
Dualities in Programming Languages

Martin Hirzel Priya Nagpurkar
IBM Watson Research Center

{hirzel,pnagpurkar}@us.ibm.com

Abstract
A duality can be thought of as a pair of concepts and a mapping between their terminology, such that substituting the concept-specific
terminology turns a statement about one concept into a statement about the other. For example, in 1979, Lauer and Needham pointed out
the duality between message passing ∼= shared-memory concurrency [6]. The similarities in a duality enable cross-domain idea reuse.
But equally important are the imperfections of dualities, which often trigger original research. We claim that thinking about dualities
inspires innovation in programming languages. It is also a convenient excuse to play with fancy LATEX multicolumn formatting.

1. Row-Based Layout ∼= Column-Based Layout
Being a widely-known, simple instance of a duality in programming languages, the duality between row- and column-based object
layouts is a good introductory example. Note how most adjacent sentences below have a one-to-one correspondence.

Fi
el

d 
0 

Fi
el

d 
1 

Fi
el

d 
2 

Object 0 

Object 1 

Object 2 

Object 3 

The row-based layout stores the values from
different fields, but the same object, of a class

together as a contiguous chunk of memory.

The column-based layout stores the values from
different objects, but the same field, of a class to-
gether as a contiguous chunk of memory.

This leads to good locality if most accesses are to a
few hot objects, and other objects are cold.

This leads to good locality if most accesses are to a
few hot fields, and other fields are cold.

In the row-based layout, an object is identified by
its memory address, and a field is identified by its

offset in all objects of the class.

In the column-based layout, a field is identified by
its memory address, and an object is identified by its
index in all fields of the class.

Given an object address OA and a field offset FO,
an access to the field value dereferences (OA + FO).

Given a field address FA and an object index OI, an
access to the field value dereferences (FA + OI).

Deleting an object frees up a contiguous chunk of
memory, and a memory manager can reuse that
chunk of memory and adjacent free chunks for

allocating any new objects.

Deleting an object frees up an index in all fields
of the class, and a memory manager can reuse that
index, but only for allocating a new object of the
same class.

The last sentence, about memory management, exemplifies duality imperfections. Memory management for the row-based layout is
well-understood, and thus, it dominates in programming language implementations. The column-based layout, on the other hand, is
only chosen for niche solutions, e.g., for compression [7, 8]. Note how dualities make gratuitous self-citations look innocuous.

2. Garbage Collection ∼= Transactional Memory
Grossman identifies a somewhat more surprising duality of GC ∼= TM [3]. Since he aims mostly at well-founded reasoning, he only
claims it as an analogy; since we aim more at inspiring fun ideas and thoughts in our audience, we claim it as a duality.

Garbage collection automates some memory
management tasks that require maintaining subtle

cross-module invariants.

Transactional memory automates some synchro-
nization tasks that require maintaining subtle cross-
module invariants.

A simple memory-management solution maintains
one reference-count per object, but causes leaks

when pointers form a cycle.

A simple shared-memory consistency solution main-
tains one lock per object, but causes deadlocks when
locking forms a cycle.

Garbage collection relies on the sound
approximation of reachable memory (instead of

what memory will be used), but this is so good in
practice that people forget it is an approximation.

Transactional memory relies on the sound approxi-
mation of memory conflicts (instead of what affects
the transaction result), but this is so good in practice
that people forget it is an approximation.

GC implementations often provide weak references
as a feature for circumventing the GC regimen.

TM implementations often provide open nesting as
a feature for circumventing the TM regimen.

Garbage collection prevents all dangling-reference
errors, where an object is accessed after a manual

release.

Transactional memory prevents race conditions,
where an object is accessed without holding the right
locks, but only if critical sections are placed right.

The imperfections of garbage collection prevented
it from becoming main-stream for many years.

The imperfections of transactional memory have as
of now prevented it from becoming main-stream.

The last sentence, about technology adoption, exemplifies how a duality can extend beyond programming languages into the real world.
But it is best not to take that too far; while garbage collection in the real world keeps streets clean of trash, there is no transactional
roll-back for undoing the effect of concurrently racing into a busy intersection.

PLDI-FIT’10, June 8, 2010, Toronto, Ontario, Canada.

1



3. Incremental Computation ∼= Demand-Driven Computation
We are not aware of prior work that points out the duality of incremental computation ∼= demand-driven computation. Though both
concepts are useful in many domains, we came across them in the domain of pointer analysis. Incremental pointer analysis computes
initial points-to sets from initially-known facts. When new facts become available (for instance, due to dynamic class loading), it
incrementally updates the points-to sets [5]. Demand-driven pointer analysis computes initial points-to sets from an initial query. When
new queries are issued (for instance, due to just-in-time compilation), it updates the points-to sets in a demand-driven way [4].

