
Jinn: Synthesizing Dynamic Bug Detectors
for Foreign Language Interfaces

Byeongcheol Lee† Ben Wiedermann† Martin Hirzel‡ Robert Grimm§ Kathryn S. McKinley†
†University of Texas at Austin ‡IBM Watson Research Center §New York University

{bclee,ben,mckinley}@cs.utexas.edu hirzel@us.ibm.com rgrimm@cs.nyu.edu

Abstract
Programming language specifications mandate static and dynamic
analyses to preclude syntactic and semantic errors. Although indi-
vidual languages are usually well-specified, composing languages
is not, and this poor specification is a source of many errors in mul-
tilingual programs. For example, virtually all Java programs com-
pose Java and C using the Java Native Interface (JNI). Since JNI is
informally specified, developers have difficulty using it correctly,
and current Java compilers and virtual machines (VMs) inconsis-
tently check only a subset of JNI constraints.

This paper’s most significant contribution is to show how to
synthesize dynamic analyses from state machines to detect foreign
function interface (FFI) violations. We identify three classes of FFI
constraints encoded by eleven state machines that capture thou-
sands of JNI and Python/C FFI rules. We use a mapping function
to specify which state machines, transitions, and program entities
(threads, objects, references) to check at each FFI call and return.
From this function, we synthesize a context-specific dynamic anal-
ysis to find FFI bugs. We build bug detection tools for JNI and
Python/C using this approach. For JNI, we dynamically and trans-
parently interpose the analysis on Java and C language transitions
through the JVM tools interface. The resulting tool, called Jinn, is
compiler and virtual machine independent. It detects and diagnoses
a wide variety of FFI bugs that other tools miss. This approach
greatly reduces the annotation burden by exploiting common FFI
constraints: whereas the generated Jinn code is 22,000+ lines, we
wrote only 1,400 lines of state machine and mapping code. Over-
all, this paper lays the foundation for a more principled approach
to developing correct multilingual software and a more concise and
automated approach to FFI specification.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Assertion Checkers, Relia-
bility; D.2.5 [Software Engineering]: Testing and Debugging—
Debugging Aids; D.3.4 [Programming Languages]: Processors—
Run-time Environments

General Terms Design, Languages, Reliability, Verification

Keywords Multilingual Programs, Foreign Function Interfaces
(FFI), Java Native Interface (JNI), Python/C, Dynamic Analysis,
FFI Bugs, Specification, Specification Generation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019-3/10/06. . . $10.00

1. Introduction
Programming language designers spend years precisely specify-
ing languages [12, 15, 24]. Likewise, language implementors ex-
ert considerable effort enforcing specifications with static and dy-
namic checks. Many developers, however, compose languages to
reuse legacy code and leverage the languages best suited to their
needs. Such multilingual programs require additional specification
due to syntactic and semantic language differences. Well-designed
and well-specified foreign function interfaces (FFIs) include recent
integrated language designs [13, 25] and language binding synthe-
sizers [5, 22], but programmers have not yet widely adopted them.

FFIs currently in wide use, such as the Java Native Interface
(JNI) and Python/C, are large, under-specified, and hard to use cor-
rectly. They have hundreds of API calls and complex usage rules.
For example, JNI has 229 API calls and 1,500+ rules, although it
is well-encapsulated and portable [19]. This complexity arises due
to language impedance mismatches in object models, type systems,
memory management, and exceptions.

Example JNI calls include: look up a class by name, specified as
a string, and return its class descriptor; look up a method by class
descriptor and signature, again specified as a string, and return a
method descriptor; and invoke a method by its descriptor. Example
JNI constraints include: when a program calls from C to Java, the
actuals must match the formals’ declared types; also when calling
from C to Java, a program must not have a pending Java exception;
and a program must issue an extra request to maintain more than
16 local cross-language references.

While language differences easily lead to large and complex
FFIs, they also make complete static enforcement of FFI usage
rules impossible. For example, JNI’s use of string arguments to
describe class names and method signatures cleanly abstracts over
the underlying JVM and its implementation. Unfortunately, these
strings prevent standard static type checking, and even advanced
interprocedural static analysis is incomplete [10, 28]. Similarly,
complete static checking of pending exceptions and the count of
local references is impossible.

