This paper implements the AS data layout using
the algorithm from Section 2.2: the sort key is the allocation
site, and among objects from the same allocation site, the
sort key is the current address. The challenge is to make
allocation sites available at garbage collection time, without
perturbing the mutator too much.

For the AS layout, this paper uses an allocation site tracer
designed for minimum mutator overhead. The instructions
for allocating an object are instrumented with additional in-
structions for storing the object address and the allocation
site into a thread-local buffer that is not part of the garbage

collected heap. Before the collector from Section 2.2 sorts
the survivor array, it drains all the thread-local buffers, con-
structing a map from object addresses in from-space to al-
location sites. Step (b) sorts the survivor array by looking
up the allocation sites of objects as the sort key. Step (c)
copies the survivors, and simultaneously creates a new map
from objects in to-space of the young generation to alloca-
tion sites. At the next collection, this to-space map, together
with the thread-local buffers for new allocation, yields the
next set of sort keys.

antlr 5.8% ipsixql 7.5% montecarlo 0%
banshee 0% jack 2.8% mpegaudio -2.3%
bloat 0% javac 4.6% mtrt 6.0%
chart 5.6% javalex -0.6% pmd 0%
cloudscape 0% jbytemark 4.9% pseudojbb05 0%
compress 0% jess 4.9% raytracer 0%
daikon 0% jpat 0% saber 0%
db 0% kawa 0% soot 7.7%
eclipse 8.5% luindex 0% xalan 0%
fop 0% lusearch 6.6% xerces 2.2%
hsqldb 3.6% moldyn 0%

Table 2: Mutator time slowdown caused by
allocation-site tracer, on a 2-processor AMD ma-
chine at heap size 4×.

Table 2 shows how much mutator overhead the instruc-
tions in the allocation sequence for recording the object ad-
dress and allocation site cause. The experiment did not
actually sort the survivor array, so the data layouts with
and without the allocation-site tracer are identical, to iso-
late from locality effects. Table 2 shows that the overhead
tends to be on the order of 0-10%. We are still investigating
why mpegaudio and javalex experience speedups. Because
the goal of this paper is to measure locality effects in iso-
lation, later tables subtract out the overhead of the tracer
from AS numbers.

3.6 Segregating by size (SZ)
What: Non-copying collectors have to find holes for allo-

cating new objects between previously allocated objects. A

268

popular approach for quickly finding holes of the right size is
to use free lists that are segregated by size [18]. When such
a freelist consists of entire blocks, the collector can further
exploit that, for example, by keeping mark bits in parallel
instead of in object headers (e.g., [9]).

Why: Advocates of copying garbage collection often ac-
cuse segregation by size of destroying locality. To isolate
that effect, this paper investigates segregation by size in a
copying collector.

How: This paper implements the SZ data layout using
the algorithm from Section 2.2: the sort key is object size
(Figure 3(f)).

3.7 Segregating by type (TY)
What: While segregating by size already enables keeping

mark bits in parallel instead of in object headers, segregating
by type takes this further: it makes it possible to keep type
information per page instead of per object. Furthermore,
based on a pointer analysis, type segregation can save the
collector some work exploring reachable objects [29, 47].

Why: Segregating by type may yield better locality if the
program tends to access objects of the same type together.

How: This paper implements the TY data layout using
the algorithm from Section 2.2: the sort key is the class
pointer of the object (see Figure 3(e)).

3.8 Hierarchical layout (HI)
What: Hierarchical garbage collection divides the heap

into blocks (for example of size 4KB, which is the page size
in many systems), and treats the objects in each block as
a separate queue for Cheney scan [13]. Whenever possible,
it scans in a block that has free space at the end for copy-
ing objects that are connected to the objects already in the
block. Figure 3(c) illustrates the hierarchical data layout.

Why: Moon [40] and Wilson et al. [56] designed hierar-
chical garbage collection to achieve both the parent→ child
locality of DF and the sibling locality of BF by copying a
subtree to the same block as its root whenever possible.

How: This paper does not use the algorithm from Sec-
tion 2.2 to implement the HI layout. Instead, it uses the par-
allel HI garbage collector implementation of Siegwart and
Hirzel [50].

3.9 Thread-based layout (TH)
What: In multi-threaded programs, multiple mutator

threads allocate and mutate objects in parallel. Any scal-
able memory manager uses thread-local buffers for alloca-
tion, since otherwise, each object allocation must acquire
a lock. Thread-local garbage collectors take this idea a
step further: when a set of objects is used by one muta-
tor thread alone, it can collect garbage without synchro-
nizing with other threads [52]. Thread-local heaps have
not yet become practical or adopted in production systems,
since they require an escape analysis: an analysis that shows
which objects do not escape the thread that allocated them.
Steensgaard proposes a static escape analysis [52], but un-
til recently, no escape analysis dealt with the full semantics
of Java-like languages, such as reflection and native code.
Kotzmann and Mössenböck published the first such analysis
in 2005 [36], so thread-local heaps may soon become real.

Why: By keeping a thread’s working set together, thread-
local heaps may improve mutator locality and reduce false
sharing in addition to reducing collector synchronization.

How: This paper implements the TH data layout using
the algorithm from Section 2.2. The sort key of an object
is the bit vector describing from which mutator threads it
is reachable. The mask for thread x is 2x; if an object is
reachable by both thread x and thread y, its sort key is
(2x or 2y). For example, in Figure 3(g), object 9 is reach-
able both by thread 0 and by thread 2, and so its sort key
is (001or 100) = 101, which means that it will be colocated
with object 10. The implementation keeps an array of keys
parallel to the array of survivor pointers. It first marks all
bits in all objects reachable from global variables, since they
can be accessed by any thread. It then does several reacha-
bility traversals, one from each thread’s roots, marking the
bit corresponding to the given thread.

3.10 Popularity-based layout (PO)
What: A popular object is an object to which many

other objects point [32]. Popular objects impede incremen-
tal copying, because moving them entails updating all point-
ers to them. Therefore, some incremental copying collectors
segregate them and treat them as a special case [20]. Be-
sides incremental compaction, another family of algorithms
for which popular objects are problematic is reference count-
ing [7, 17]. On the other hand, popularity can be used as a
hint for the collector to save work [27]: popular objects live
longer than unpopular ones [30].

Why: From the locality perspective, if there are many
pointers to an object, that may indicate that it will be ac-
cessed a lot; when there are few pointers, that may indicate
that it will not be accessed much longer in the future.

How: This paper implements the PO data layout using
the algorithm from Section 2.2: the reference count is the
sort key. Reference counts are discovered during the reacha-
bility traversal of Step (a), not maintained during mutation.

