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ABSTRACT

Data splits and data preparation during fairness mitigation are known to influence
the performance of output models. We propose using protected attributes in strati-
fication when splitting a dataset. We also describe fairness patterns for assembling
fair pipelines that include data preparation, estimators, and mitigators. This pa-
per introduces an open-source Python library 1ale.1ib.ai£360 that offers sklearn
compatible implementations of fair stratification and fairness patterns.

1 INTRODUCTION

Decisions in finance, hiring, promotions, and even criminal justice are increasingly influenced by
machine learning. Ethics, laws, and public opinion demand that these decisions should not discrim-
inate against minorities. Fortunately, for a well-defined fairness dataset and task, the literature on
algorithmic fairness offers various fairness metrics and mitigators. Unfortunately, algorithms alone
are not enough: fairness also requires sound human judgment and solid engineering. This paper
offers improvements on the engineering front. While the broader human issues around fairness are
beyond the scope of this paper, we hope our techniques help when applied judiciously.

The problem. Recent work has highlighted the engineering gap for fair machine learning. [Friedler
et al| (2019) empirically observe that ‘algorithms tend to be sensitive to fluctuations in dataset
composition |...] and to different forms of preprocessing’. |Lee & Singh|(2021) interview and survey
practitioners, who lament ‘limited ability to adapt and integrate the [available fairness] tools to
“plug and play” with the existing workflow’. We illustrate these gaps with two concrete examples.
The datasets used in these examples are the Ricci dataset (ric, 2009), which captures data about
firefighter promotion exams, and the CreditG dataset (Lehr & Ohml [2017), which concerns credit
card applications. For illustration, we make particular choices of fairness metric, classifiers, and
data preparation in these examples. However, the gaps have been observed for other choices as well.

Our first example illustrates how fluctuations in dataset composition can cause misleading conclu-
sions during testing. This example uses the disparate impact metric (Feldman et al.|,|2015), which
has an ideal value of 1, with values below 0.8 considered unfair. We used a random split of the Ricci
dataset and fit a logistic regression classifier to the training set. While the training set had a ground-
truth disparate impact of 0.39, the classifier predictions on the test set had a disparate impact of 0.75,
so one might erroneously conclude that the classifier increased fairness. However, with a different
random split of the same dataset, the training set had a ground-truth disparate impact of 0.68 and the
classifier predictions on the test set had a disparate impact of 0.11, so one might erroneously con-
clude that the classifier reduced fairness. When we repeat the experiment 50 times, it turns out that
on average, the disparate impact is 0.51 in the ground truth and 0.49 in the predictions, indicating
that the bias in the model approximates the bias in the data. This example highlights that fluctuations
in the train/test splits can lead to wildly different conclusions and the truth emerges when we repeat
the experiment multiple times with different splits. However, a large number of repetitions is not
always practical and we need tools that mitigate fluctuations in the train/test splits.

Our second example illustrates how data preparation can  encoder accuracy  disparate impact
interfere with fairness mitigation. This example uses the one-hot  75.4% +2.0%  0.808 +0.129
CreditG dataset, a logistic regression classifier, and a dis- ordinal ~ 724% +19%  0.974 4 0.085
parate impact mitigator by [Feldman et al| (2015). While target — 73.3%+£2.2% 1.028 +£0.086
the data contains categorical features, the mitigator requires numeric features, so our pipeline also
encodes categorical features as numbers. We report metrics as average + standard deviation of 50
trials with fair stratified (see Section [2)) splits. While one-hot encoding yields the best accuracy in
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these experiments, it makes the mitigator less effective at improving disparate impact. The ordinal
encoder improves disparate impact at the expense of accuracy. The target encoder (Micci-Barrecal
2001) recovers some of that accuracy. More generally, we need learning pipelines to integrate data
preparation with fairness mitigation and predictions. We must be careful to avoid data leakage from
the test set to the train set. For example, the target encoder must only look at the target column from
the split of the data used for fitting the pipeline. This example demonstrates that data preparation
can significantly affect the success of bias mitigators, and we need tools that allow us to easily and
correctly integrate data preparation into the bias mitigation pipelines without introducing data leak-
age or additional bias. They should also allow easy plug-and-play of mitigation with the training and
testing workflow in a consistent and correct way. Our lale.lib.aif360 library attempts to address
these two gaps and is fully compatible with sklearn to be pluggable to existing workflows.

Related work. Multiple recent open-source toolkits offer fairness mitigators. Unfortunately, none
of them is sufficiently compatible with sklearn (Buitinck et al.,[2013)) to address the above-described
problems. Themis-ML (Bantilan, [2017) mitigators offer a method fit (x, y, s), which differs
from sklearn’s fit (X, y) by an extra s argument for sensitive attributes. AIF360 (Bellamy et al.)
provides the most comprehensive collection of fairness metrics and mitigators (Lee & Singhl |[2021)),
but requires data to be either using its own dataset class or to represent protected attributes as a
pandas index (McKinney} 2011)), neither of which are propagated between operators in a sklearn
pipeline. Fairlearn mitigators offer a method fit (X, y, sensitive_features), which again differs
from the sklearn API. As|Lee & Singh| (2021) point out, this makes it hard to adapt and integrate
these toolkits into existing workflows. The fair-DAGs library focuses on measuring fairness for the
data preparation part of the pipeline (Yang et al 2020), but offers no mitigation. [Valentim et al.
(2019) use protected attributes for undersampling but not for stratified splits. The current state of
the art lacks support for robust testing of fairness intervention and for preparing data as part of the
same pipeline, and thus leaves an engineering gap to the existing ecosystem of sklearn and pandas.