In
pu

ts
 

O
ut

pu
ts

 

memo memo 

memo memo 

Incremental computation evaluates an expression
only when a new input becomes available to it.

Demand-driven computation evaluates an expres-
sion only when a new output is requested from it.

Recursively, when incremental computation pushes
output from a sub-expression to an enclosing

expression, that triggers evaluation of the enclosing
expression.

Recursively, when demand-driven computation pulls
input to an enclosing expression from a sub-
expression, that triggers evaluation of the sub-
expression.

In the absence of side-effects, incremental
computation differs from complete from-scratch

re-computation only by doing less work at a time.

In the absence of side-effects, demand-driven com-
putation differs from complete from-scratch pre-
computation only by doing less work ahead of time.

Incremental computation can be implemented by
memo-tables that remember old inputs where those

did not change.

Demand-driven computation can be implemented by
memo-tables that remember old outputs where those
did not change.

Making any algorithm incremental or demand-driven can be a challenging research problem. Of course, research itself often fits these
concepts: research is often incremental (as reviewers frequently contest) or demand-driven (as deadlines make painfully clear).

4. Other Dualities in Programming Languages
When writing a paper, two examples qualify as “general” and three examples qualify as “universal”. Here, we go beyond universal by
giving more than three examples of dualities in programming languages. Dualities abound, just waiting to be described.
Static analysis finds an over-approximation of what it is looking
for. It suffers from false positives, because it cannot tell whether

the code it is looking at will ever actually execute.

Dynamic analysis finds an under-approximation of what it is
looking for. It suffers from false negatives, because it cannot look
at code that does not actually execute in a particular run.

Reachability-based garbage collection starts at roots
(definitely-live objects), and traverses the transitive closure

(more live objects), incrementing a mark-bit [2].

Reference-counting garbage collection starts at anti-roots
(definitely-dead objects), and traverses the transitive closure
(more possibly-dead objects), decrementing a reference-count [2].

Change propagation is a technique for incremental computation
that re-runs partial computations affected by an input change [1].

Memoization is a technique for incremental computation that
re-uses partial results unaffected by an input change [1].

A language runtime system virtualizes over physical hardware,
maintaining space resources with a memory manager, while

providing protection with types.

An operating system virtualizes over physical hardware,
maintaining space resources with a paging subsystem, while
providing protection with virtual memory.

A method-based JIT compiles one method at a time. To provide
more context for optimization and reduce call overheads, it often

inlines other methods.

A trace-based JIT compiles one trace at a time. To provide more
context for optimization and reduce stitching overheads, it often
collates traces.

The detailed development of these dualities, and the discovery of more dualities, are left as an exercise to the reader.

5. Problem ∼= Solution
Research often starts from a relevant problem, and the challenge

is developing a deep solution.
Research often starts from a deep solution, and the challenge is
finding a relevant problem.

In other words, it treats the solution as a meta-problem. In other words, it seeks the problem as a meta-solution.
One way to do this is to look at a dual problem that already has a

deep solution, then adapt that solution to the problem at hand.
One way to do this is to look at a dual solution that already has a
relevant problem, then adapt that problem to the solution at hand.

If the dual domains are too similar, then it may be too obvious
how a solution from one applies in the other.

If the dual domains are too similar, then it may be too obvious how
a problem from one appears in the other.

Therefore, a duality that is not quite perfect is actually desirable
from a research perspective, because working around the

imperfections lends novelty to the adapted solution.

Therefore, a duality that is not quite perfect is actually desirable
from a research perspective, because working around the imper-
fections lends novelty to the adapted problem.

References
[1] Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper,

and Kanat Tangwongsan. An experimental analysis of self-adjusting
computation. Transactions on Programming Languages and Systems
(TOPLAS), 2009.

[2] David Bacon, Perry Cheng, and V.T. Rajan. A unified theory of
garbage collection. In Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), 2004.

[3] Dan Grossman. The transactional memory / garbage collection anal-
ogy. In Essay Track of Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), 2007.

[4] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analy-
sis. In Programming Language Design and Implementation (PLDI),

2001.

[5] Martin Hirzel, Daniel von Dincklage, Amer Diwan, and Michael
Hind. Fast online pointer analysis. Transactions on Programming
Languages and Systems (TOPLAS), 2007.

[6] Hugh C. Lauer and Roger M. Needham. On the duality of operating
system structures. Operating Systems Review, 1979.

[7] Jennifer B. Sartor, Martin Hirzel, and Kathryn S. McKinley. No bit
left behind: The limits of heap data compression. In International
Symposium on Memory Management (ISMM), 2008.

[8] Ben L. Titzer and Jens Palsberg. Vertical object layout and compres-
sion for fixed heaps. In Compilers, Architectures, and Synthesis for
Embedded Systems (CASES), 2007.

2