3.11 Profile-directed layouts (PD)
What: Many papers suggest data layouts that improve

locality based on some kind of profile of the program’s data
accesses. Some approaches target scientific computation
with loops and arrays [11, 12, 21], others focus on object-
oriented programs with objects, virtual method calls, and
pointers [8, 16, 19, 31, 51, 58]. What these papers have
in common is that all report significant improvements, yet
none of the techniques have been adopted in practice.

Why: While the effect of profile-oblivious approaches de-
pends on the program and the platform, a profile-directed
approach can directly exploit observed behavior. Unfortu-
nately, collecting a profile costs overhead, and even profile-
directed approaches can be easily fooled [41].

How: This paper does not implement any profile-directed
data layouts, since none have been adopted in practice.
However, papers introducing PD data layouts tend to com-
pare them to one of the 10 profile-oblivious layouts in this
paper, often using some of the same benchmarks as the
32 benchmarks in this paper, so the reader can make a com-
parison across papers.

3.12 Random layout (RA)
What: While bad for locality, random layouts can im-

prove security in type unsafe languages. Bhatkar et al. pro-
posed address randomization to hinder exploits of buffer
overrun vulnerabilities [4], and Berger and Zorn combine
randomization with replication [3].

269

Why: The random layout serves as a worst-case compar-
ison for what happens when there is no correlation between
the order in which the program accesses objects and the or-
der in which a layout places objects in memory. If some
layouts are much better than random, a layout that causes
nearly as many cache and TLB misses random is clearly a
bad layout. On the other hand, if no layout performs bet-
ter than random, then the program is probably not affected
much by memory subsystem performance; maybe, the work-
ing set is small, or there is little pointer-chasing. Random
layouts have been used for evaluating data layouts in the
past [8, 51]. Furthermore, in some cases randomization ac-
tually benefits locality, since a non-random layout may cause
pathological cache conflicts or false sharing situations.

How: This paper implements the RA data layout using
the algorithm from Section 2.2: the sort key is a random
number.

4. METHODOLOGY
All layouts were implemented and measured in an internal

development version of IBM’s product Java virtual machine,
J9.

Name Suite Description Parallel? MB

antlr DaCapo parser generator 2.0
banshee other XML parser 69.5
bloat DaCapo bytecode optimizer 16.1
chart DaCapo pdf graph plotter 14.3
cloudscape other relational database 4.7
compress jvm98 Lempel-Ziv compressor 7.0
daikon other dynamic invariant detector 7.2
db jvm98 in-memory database 11.2
eclipse DaCapo development environment y 14.0
fop DaCapo XSL-FO to pdf converter 9.1
hsqldb DaCapo in-memory JDBC database y 173.8
ipsixql Colorado in-memory XML database 2.5
jack jvm98 parser generator 1.3
javac jvm98 Java compiler 20.5
javalex other lexer generator 1.0
jbytemark other bytecode-level benchmark 6.0
jess jvm98 expert shell system 2.1
jpat Ashes protein analysis tool 1.0
kawa other Scheme compiler 2.6
luindex DaCapo text indexing for search 2.2
lusearch DaCapo keyword search in text y 7.1
moldyn JavaGrande molecular dynamics sim. y 4.1
montecarlo JavaGrande Monte Carlo simulation y 480.5
mpegaudio jvm98 audio file decompressor 1.0
mtrt jvm98 multi-threaded raytracer y 8.7
pmd DaCapo source code analyzer 15.7
pseudojbb05 jbb05 business benchmark y 123.9
raytracer JavaGrande 3D ray tracer y 4.2
saber other J2EE source error checker 25.5
soot other bytecode analyzer 32.8
xalan DaCapo XSLT processor 27.5
xerces other XML parser 3.1

Table 3: Benchmark programs.

Table 3 shows the benchmark suite, consisting of 32
Java programs: pseudojbb05, which runs SPECjbb2005 for
a fixed number of transactions1; the 7 SPECjvm98 pro-
grams2; 10 DaCapo benchmarks version 2006-08 [6]; and
several other big Java programs. The DaCapo benchmark
jython triggered a bug in our internal version of J9, so this
paper omits it. To reduce the effect of noise on the results,

1http://www.spec.org/jbb2005/
2http://www.spec.org/osg/jvm98/

L1 Cache L2 Cache TLB
AMD Intel AMD Intel AMD Intel

Associativity 2 4 16 8 4 8
Block size 64 B 64 B 64 B 64 B 4 KB 4 KB

Capacity/blocks 1,024 128 16K 8K 512 64
Capacity/bytes 64K 8K 1,024K 512K 2,048K 256K

Table 4: Memory hierarchy parameters per core.

each run contains several iterations (application invocations
within one JVM process invocation). For each SPECjvm98
benchmark, a run contains around 10 to 20 iterations at
input size 100. Except for eclipse, each run of a DaCapo
benchmark in this paper contains two or more iterations on
the largest input. Column “Parallel” indicates whether the
program has multiple parallel threads (“y”). Column “MB”
gives the minimum heap size in which the program runs
without throwing an OutOfMemoryError. The rest of this
paper reports heap sizes as n× this minimum heap size.

The experiments in this paper were performed on three
Linux machines: a 2-processor AMD machine and a 4-processor
AMD machine (both with AMD Opteron 270 cores clocked
at 2GHz), and a 2-processor Intel Pentium 4 Xeon clocked
at 3.06GHz with simultaneous multithreading (which makes
it look like 4 processors to the operating system). The 2-
processor AMD has just one dual-core chip, the 4-processor
AMD has 2 dual-core chips, and the 2-processor Intel has
2 single-core chips. Table 4 shows the configuration of the
data caches and TLBs for each core. In all cases, a cache
block is a 64B line, and a TLB block is a 4KB page. The
capacity in bytes is the product of the block size and the ca-
pacity in blocks. For example, with 64 blocks of 4KB each,
the TLB on each Intel core buffers translations for 256 KB.

5. DATA LAYOUT EVALUATION
This section presents measurements of the impact of data

layouts on program performance.

5.1 Effect of data layouts on mutator time
Mutator time is the total program runtime minus the

pause times for stop-the-world garbage collection. Since this
paper uses the garbage collector to apply the data layout,
mutator time isolates the locality effect of the layout. To
reduce noise, each combination of a benchmark, layout, and
machine ran 9 times, and the results use the arithmetic mean
of the 6 fastest runs. Since the data from all 32 benchmark
programs from Table 3 takes too much space, this section
only summarizes it; later sections show more detail, includ-
ing results at heap sizes different from 4×.