Contributions. We propose novel solutions to the problems outlined above and introduce a
new Python library (github.com/IBM/lale/tree/master/lale/1ib/aif360) that provides
(1) fair stratification, (ii) fairness patterns, (iii) sklearn integration of fairness metrics and mitigation.

2  FAIR STRATIFICATION

Splitting data into a training and a test set helps detect and reduce over-fitting. Stratifying by target
labels helps represent smaller classes better in each split, thus increasing stability. For fairness, be-
sides class imbalance, there may also be imbalance between unprivileged and privileged groups. In
fact, there may be multiple groups (e.g., by gender and age), and ideally, each split should represent
all intersections well. Unfortunately, smaller intersections cause observed results to fluctuate more.

While fairness algorithms and toolkits usually assume binary protected attributes and target la-
bels, this is rarely the case for real-world datasets, or even for datasets from repositories such as
OpenML (Vanschoren et al.l 2014). Furthermore, any data splitting should happen on the raw data
before data preparation, because otherwise, data preparation may leak information from the test set
(such as in target encoding). Thus, fair stratification should perform the necessary binary encoding.
Let a group specification GG be given by a set of values (for categorical variables) or ranges (for con-
tinuous variables). Then, we can encode an attribute a to a Boolean using function e (a) defined as
eg(a) =39 € G:a =gV gmin < a < gmax- We can generalize e to tuples of a target label y and
protected attributes a; as eq((y, a1, . .., an)) = (eq, (¥),eq,(a1), ..., eq, (a,)). Since each of the
encodings is binary, this yields 2"*! unique encoded tuple values. Then, we can simply stratify by
these tuples. Our library 1a1e.1ib.aif360 supports the group specifications as a JSON value:

| creditg_fairness_info = {

2 "favorable_labels": ["good"],

3 "protected_attributes": [

4 { "feature": "personal_status",

5 "reference_group": ["male div/sep", "male mar/wid", "male single"]},
6 { "feature": "age",

7 "reference_group": [[26, 100011}1}

Here, the target label should be encoded via a=="good"; attribute personal_status should be
encoded via a in ["male div/sep", "male mar/wid", "male single"]; and age should be en-
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coded via 26<=a<=1000. Our lale.lib.aif360 library provides an API for fair stratified split that
understands this fairness information (in Python, =+ unpacks a dictionary into keyword arguments):

I train_X, test_X, train_y, test_y = fair_ stratified_train_test_split(
2 all_X, all_y, #**creditg_fairness_info, test_size=0.33, random_state=None)

In addition to an outer train-test split, an inner cross validation reduces over-fitting with sklearn’s
GridSearchcv or with automated machine learning tools such as Hyperopt (Bergstra et al [2015).
We provide FairstratifiedkFold, which is compatible with cross-validation in sklearn:

| fair_cv = FairStratifiedKFold(xxfairness_info, n_splits=5)

2 grid = {"Cc": [0.01, 0.1, 1], "solver": ["liblinear", "saga"]}

3 hpo = GridSearchCV (estimator=LogisticRegression (), cv=fair_cv, param_grid=grid)

4 hpo.fit(train_X, train_y)

Results. To quantify the advantage of fair stratification, we consider the stability of the fairness
metric computed with k-fold cross validation (CV). For CreditG (with protected attributes as pre-
sented above) and logistic regression (default hyperparameters), we perform multiple 10-fold CVs
and consider the average standard deviation (over the multiple CVs) as the measure of stability. For
disparate impact, class stratification improves stability over random stratification by 1% while fair
stratification improves it by 19%. The stratification strategy did not affect the mean of the fairness
metric. In an additional experiment, we down-sample rows belonging to the unprivileged group with
a favorable label by 80%. This worsens the inherent disparate impact by further under-representing
the unprivileged group. In this case, class-stratification improves stability over random by 5.5%
while fair-stratification improves it by 26%. These results indicate that fair stratification can reduce
fluctuations among dataset splits especially if a group is under-represented.

3 FAIRNESS PATTERNS

Most fairness mitigators require clean numeric data with binary protected attributes and la-
bels (Friedler et al.,[2019). However, datasets commonly have missing values and multi-valued cat-
egorical attributes and labels (Vanschoren et al., 2014)). Therefore, most machine-learning pipelines
include data transformers (such as imputers or encoders) followed by an estimator (such as a classi-
fier or regressor). In the context of fairness, we should evaluate the data transformation/preparation,
estimator, and mitigator jointly to avoid the problems described in the introduction. We argue that
this is best done by assembling them into a single joint pipeline. The benefits of such a pipeline
extend beyond the development phase of machine-learning engineering. Such a pipeline can also be
used to communicate to stakeholders exactly how its components work together, and to guarantee
that the pipeline deployed in production is faithful to what was used for training and testing.