Overall, voluminous, complex, and context-dependent FFI rules
lead to three problems. (1) Some rules are statically undecidable
and require dynamic validation. (2) Language implementations are
inconsistent and often diverge when they do dynamically enforce
a rule, for example, by signaling an exception versus terminating a
program. (3) Writing correct FFI code that follows all rules is hard
for programmers. As a direct consequence of these three problems,
real-world multilingual programs are full of FFI bugs [10, 11, 16,
17, 18, 26, 27].

This paper significantly improves on this sorry state by present-
ing a systematic and practical approach to dynamic FFI validation.
We first demonstrate that JNI’s 1,500+ usage rules boil down to
three classes of rules:

36

Default Behavior Language Static Dynamic Analysis
JNI Pitfall HotSpot J9 Design Analysis HotSpot J9 Jinn

1. Error checking running crash [13], [25] [16], [18] warning error exception
2. Invalid arguments to JNI functions running crash [13], [25] [11], [27] running crash exception
3. Confusing jclass with jobject crash crash [13], [25] [11] error error exception
6. Confusing IDs with references crash crash [13] [11] error error exception
8. Terminating Unicode strings running NPE [13], [25] running NPE running/NPE
9. Violating access control rules NPE NPE [13], [25] NPE NPE exception

11. Retaining virtual machine resources leak leak [13], [25] [16] running warning exception
12. Excessive local reference creation leak leak running warning exception
13. Using invalid local references crash crash [13] [16] error error exception
14. Using the JNIEnv across threads running crash [13] error crash exception
16. Bad critical region deadlock deadlock [13] [16] warning error exception

Table 1. JNI pitfalls [19]. Running: continues to execute in spite of undefined JVM state. Crash: aborts without diagnosis. Warning: prints
diagnosis and continues. Error: prints diagnosis and aborts. NPE: raises a null pointer exception. Exception: raises a Jinn JNI exception.

JVM state constraints restrict JVM thread context, critical sec-
tion state, and/or exception state.

Type constraints restrict parameter types, values (e.g., not NULL),
and semantics (e.g., no writing to final fields).

Resource constraints restrict the number of multilingual pointers
and resource lifetimes, e.g., locks and memory.

Furthermore, eleven state machines express all these rules. Com-
pared to Liang’s specification, this concision is unexpected [19].

Using the state machines, we present a new way to synthesize
context-sensitive dynamic analysis that precisely identifies FFI vi-
olations. We parameterize each state machine by program entities:
threads, references, and objects. The synthesizer attaches state ma-
chines to JNI parameters, return values, and threads. For JNI analy-
sis, we observe it is sufficient to transition state machines and check
constraints at language boundaries. Consequently, the synthesizer
inserts wrapper functions with generated code before and after FFI
calls. These functions transition the state machines and dynami-
cally verify the FFI specification. Whereas we wrote about 1,400
non-comment lines of state machine and mapping code for JNI,
our tool generates 22,000+ lines, demonstrating that this approach
greatly reduces the annotation burden for FFI specification.

We dynamically and transparently inject the analysis into user
code using language interposition. We implement interposition
with vendor-neutral JVM interfaces in a tool called Jinn. The JVM
loads Jinn together with the program during start-up, and then Jinn
interposes on all Java and C transitions. To the JVM, Jinn looks
like normal user code, whereas to user code Jinn is invisible. Jinn
checks JNI constraints at every language transition and diagnoses
bugs when the program violates a constraint.

Jinn is more practical than the state-of-the-art for finding JNI
bugs, in part because it does not depend on the JVM or C compiler.
The experimental results section shows that Jinn works with un-
modified programs and VMs, incurs only a modest overhead, and
that programmers can examine the full program state when Jinn de-
tects a bug. Table 1 compares Jinn to prior work qualitatively and
quantitatively. It shows that prior dynamic tools are incomplete. For
the subset of errors that static analysis finds, they are preferable
since Jinn only finds exercised bugs. However, static tools cannot
conclusively identify many dynamic resource bugs and type errors
that Jinn finds with no false positives.

We explore the generality of our FFI specification and approach
using the Python/C FFI. We find that Python/C requires the same
three rule classes and similar state machines. Just as for Java and
C, the Python/C rules reflect fundamental language semantic mis-
matches. Whereas C relies on manual resource management and
is weakly typed, Python automates memory reclamation, provides

a stronger typing discipline (in this case dynamic), enforces well-
formed resource access, and automates error propagation. We im-
plement and evaluate a Python/C bug detector for a few unique
rules, providing further evidence for the generality of our approach.