Table 5 shows the results. Each column corresponds to
one data layout; Table 1 is the abbreviation key. Rows
“#Best” show for how many benchmarks this layout had
the best performance. This count includes benchmarks for
which this layout performed as well as the best layout for
that benchmark, according to Student’s t-test at 95% con-
fidence (the t-test compares two sets of numbers, in this
case, the execution times of repeated runs of both bench-
mark/layout combinations). Rows “Average” show the av-
erage mutator slowdown percentages of this layout com-
pared to the best layout for each benchmark, and Rows
“Worst” show the maximum mutator slowdown percentages
compared to the best layouts for each benchmark.

Rows “Average” and “Worst” in Table 5 show that the

270

AO AS BF DF HI PO RA SZ TH TY

Best 21 21 18 21 18 18 6 16 18 12
Average 1.3 1.6 1.6 2.0 1.8 1.8 9.4 2.5 1.4 3.4
Worst 16.3 18.0 20.1 18.9 11.7 17.4 53.9 15.4 12.4 18.7

(a) 2-processor AMD.
Best 20 19 18 24 22 14 8 16 19 20
Average 1.4 4.0 2.3 2.2 2.2 2.1 11.7 3.4 1.4 3.9
Worst 13.7 50.8 29.9 34.2 29.9 13.2 88.5 19.2 9.6 41.6

(b) 4-processor AMD.
Best 24 19 20 20 17 17 9 14 21 12
Average 1.7 5.2 3.8 1.5 3.8 2.8 21.1 4.5 1.9 5.5
Worst 11.3 54.6 55.4 14.1 24.2 22.2 163.0 30.8 12.7 57.7

(c) 2-processor Intel.

Table 5: Mutator time overhead compared to best,
at heap size 4×.

4-processor AMD machine is more layout sensitive than the
2-processor AMD machine. That is because more cores
share the same amount of memory bandwidth. As multi-
core machines with deep memory hierarchies become more
common, this effect will increase in the next few years, in-
creasing the importance of data layouts. The 2-processor
Intel machine is the most sensitive to data layouts, since
it has smaller caches and a smaller TLB on the one hand
and a faster clock speed on the other hand. Comparing
the 2-processor Intel to the 2-processor AMD suggests that
given the same number of processors, buying larger caches
and TLBs is effective in reducing problems caused by data
layouts.

Table 5 shows that on average, any particular layout ex-
cept the random layout (RA) is from 1.3% to 5.5% slower
than the best layout, and any particular layout has worst-
case scenarios where mutator time is at least 9.6%, and often
even 20% to 50%, slower than with the best layout for that
benchmark. On average, the RA layout increases mutator
time by 9.4% to 21.1%, and in the worst case, by up to 163%.
For a few benchmarks, RA is as good as the best layout, in-
dicating that those programs are data layout oblivious. But
in general, all non-random layouts are significantly better
than RA.

Looking at individual layouts, depth-first (DF) is most
frequently the best layout, and segregating by type (TY)
is most rarely the best layout. Allocation order (AO) has
the best average performance, and TY causes the highest
average mutator slowdown. When segregating by thread
(TH), the worst cases are the most benign, all other layouts
encountered worse worst-cases.

5.2 Effect of data layouts on cache and TLB
misses

This section shows how data layouts affect the L1 cache,
L2 cache, and TLB miss rates of the mutator. The misses are
counted by hardware performance counters on the 2-processor
AMD machine, using the PAPI library [10]. The Java vir-
tual machine accumulates the counts from all threads be-
fore and after each collection, and separates the counts by
whether they happen during mutation. This methodology
causes no measurable performance penalty, hence the results
come from the same runs as those for Section 5.1.

Table 6 shows the results. The meaning of the rows and
columns is the same as in Table 5. The level 1 cache is the
least affected by the data layout, the level 2 cache is more
strongly affected, and the TLB is most strongly affected.
On average, most layouts have 5-10% higher miss rates than

AO AS BF DF HI PO RA SZ TH TY

Best 18 14 14 22 18 15 7 15 21 15
Average 14.7 8.2 9.6 2.8 10.3 17.7 69.5 17.2 13.9 18.1
Worst 227.1 90.9 114.6 24.6 104.1 220.4 1,288.1 216.8 221.1 313.3

(a) L1 data cache.
Best 18 17 15 24 13 16 6 14 15 16
Average 11.6 9.6 12.3 7.3 18.9 13.9 126.8 36.1 12.5 40.7
Worst 148.0 54.1 78.6 96.5 87.1 107.8 1,346.9 810.2 150.4 1,013.4

(b) L2 cache.
Best 20 21 13 25 15 12 2 9 22 11
Average 28.8 45.2 23.3 6.9 12.0 27.0 984.5 32.8 30.2 32.5
Worst 466.5 692.4 223.8 90.4 107.4 344.5 16,125.3 209.7 479.7 228.7

(c) TLB.

Table 6: Mutator miss rate increases compared to
best, on 2-processor AMD at heap size 4×.

the best layout for a benchmark, and in the worst case, they
cause in the hundreds of % more misses (over a factor of 2
increase). Looking at the numbers for the depth-first layout
(DF) confirms the conclusions from Section 5.1.

To conclude, as expected, data layouts have a large im-
pact on miss rates, explaining the wall-clock time differences.
The percentage differences in miss rates are larger than the
percentage differences in time. Hence, measuring miss rates
is useful for explaining performance, but can not replace
actual time measurements.

5.3 Layout similarities and differences

3.3

4.1

6.4

7.7

9.9

31.9

SZ HI AO PO TH DF TY BF AS RA0

Figure 4: Layout clusters, on 2-processor AMD at
heap size 4×.

This section explores how similar or distinct the layouts
are. Consider a pair of layouts x and y. This paper uses
32 benchmarks, so the mutator time of the layouts consti-
tutes vectors ~x and ~y in 32-dimensional space. Euclidian dis-
tance quantifies the difference δxy between layouts x and y
as δxy =

pP
b(xb − yb)2, where b ranges over the 32 bench-

marks. Figure 4 shows the result of agglomerative hierar-
chical clustering, which starts bottom-up with each layout
in its own cluster, and successively combines the most sim-
ilar pair of clusters until there is only one cluster left. The
y-axis of Figure 4 shows the similarity, where the similarity
between two clusters is the Euclidian distance between their
average vector. The y-axis scales linearly up to 10, but then
jumps to 31.9 to keep the figure easier to read.