Current toolkits do not support this (Lee & Singh| [2021), leading to the question: why is it difficult?
We believe it is difficult due to a fundamental dilemma: the pipeline must place data preparation
before the mitigator, yet it must hide protected attributes from the data preparation and provide them
to the mitigator. Revealing sensitive attributes to the data preparation sub-pipeline can cause prob-
lems both in principle (disparate treatment of unprivileged groups by transformers) and in practice
(transformation-induced data leakage from protected attributes to proxy attributes). Properly assem-
bling all the pieces (preparation, estimator, and mitigator) into an effective whole (a fair pipeline)
is non-trivial, and fairness toolkits should not leave that burden to their users. For instance, when
configuring the mitigator, users should not have to mentally simulate the effects of encodings on
fairness information; instead, the toolkit should take care of that automatically.

This paper proposes fairness patterns as a solution. Figure [I] illustrates our patterns, which vary
by mitigator kind: mitigation can happen pre-, in-, or post-estimator. Redacting hides protected
attributes from the data preparation sub-pipeline. For each protected attribute a, redacting picks one
of the values v € a and sets the entire column to be the constant v. Instead of redaction, another
possibility could have been projection, i.e., dropping the column. But we have found that by shifting
column indices, projection can invalidate pre-trained transformers; redacting avoids that problem. A
separate sub-pipeline of our patterns encodes protected attributes using the e transformation from
Section [2} Then, the patterns re-join the two transformed intermediate datasets to obtain the input
for the mitigator. Finally, the in-estimator pattern and the post-estimator pattern decode labels.

Our lale.lib.aif360 library implements fairness patterns as sklearn compatible meta-estimators.
A meta-estimator is a machine learning operator that takes other operators (here, the estimator) or
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Figure 1: Patterns for fairness mitigation with data preparation. Right: wrapped AIF360 mitigators.

dataset size with redaction without redaction
dataset . . . .
rows x cols accuracy disparate impact accuracy disparate impact
ricci 118 x5 83.6% +3.8% 1.008+0.229 | 83.6% £3.8% 1.008 +0.229

creditg 1,000 x 20 71.1% +1.5% 0.988+0.098 | 72.5% +1.5% 0.793+0.113
compas 5,278 x 13 66.6% £1.0% 0985+0.129 | 66.6% +1.0% 0.991 +£0.126
bank 45,211 x 16 89.0% £0.2% 0.744+0.030 | 89.0% +£0.1% 0.810£0.021
adult 48,842 x 14 79.7% £02% 0.425+0.058 | 79.7% £0.2% 0.425 %+ 0.060

Table 1: Results of mitigation with and without redaction. Results reported as mean =+ std.

sub-pipelines (here, data preparation) as an argument. Currently, lale.lib.aif360 provides 10
meta-estimators, one for each of 10 mitigators from AIF360 listed in the right column of Figure [1]
Each of them supports the same fairness information arguments illustrated in Section[2] The user
can specify the fairness information in terms of the input dataset, and the meta-estimator internally
adapts it to apply to the intermediate dataset after transformers and encoding. Here is an example:

I prep = make_union(

2 make_pipeline (Project (columns={"type": "string"}), OrdinalEncoder()),
3 Project (columns={"type": "number"}))

I pipeline = make_pipeline (

5 DisparateImpactRemover (preparation=prep, #**creditg_fairness_info),

6 LogisticRegression())
7 trained = pipeline.fit (train_X, train_y)

Lines 1-3 use sklearn’s make_union to specify a data preparation pipeline that ordinal-encodes
categorical columns while forwarding numerical columns unchanged. Lines 4-6 use sklearn’s
make_pipeline to create a two-step pipeline. The first step, on Line 5, configures a
lale.lib.aif360.DisparateImpactRemover meta-estimator with the preparation pipeline and fair-
ness information. The second step, on Line 6, is a classifier. Line 7 trains the pipeline.

Results. To showcase the impact of redaction during mitigation, we run the above pipeline with
and without the Redacting step from Figure [[]on 5 datasets. Table [T| summarizes accuracy and dis-
parate impact for ten 75%-25% fair stratified train-test splits for each dataset. Out of the 5 datasets,
redaction increased disparate impact for one and decreased it for another, while leaving the rest un-
affected. Therefore, 1ale.1ib.ai£360 provides an option to toggle redaction on or off, so users can
choose what works best for their setting.

4 CONCLUSION

This paper described two novel techniques: (i) fair stratification and (ii) fairness patterns. The
lale.lib.aif360 library implements both of these techniques in a sklearn-compatible manner. Fair
machine learning needs work on many fronts; we hope this paper offers concrete steps towards better
incorporating fairness into the end-to-end machine learning engineering workflow.
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