In summary, the contributions of this paper include:

• Synthesis of dynamic FFI analysis from state machines.
• The first rigorous state machine specification of JNI based on

its informal specification [19].
• Jinn, the most practical JNI bug detector, which is generated by

our synthesizer.
• A demonstration of Jinn on JNI microbenchmarks and on real-

world programs.
• A demonstration of the generality of this approach for Python/C.

We believe that by identifying and specifying the three classes
of FFI constraints, this paper helps lay a foundation for a more
principled approach to developing correct multilingual software,
foreign function interfaces, and perhaps other interfaces.

2. Motivation and Related Work
This section shows that JNI has inconsistent implementations,
which likely stems from poor specification and certainly compli-
cates portable JNI programming. It then quantitatively and qualita-
tively compares Jinn to prior work that uses language design, static
analysis, and dynamic analysis to diagnose FFI bugs. Finally, it
reviews other work on synthesizing analyses from state machines.

FFI programming is challenging because programmers must
reason about multiple languages and their semantic interactions.
For example, Chapter 10 of the JNI manual identifies fifteen pit-
falls [19]. We list the most serious of these in Table 1, using Liang’s
numbering scheme, and include “bad critical region” from Chap-
ter 3.2.5 as a 16th pitfall. We created small JNI programs to exercise
each pitfall and executed them with HotSpot and J9. Columns two
and three show that JNI mistakes cause a wide variety of crashes
and silent corruption. The two JVMs behave differently on four of
the pitfalls. Columns six and seven show the JVMs are not much
better with built-in JNI checking (turned on by the -Xcheck:jni

command-line flag).
Table 1 also compares language designs, static analysis tools,

and our Jinn implementation. An empty entry indicates that we
are not aware of a language feature or static analysis that handles
this pitfall. We fill in entries based on our reading of the litera-
ture [11, 13, 16, 18, 25, 27]. We did not execute the static tools.
Language designs cover the widest class of JNI bugs [13, 25], but

37

new languages require developers to rewrite their code. Static anal-
ysis catches some, but not all, pitfalls. For example, statically en-
forcing non-nullness without language support (e.g., a @NonNull
annotation) is undecidable. At the same time, dynamic and static
FFI analysis are complementary. Dynamic analysis misses unexer-
cised bugs, whereas static analysis reports false positives.

The last column shows that Jinn detects all but one of these
serious and common errors. Pitfall 8 depends on how C code
uses character buffers and requires analysis or instrumentation of
a program’s entire C code, which is beyond our more targeted
dynamic analysis. Consequently, the program exhibits the same
behavior as a production run without Jinn, i.e., it either keeps on
running (HotSpot) or signals a null pointer exception (J9). When
Jinn detects any of the other errors, it throws a JNI failure exception
and stops execution to help programmers debug. Jinn works out-
of-the-box on unmodified JNI, which makes it practical for use on
existing programs. It systematically finds more errors than all the
other approaches.

2.1 Language Approaches to FFI Safety
Two language designs propose to replace the JNI. SafeJNI [25]
combines Java with CCured [21], and Jeannie safely and directly
nests Java and C code into each other using quasi-quoting [13].
Both SafeJNI and Jeannie define their language semantics such that
static checks catch many errors and both add dynamic checks in
translated code for other errors. From a purist perspective, prevent-
ing FFI bugs while writing code is more economical than spending
time to fix them after the fact. Another approach generates language
bindings for annotated C and C++ header files [5, 14]. Ravitch et
al. reduce the annotations required for generating idiomatic bind-
ings [22]. Jinn is more practical than these approaches, because it
does not require developers to rewrite or annotate their code in a
different language.