Three layouts are based on inter-object connectivity: DF
colocates parents with children, BF colocates siblings, and
HI does both. These three layouts have distinct charac-

271

teristics. This paper implements the remaining seven lay-
outs (AO, AS, PO, RA, SZ, TH, and TY) using the sort-
ing garbage collection algorithm from Section 2.2. In many
cases, the primary sort key does not define a total order: for
example, there are many objects with the same popularity
(PO) or the same size (SZ). In these cases, the object ad-
dress serves as a secondary sort key, or tie-breaker. Since
objects are allocated with a bump-pointer allocator, using
the object address as a secondary sort key means that within
each equivalence class, objects remain more or less in allo-
cation order (AO). Figure 4 shows that AO is similar to PO
and TH. This indicates that segregating by popularity or by
thread has little impact on locality. On the other hand, AO,
AS, SZ, and TY are all quite distinct from each other. This
indicates that allocation sites, sizes, and types matter a lot
for locality.

To conclude, while PO and TH differ little from their
foundation AO, the remaining layouts are quite distinct from
each other.

5.4 Program sensitivity to data layouts

Benchmark Best Avg. Worst RA

1. bloat AS, BF 11.4 DF 18.9 17.4
2. db AO, TH 10.1 BF 20.1 47.6
3. eclipse more than 3 5.1 SZ 15.4 11.0
4. chart BF, HI 3.0 SZ 5.8 6.5
5. pmd more than 3 2.9 AS 8.2 7.7
6. antlr AS, HI 2.7 AO 5.1 2.6
7. raytracer more than 3 2.7 TY 11.6 30.8
8. saber more than 3 2.5 TY 6.7 6.0
9. mtrt DF, PO, TH 2.4 AS 7.0 52.9

10. ipsixql AS, BF, DF 2.3 HI 4.5 7.6
(a) 2-processor AMD at heap size 4×.

Benchmark Best Avg. Worst RA

1. db AO, PO, TH 19.0 DF 34.2 49.7
2. raytracer HI 14.9 AS 50.8 88.5
3. bloat AS, TH 11.4 HI 18.2 15.9
4. eclipse more than 3 6.2 SZ 14.8 9.4
5. pseudojbb05 more than 3 3.0 AS 8.2 16.5
6. mtrt AO, DF, PO 2.6 AS 9.9 55.5
7. soot DF, HI, TY 2.5 AS 6.6 4.5
8. chart more than 3 2.2 SZ 6.2 7.6
9. banshee AS, PO, TY 2.2 SZ 4.9 4.4

10. moldyn more than 3 2.0 BF 5.0 48.7
(b) 4-processor AMD at heap size 4×.

Benchmark Best Avg. Worst RA

1. db AO, TH 26.6 TY 57.7 91.2
2. bloat DF, HI 10.1 PO 22.2 23.6
3. hsqldb AO, DF, TH 6.3 SZ 14.7 26.9
4. ipsixql BF, DF 6.1 AO 11.3 19.6
5. mtrt AO, DF, TH 5.6 AS 19.6 126.5
6. pseudojbb05 DF, HI, TH 5.4 PO 8.8 29.1
7. lusearch AO, HI 5.3 TY 10.2 7.3
8. raytracer AO, DF, HI 5.1 TY 15.2 35.1
9. pmd more than 3 5.0 HI 12.0 16.0

10. moldyn more than 3 4.8 AS 15.2 163.0
(c) 2-processor Intel at heap size 4×.

Table 7: Mutator time overhead compared to best,
for the 10 most layout-sensitive programs on each
machine.

This section explores for which benchmark programs data
layouts matter the most, and which layouts are best for
them. Table 7 is based on the same experiments as Sec-
tion 5.1. Table 7 sorts benchmarks in descending order by
average slowdown, and shows the 10 benchmarks with the
largest average slowdown for each machine. Column “best”
shows which layout is best for a program, or indistinguish-

able from the best with Student’s t-test. Column “Avg.”
shows the average slowdown that layouts other than random
(RA) incur compared to the best layout for that benchmark.
Column “Worst” indicates which layout except RA performs
worst for the benchmark, and by how much it is worse than
the best. Column “RA” shows how much longer the muta-
tor takes with random layout instead of the best layout for
that program.

Most of these programs experience mutator slowdowns of
5% to 10% when the average layout is used instead of the
best. Except for size (SZ) and random (RA), each layout
is the best for at least one program on one machine. Usu-
ally, even the worst non-random layout is better than RA,
but there are exceptions, presumably caused by interference.
Except for segregating by thread (TH), each layout is worst
among the non-random layouts for at least one program on
one machine. Given that almost all layouts are sometimes
best and sometimes worst, this paper found no “silver bul-
let” for the data locality problem.

The four programs db, bloat, raytracer, and mtrt are
among the 10 most data layout sensitive programs on all
three machines. They come from three different benchmark
suites (SPECjvm98, DaCapo, and JGF-thread). These pro-
grams may serve as good first tests when experimenting with
data layouts, but papers using only few benchmarks for eval-
uation risk missing important special cases.

The results for the 2 vs. 4-processor AMD in Table 7 in-
dicate that multiprocessing increases program sensitivity to
data layouts.

5.5 Towards a limit for data layout impact
How much more speedup could a better data layout yield

beyond the best time from the 10 layouts investigated in this
paper? Determining the exact speedups of an optimal data
layout is NP-hard [41]. The speedups come from reducing
cache and TLB misses, so an upper limit for the speedup is
the time that remains when there are no misses. In prac-
tice, hardware is too complex to measure even that exactly,
because the effect of misses can not be isolated from other
effects in the processor’s pipeline. This section takes an ed-
ucated guess at that upper limit by extrapolating from the
data of the 10 studied layouts.

The idea is to do linear regression on the different run-
times and on the different miss rates. Linear regression is
appropriate if you assume a more-or-less fixed stall penalty
per miss. Formally, let x1 be the number of L2 cache misses,
x2 the number of TLB misses, and y the time in seconds.
The model assumes that there are coefficients a0, a1, and a2

such that a0 + a1 · x1 + a2 · x2 = y.
Intuitively, a0 is the time if there are no misses, a1 is the

L2 cache latency, and a2 is the TLB latency. This model
disregards L1 cache misses, because the L1 latency is small
and varies wildly depending on how well the instruction level
parallelism in the CPU hides it. For each benchmark pro-
gram, the experiments from earlier in this paper measured
the misses and times (x1, x2, and y) for each layout. Since
there are 10 layouts, the measurements form 10-dimensional
vectors (~x1, ~x2, and ~y). Linear regression determines coeffi-
cients a0, a1, and a2 that minimize the error in the model.

Table 8 shows the results of the regression for the 10 most
layout-sensitive benchmarks on each machine. The bench-
marks appear in the same order as in Table 7. Column
“Sign” shows whether the coefficients a1 and a2 were posi-

272

Benchmark Sign Residual Limit RA

1. bloat 0 + 172.4 17.4

2. db + + 5.5 -21.7 47.6
3. eclipse + 0 43.7 -5.0 11.0

4. chart + + 8.7 -0.2 6.5
5. pmd + 0 11.9 -1.6 7.7
6. antlr − − 4.7 2.6
7. raytracer + + 39.5 -63.0 30.8

8. saber + + 5.1 -3.2 6.0
9. mtrt + + 9.0 -3.7 53.9

10. ipsixql + + 3.4 -3.3 7.6
(a) 2-processor AMD.

Benchmark Sign Residual Limit RA

1. db + 0 139.3 -39.2 49.7
2. raytracer + + 35.4 -27.5 86.6
3. bloat + 0 157.0 15.9
4. eclipse − − 11.1 8.3

5. pseudojbb05 + + 1.8 -34.0 16.5
6. mtrt + + 15.2 -11.3 55.5
7. soot 0 + 20.1 4.5
8. chart + 0 11.8 -1.3 7.6

9. banshee + + 5.4 -2.4 4.4
10. moldyn + + 4.9 -2.5 48.6

(b) 4-processor AMD.
Benchmark Sign Residual Limit RA

1. db + + 265.9 -79.5 91.2
2. bloat 0 + 162.0 23.6

3. hsqldb 0 + 7.1 -6.6 26.9
4. ipsixql + + 8.9 -36.8 19.6
5. mtrt + + 54.2 -21.0 126.5
6. pseudojbb05 + 0 15.2 -74.9 29.1
7. lusearch 0 + 27.5 -15.6 7.3
8. raytracer + 0 4.8 -3.6 35.1
9. pmd + + 28.7 -25.1 16.0

10. moldyn 0 + 164.7 -2.2 163.0
(c) 2-processor Intel.

Table 8: Estimated limit mutator time compared to
best observed, at heap size 4×.

tive (+), negative (−), or zero. In theory, they should always
be positive, but in some cases, they were not. If just one of
them was negative, it was set to zero and the regression re-
peated with the remaining variables. If both a1 and a2 were
negative, or if a0 was higher than the smallest component
of vector ~y, column “Limit” is blank. Column “Residual”
shows the error reported by the regression, as a percentage
of a0. Lower residuals mean that the results are more ac-
curate. For example, on the 2-processor AMD machine, the
results for db, saber, and ipsixql are trustworthy, but the
result for bloat is not meaningful. Column “Limit” shows
the estimated percent speedup in the limit compared to the
best layout. If B is the mutator time of the best layout,
column “Limit” shows (a0−B)/B in percent. For example,
on the 2-processor AMD machine, db could be 21.7% faster
than with the best layout if there were no cache and TLB
misses. For bloat, a0 was higher than B, so the value is
blank; it was not trustworthy anyway, because the residual
is high. Finally, Column “RA” shows the percent slowdown
of the random layout compared to the best, like in Table 7.

Table 8 highlights lines with residuals under 10% in bold
face. Those are the cases where the linear regression fit the
observed data well, and has a small error. With the best
layouts for the respective programs, db on the 2-processor
AMD spends 21.7% of its time stalled in misses; pseudo-
jbb05 on the 4-processor AMD spends 34.0% of its time
stalled in misses; and ipsixql on the 2-processor Intel spends
36.8% of its time stalled in misses.

In some cases, the regression found that the approxima-
tion error would be minimal when setting either a1 (the L2
cache latency) or a2 (the TLB latency) to be negative. Ob-
viously, latencies are always positive. Probably, the reason
for this discrepancy is that raw miss counts can be mislead-
ing. In practice, not all misses are equally expensive in time.
The latency of an individual miss depends on many factors,
including the ability to speculate past it with out-of-order
execution, the pressure on the memory bus, whether the
cache line is already on its way into the cache due to an ear-
lier miss, etc. Hence, data locality studies should measure
wall-clock time in seconds, and bare miss counts should be
taken with a grain of salt.

To conclude, this section estimates that even when each
program uses the data layout that is best for that program
out of the 10 layouts investigated in this paper, some pro-
grams stall on cache or TLB for up to 36.9% of their time.
For others, the remaining stall time is closer to 3%. Better
data layouts may be able to eliminate some of those misses,
but not all, since some are compulsory.

6. METHODOLOGY EVALUATION
This paper advocates a novel methodology for evaluating

data layouts. Whereas Section 5 evaluated layouts with the
methodology, this section evaluates the methodology itself.

6.1 Garbage collector parallelism

antlr 0% ipsixql 0% montecarlo 0%
banshee 0% jack 0% mpegaudio -1.5%
bloat 0% javac 1.2% mtrt 3.3%
chart 0% javalex 1.0% pmd 0%
cloudscape 0% jbytemark 0% pseudojbb05 0%
compress 0% jess 0% raytracer 2.2%
daikon 0% jpat 0% saber -2.9%
db -1.5% kawa 0% soot -1.4%
eclipse 0% luindex 0% xalan 0%
fop 0% lusearch 0% xerces 0%
hsqldb 0% moldyn 0%

Table 9: Mutator time slowdown (positive) or
speedup (negative) when using parallel BF instead
of sequential BF, on a 2-processor AMD machine at
heap size 4×.

The framework from Section 2 uses sequential garbage col-
lection algorithms, whereas multi-processor scalability dic-
tates the use of parallel algorithms in practice. Collector
parallelism should not have much effect on mutator local-
ity in a stop-the-world setting. But if the effect were large,
that would make the results of this paper less generalizable.
Table 9 compares the program performance using sequen-
tial [13] vs. parallel [33] BF collection. A “0” in Table 9
means that the Student t-test found no statistically rele-
vant difference between the performance of runs with par-
allel BF and the runs with sequential BF. Table 9 shows
that while collector parallelism sometimes degrades muta-
tor performance (e.g., by 2.2% for raytracer) and sometimes
improves it (e.g., by 1.5% for db), for most programs, the
difference is negligible.

6.2 Implementation effort
The introduction of this paper claims the versatility of the

framework for evaluating data layouts as a central contribu-
tion. The versatility was demonstrated by implementing

273

9 layouts using sorting garbage collection, in addition to the
layouts already in the system. This section further quanti-
fies the versatility using LOC (lines of code) as a metric for
implementation effort. The implementation of the sorting
garbage collector touched four source code files of the under-
lying garbage collector, adding a total of 226 LOC to them.
The rest of the sorting garbage collector implementation re-
sides in separate files with a total of 845 LOC. The sorting
garbage collector implements 9 data layouts (AO, AS, DF,
PO, RA, SZ, TH, TY, and a sequential BF layout). That
makes 119 LOC per data layout.

6.3 Sensitivity of results to heap size
Thus far, all experiments in this paper were conducted at

a heap size of 4× the minimum in which the program runs
without throwing an OutOfMemoryError. However, heap
sizes affect the amount of memory over which the program’s
working set can spread out, and can thus affect locality.
This section explores whether the results from heap size 4×
generalize to smaller heaps (2×) and larger heaps (10×).

AO AS BF DF HI PO RA SZ TH TY

Best 16 18 19 22 18 17 7 15 21 17
Average 1.8 1.8 1.9 1.7 1.8 1.8 8.7 2.8 1.4 2.3
Worst 14.3 18.8 19.5 15.1 12.8 9.5 45.7 12.4 12.2 18.7

(a) Heap size 2× (50% occupancy).
Best 21 21 18 21 18 18 6 16 18 12
Average 1.3 1.6 1.6 2.0 1.8 1.8 9.4 2.5 1.4 3.4
Worst 16.3 18.0 20.1 18.9 11.7 17.4 53.9 15.4 12.4 18.7

(b) Heap size 4× (25% occupancy).
Best 21 17 20 21 19 21 6 13 21 17
Average 0.9 2.5 1.2 0.9 1.1 1.0 8.4 2.3 1.0 1.8
Worst 7.5 17.9 17.3 9.9 11.9 9.4 59.5 13.6 10.9 16.6

(c) Heap size 10× (10% occupancy).

Table 10: Mutator time overhead compared to best,
on 2-processor AMD machine.

Table 10 shows the results. Table 10 has the same for-
mat as Table 5 in Section 5.1. At all heap sizes, depth-first
(DF) is most frequently the best layout, and allocation or-
der (AO) has one of the best average performances. The
average as well as the worst-case of RA is close on all heap
sizes. While performance varies in the details, the overall
conclusions from earlier sections generalize to different heap
sizes as well.

6.4 Overhead of sorting garbage collection

IT AO AS BF DF HI PO RA SZ TH TY

2× 15.9 31.3 25.2 23.4 23.7 16.3 31.3 25.1 36.4 31.2 33.2
4× 13.7 29.8 25.7 21.3 21.4 14.0 29.9 25.6 36.1 29.7 32.1

10× 9.0 24.3 20.2 16.4 16.2 9.6 25.0 20.6 31.2 23.8 27.5

Table 11: Garbage collector time as a percentage of
total runtime, on 2-processor AMD machine.

This paper intentionally sacrifices garbage collector effi-
ciency for simplicity. The reward is the ability to compare
many layouts on many benchmarks in a realistic setting —
in a stock language runtime system running unperturbed on
stock hardware. Nevertheless, readers may be curious just
how slow the sorting copying garbage collector from Sec-
tion 2.2 is.

Table 11 shows the percentage of execution time that
the average program spends in garbage collection. Column

IT is the overhead of the fastest copying garbage collector
currently in the system, which is the parallel breadth-first
algorithm by Imai and Tick [33]. There is one row each
for small (2×), medium (4×), and large (10×) heaps. In
small heaps, the program exhausts memory more quickly,
and thus triggers more frequent garbage collection, leading
to higher overhead.

In a medium-sized heap, going from IT to BF increases
garbage collection time from 13.7% to 21.3% of total execu-
tion time. This is in part caused by going from a parallel to
a sequential algorithm, and in part by the fact that BF is
implemented in the framework from Section 2, with an ad-
ditional pass and additional metadata. In a medium-sized
heap, going from BF to other sorting garbage collectors in-
creases garbage collection time from 21.3% to 36.1% of to-
tal execution time. These collector time slowdowns are ex-
pected. This paper does not advocate using sorting copying
garbage collection in practice, but if that is desired, a good
start for engineering a more efficient version would be the
parallel compactor by Abuaiadh et al. [1].

6.5 Cache and TLB warmup after GC
antlr 0% ipsixql 0% montecarlo 0%
banshee 0% jack 0% mpegaudio 0%
bloat 0% javac -2.3% mtrt 0%
chart 2.8% javalex 0% pmd 3.5%
cloudscape 0% jbytemark 0% pseudojbb05 0%
compress 0% jess 0% raytracer 0%
daikon 0% jpat 0% saber 0%
db 0% kawa 0% soot 0%
eclipse 0% luindex 0% xalan 0%
fop 0% lusearch 0% xerces 0%
hsqldb 0% moldyn 0%

Table 12: Mutator time slowdown (positive) or
speedup (negative) when flushing caches and the
TLB after every garbage collection with parallel BF,
on a 2-processor AMD machine at heap size 4×.

Besides changing the layout of the mutator’s data, garbage
collection also has another effect on mutator locality: it
evicts the mutator’s working set from the caches and TLB.
Sweeney et al. [53, Section 5.5.2] observed that programs suf-
fer increased cache misses immediately after GC, when the
mutator warms up the memory hierarchy. This section de-
termines an upper bound on additional cache perturbation
(beyond that caused by regular GC) caused by the method-
ology of this paper. The experiment for finding this upper
bound is to flush all caches and the TLB after each GC by
streaming through a large array that contains no mutator
data.

Table 12 compares mutator performance with and with-
out flushing caches and the TLB. The baseline is the paral-
lel breadth-first algorithm by Imai and Tick [33]. Table 12
shows that flushing caches after GC causes little additional
mutator time degradation, indicating that either GC itself
already flushes the caches, or that the effect of flushing
caches is negligible compared to other performance effects
in the system. In either case, effects of the methodology of
this paper on mutator warmup can be safely ignored.

7. RELATED WORK
The most comprehensive studies of data layouts for object-

oriented programs were by Stamos [51] and Blau [8]. Both

274

AO AS BF DF HI PD PO RA SZ TH TY

(this paper)
√ √ √ √ √ √ √ √ √ √

Stamos [51]
√ √ √ √ √

Blau [8]
√ √ √

Shuf et al. [48]
√ √ √

Blackburn et al. [5]
√ √

Huang et al. [31]
√ √ √

Abuaiadh et al. [1]
√ √

Table 13: Data layout comparisons.

use trace-driven simulators to measure page faults for sev-
eral layouts of a Smalltalk image. Since main memories were
small and generational garbage collectors were not wide-
spread, paging tended to overwhelm any other locality ef-
fects. Both Stamos and Blau found that a PD layout that
puts objects in the order in which they will be accessed in
the future yields the best performance. They demonstrated
that DF, BF, and TY perform worse than PD and better
than RA for the three benchmarks studied. This paper dif-
fers in that it measures wall-clock time and miss rates of
native execution on stock hardware; it evaluates more dif-
ferent layouts on more different benchmarks; and it focuses
on cache and TLB performance instead of paging.

More recently, a number of papers have introduced garbage
collectors for Java that were at least in part motivated by
data locality, and have compared different data layouts on
stock hardware. Table 13 gives an overview of the layouts
considered. This paper differs in that it compares more lay-
outs, on more benchmarks and more hardware platforms.
Shuf et al. propose two techniques, one in the allocator
to improve locality, and one in the collector to preserve lo-
cality [48]. The allocator technique is based on identifying
pairs of objects that should be placed together, leaving a
hole next to the first one allocated, and placing the sec-
ond one into that hole when it gets allocated. The collector
technique achieves an approximate PR layout with less ef-
fort than sliding compacting collectors. Blackburn et al.
compare mark-sweep, copying, and reference counting col-
lectors, and note that AO has an advantage over SZ [5].
Huang et al. introduce a PD layout based on field access
frequency, and find that its performance usually matches
the better of BF and DF [31]. Abuaiadh et al. experiment
with different parallel compacting collectors, and find that
preserving AO with a table-based algorithm is better for lo-
cality than using a two-finger algorithm, which essentially
produces an RA layout [1].

A number of papers study the interplay of garbage collec-
tion with the memory subsystem, without specifically look-
ing at different data layouts. Zorn uses traces from 4 Lisp
programs to simulate cache misses, and finds that copy-
ing collectors suffer more when cache associativity is low
than mark-sweep collectors [61]. Reinhold uses traces from
5 Scheme programs to simulate cache misses with or with-
out garbage collection, and concludes that most misses hap-
pen during object allocation [43]. Diwan et al. use traces
from 8 SML programs to perform a cycle-accurate simula-
tion of the memory subsystem, and make recommendations
for hardware designs to minimize the cost of bump-pointer
allocation [22]. Shuf et al. use traces from 7 Java programs
to simulate caches and TLBs, and correlate misses back to
field kinds and object types in Java [49]. Hertz, Zhang, et
al. look at the interaction of garbage collection with paging
on real hardware [28, 58].

Data layouts have been studied not just for object-oriented
or functional garbage-collected languages, but also for scien-
tific and imperative code. Rubin et al. present a framework
based on trace-driven simulation for automatically selecting
from a set of layout transformations to be applied manually
by a programmer [44]. Zhang et al. present and simulate
a piece of hardware that can remap data to a different lay-
out [59]. Shen et al. use that to change the data layout
dynamically based on locality phases they discover from a
training run [46]. Zhong et al. use a training run for array re-
grouping and structure splitting [60]. Shen et al. perform a
static analysis to decide when to apply these techniques [45].
Zhong, Zhang, et al. demonstrate techniques for finding
“affinity hierarchies”: the hierarchy defines nested groups of
affine objects that should be colocated for locality [60, 57].

8. CONCLUSIONS
This paper surveys and evaluates 10 common data layouts

for object-oriented programs. The methodology is to pro-
duce different data layouts by using the copying garbage col-
lector alone, and then evaluate their performance by measur-
ing mutator performance alone. This gives realistic perfor-
mance results, since the mutator runs unperturbed, while at
the same time making the collector implementation simple
enough to experiment with a variety of algorithms. This pa-
per presents the sorting garbage collection algorithm, which
can produce a variety of common data layouts.

The results show that mutator cache and TLB miss rates
commonly vary by 10-20% from layout to layout, and some-
times the differences are much higher. Mutator time com-
monly varies by 5-10%, sometimes more. This confirms the
importance of data layouts for the performance of object-
oriented programs. For the benchmarks in this paper, depth-
first and allocation-order layouts often perform quite well,
but they — like all other layouts investigated — have worst-
cases where they cause large slowdowns.

This paper estimates that even when each program uses
the data layout that is best for that program out of the
10 layouts investigated in this paper, some programs still
spend up to 36.8% of their time stalled in cache or TLB
misses. One direction of future work is to to investigage
data layouts in allocators, since garbage collection only af-
fects objects that survive long enough to get copied. There
is no silver bullet for spatial locality in object-oriented pro-
grams, and there are several common layouts with diverse
behavior.

Acknowledgements
I thank Peter Sweeney for encouraging me to write Sec-
tion 5.5. I thank Rajan for explaining statistical subtleties
to me. I thank Matthew Arnold, Amer Diwan, Michael
Hind, Chengliang Zhang, and the SIGMETRICS reviewers
for their feedback. This research was funded in part by
DARPA contract No. NBCH30390004.

Appendix: Detailed results
This paper plus a 2-page appendix is available as IBM Re-
search Report RC24218, Watson, on the author’s homepage.

9. REFERENCES
[1] D. Abuaiadh, Y. Ossia, E. Petrank, and U. Silbershtein. An

efficient parallel heap compaction algorithm. In OOPSLA,
2004.

275

[2] A.-R. Adl-Tabatabai, R. L. Hudson, M. J. Serrano, and
S. Subramoney. Prefetch injection based on hardware
monitoring and object metadata. In PLDI, 2004.

[3] E. D. Berger and B. G. Zorn. DieHard: Probabilistic memory
safety for unsafe languages. In PLDI, 2006.

[4] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques
for comprehensive protection from memory error exploits. In
USENIX Security Symposium, 2005.

[5] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: The performance impact of garbage collection. In
SIGMETRICS, 2004.

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In OOPSLA,
2006.

[7] S. M. Blackburn and K. S. McKinley. Ulterior reference
counting: Fast garbage collection without a long wait. In
OOPSLA, 2003.

[8] R. Blau. Paging on an object-oriented personal computer. In
SIGMETRICS, 1983.

[9] H.-J. Boehm and M. Weiser. Garbage collection in an
uncooperative environment. Software – Practice and
Experience (SPE), 1988.

[10] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci.
A scalable cross-platform infrastructure for application
performance tuning using hardware counters. In IEEE
SuperComputing (SC), 2000.

[11] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious
data placement. In ASPLOS, 1998.

[12] W. K. Chen, S. Bhansali, T. Chilimbi, X. Gao, and
W. Chuang. Profile-guided proactive garbage collection for
locality optimization. In PLDI, 2006.

[13] C. J. Cheney. A nonrecursive list compacting algorithm.
CACM, 1970.

[14] P. Cheng and G. E. Blelloch. A parallel, real-time garbage
collector. In PLDI, 2001.

[15] S. Cherem and R. Rugina. Region analysis and transformation
for Java programs. In ISMM, 2004.

[16] T. M. Chilimbi and J. R. Larus. Using generational garbage
collection to implement cache-conscious data placement. In
ISMM, 1998.

[17] G. E. Collins. A method for overlapping and erasure of lists.
CACM, 1960.

[18] W. T. Comfort. Multiword list items. CACM, 1964.

[19] R. Courts. Improving locality of reference in a
garbage-collecting memory management system. CACM, 1988.

[20] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first
garbage collection. In ISMM, 2004.

[21] C. Ding and K. Kennedy. Improving cache performance in
dynamic applications through data and computation
reorganization at run time. In PLDI, 1999.

[22] A. Diwan, D. Tarditi, and J. E. B. Moss. Memory subsystem
performance of programs with intensive heap allocation. ACM
Transactions on Computer Systems (TOCS), 1995.

[23] R. R. Fenichel and J. C. Yochelson. A LISP garbage-collector
for virtual-memory computer systems. CACM, 1969.

[24] C. H. Flood, D. Detlefs, N. Shavit, and X. Zhang. Parallel
garbage collection for shared memory multiprocessors. In Java
Virtual Machine Research and Technology Symposium
(JVM), 2001.

[25] D. Gay and A. Aiken. Memory management with explicit
regions. In PLDI, 1998.

[26] R. H. Halstead, Jr. Multilisp: A language for concurrent
symbolic computation. TOPLAS, 1985.

[27] B. Hayes. Using key object opportunism to collect old objects.
In OOPSLA, 1991.

[28] M. Hertz, Y. Feng, and E. D. Berger. Garbage collection
without paging. In PLDI, 2005.

[29] M. Hirzel, A. Diwan, and M. Hertz. Connectivity-based
garbage collection. In OOPSLA, 2003.

[30] M. Hirzel, J. Henkel, A. Diwan, and M. Hind. Understanding
the connectivity of heap objects. In ISMM, 2002.

[31] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss,
Z. Wang, and P. Cheng. The garbage collection advantage:
improving program locality. In OOPSLA, 2004.

[32] R. L. Hudson and J. E. B. Moss. Incremental collection of

mature objects. In International Workshop on Memory
Management, 1992.

[33] A. Imai and E. Tick. Evaluation of parallel copying garbage
collection on a shared-memory multiprocessor. IEEE
Transactions on Parallel and Distributed Systems, 1993.

[34] T. Inagaki, T. Onodera, H. Komatsu, and T. Nakatani. Stride
prefetching by dynamically inspecting objects. In PLDI, 2003.

[35] R. Jones and R. Lins. Garbage collection: Algorithms for
automatic dynamic memory management. John Wiley & Son
Ltd., 1996.

[36] T. Kotzmann and H. Mössenböck. Escape analysis in the
context of dynamic compilation and deoptimization. In Virtual
Execution Environments (VEE), 2005.

[37] C. Lattner and V. Adve. Automatic pool allocation: Improving
performance by controlling data structure layout on the heap.
In PLDI, 2005.

[38] H. Lieberman and C. Hewitt. A real-time garbage collector
based on the lifetimes of objects. CACM, 1983.

[39] P. McGachey and A. L. Hosking. Reducing generational copy
reserve overhead with fallback compaction. In ISMM, 2006.

[40] D. A. Moon. Garbage collection in a large Lisp system. In
LISP and Functional Programming (LFP), 1984.

[41] E. Petrank and D. Rawitz. The hardness of cache conscious
data placement. In POPL, 2002.

[42] F. Qian and L. Hendren. An adaptive, region-based allocator
for Java. In ISMM, 2002.

[43] M. B. Reinhold. Cache performance of garbage-collected
programs. In PLDI, 1994.

[44] S. Rubin, R. Bodik, and T. M. Chilimbi. An efficient
profile-analysis framework for data layout optimizations. In
POPL, 2002.

[45] X. Shen, Y. Gao, C. Ding, and R. Archambault. Lightweight
reference affinity analysis. In International Conference on
Supercomputing (ICS), 2005.

[46] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. In
ASPLOS, 2004.

[47] Y. Shuf, M. Gupta, R. Bordawekar, and J. P. Singh. Exploiting
prolific types for memory management and optimizations. In
POPL, 2002.

[48] Y. Shuf, M. Gupta, H. Franke, A. Appel, and J. P. Singh.
Creating and preserving locality of Java applications at
allocation and garbage collection times. In OOPSLA, 2002.

[49] Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh.
Characterizing the memory behavior of Java workloads: A
structured view and opportunities for optimizations. In
SIGMETRICS, 2001.

[50] D. Siegwart and M. Hirzel. Improving locality with parallel
hierarchical copying GC. In ISMM, 2006.

[51] J. W. Stamos. Static grouping of small objects to enhance
performance of a paged virtual memory. Transactions on
Computer Systems (TOCS), 1984.

[52] B. Steensgaard. Thread-specific heaps for multi-threaded
programs. In ISMM, 2000.

[53] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan,
D. Grove, and M. Hind. Using hardware performance monitors
to understand the behavior of Java applications. In Virtual
Machine Research and Technology Symposium (VM), 2004.

[54] M. Tofte. A brief introduction to regions. In ISMM, 1998.

[55] D. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. In Software
Engineering Symposium on Practical Software Development
Environments (SESPSDE), 1984.

[56] P. R. Wilson, M. S. Lam, and T. G. Moher. Effective
“static-graph” reorganization to improve locality in a
garbage-collected system. In Conference on PLDI, 1991.

[57] C. Zhang, C. Ding, M. Ogihara, Y. Zhong, and Y. Wu. A
hierarchical model of data locality. In POPL, 2006.

[58] C. Zhang, K. Kelsey, X. Shen, C. Ding, M. Hertz, and
M. Ogihara. Program-level adaptive memory management. In
ISMM, 2006.

[59] L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. Schaelicke,
J. B. Carter, W. C. Hsieh, and S. A. McKee. The Impulse
memory controller. IEEE Transactions on Computers, 2001.

[60] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array
regrouping and structure splitting using whole-program
reference affinity. In PLDI, 2004.

[61] B. G. Zorn. The effect of garbage collection on cache
performance. Technical report, University of Colorado at
Boulder, 1991.

276

	Introduction
	Sorting garbage collection
	Generational copying garbage collection
	Object sorting

	Data layout descriptions
	Depth-first layout (DF)
	Breadth-first layout (BF)
	Preserving layout (``1'')
	Allocation-order layout (AO)
	Segregating by allocation site (AS)
	Segregating by size (SZ)
	Segregating by type (TY)
	Hierarchical layout (HI)
	Thread-based layout (TH)
	Popularity-based layout (PO)
	Profile-directed layouts (PD)
	Random layout (RA)

	Methodology
	Data layout evaluation
	Effect of data layouts on mutator time
	Effect of data layouts on cache and TLB misses
	Layout similarities and differences
	Program sensitivity to data layouts
	Towards a limit for data layout impact

	Methodology evaluation
	Garbage collector parallelism
	Implementation effort
	Sensitivity of results to heap size
	Overhead of sorting garbage collection
	Cache and TLB warmup after GC

	Related work
	Conclusions
	References