2.2 Static FFI Bug Checkers
A variety of static analyses verify foreign function interfaces [10,
11, 16, 18, 26, 27]. All static FFI analysis approaches suffer from
false positives because the specification includes dynamic proper-
ties, such as non-null reference parameters, valid Java class and
method names in string parameters, and less than 16 local refer-
ences. Static analysis cannot typically guarantee these properties.
For instance, J-Saffire reports false positives and warnings [11];
Tan et al. report a false positive rate of 15.4% [18]; and BEAM
reports a false positive, while missing the bug in Section 3.1. In
contrast, Jinn never generates false positives, but only finds bugs
actually triggered during program execution. Furthermore, whereas
prior static analyses for JNI require the native library to be written
in C and available in source form, Jinn is neither restricted to C
nor does it require source code access. For instance, Jinn found FFI
bugs in the Subversion Java binding written in C++. In summary,
static analysis finds a subset of FFI bugs without executing the pro-
gram, but suffers from false positives. In comparison, Jinn finds
more FFI bugs, but only when they are exercised; suffers from no
false positives; and requires no source code access.

2.3 Dynamic FFI Bug Checkers
Some JVMs provide built-in dynamic JNI bug checkers, enabled
by the -Xcheck:jni command-line flag. While convenient, these
error checkers only cover limited classes of bugs, and JVMs imple-
ment them inconsistently. NaturalBridge’s BulletTrain ahead-of-
time Java compiler performed several ad-hoc JNI integrity checks
on language transitions [20]. The Blink debugger provides JNI bug
checkers that work consistently for different JVMs, but its coverage
is limited to two bugs: validating exception state and nullness con-

straints [17]. These kinds of checks are easy to implement, because
they require no preparatory bookkeeping.

Jinn covers a larger class of JNI bugs, works consistently with
any JVM that implements the JVM Tools Interface (JVMTI), and
explicitly throws an exception at the point of failure. Exceptions
provide a principled and language supported approach to software
quality, for example, enabling a GUI-based program to report the
bug in a dialog instead of relying on the user to sift through the
system log. Furthermore, when the exception’s error message and
calling context do not suffice to identify the cause of the failure,
programmers can rerun the program with both Jinn and a Java de-
bugger. The debugger then catches the exception, and the program-
mer can access the detailed program state at the point of failure.

2.4 State Machine Specifications
Several programmable bug checkers take state machine specifi-
cations, and report errors when state machines reach error states.
For instance, Metal [9] and SLIC [4] are languages for specifying
state machines that are then used to find bugs through static anal-
ysis. Dwyer et al. survey state-machine driven static analyses [8].
On the dynamic side, Allan et al. turn FSMs into dynamic anal-
yses by using aspect-oriented programming [2]; Chen and Rosu
synthesize dynamic analyses from a variety of specification for-
malisms, including FSMs [7]; and Arnold et al. implement FSMs
for bug detection in a JVM, controlling the runtime overhead by
sampling [3]. While in principle these specification languages are
expressive enough to describe many FFI constraints, in practice
none of them address the unique challenges of multi-lingual soft-
ware. Also, unlike Jinn, most of them require source code access.

3. An Example JNI Bug and Detector
This section illustrates and motivates our approach using an exam-
ple. It describes some JNI background, an example JNI bug, and a
state machine that captures this bug. It then describes how to use
this state machine to dynamically detect the example bug on lan-
guage transition boundaries at JNI calls and returns. We explain
how our system attaches state machines to program entities, i.e.,
objects, individual references, and threads, and how it transitions
entity states on JNI calls and returns, i.e., through explicitly passed
arguments and results as well as the implicit threads.

The JNI is designed to hide JVM implementation details from
native code, while also supporting high-performance native code.
Hiding JVM details from C code makes multilingual Java and C
programs portable across JVMs and gives JVM vendors flexibility
in memory layout and optimizations. However, achieving portabil-
ity together with high performance leads to 229 API functions and
over 1,500 usage rules. For instance, JNI has functions for calling
Java methods, accessing fields of Java objects, obtaining a pointer
into a Java array, and many more. To hide JVM implementation de-
tails, these functions go through an indirection, such as method and
field IDs, or require the garbage collector to pin arrays. Developers
using JNI avoid indirection overhead on the C side by, for example,
caching method and field IDs, and pinning resources. At the same
time, JVM developers avoid implementation complexity by requir-
ing explicit calls to mark references as global and to release pinned
objects.

3.1 Example FFI Bug
Figure 1 shows a simplified version of an FFI bug from the
GNOME project’s Bugzilla database (Bug 576111) [29]. GNOME
is a graphical user interface that makes heavy use of several C
libraries. In the example, Line 1 defines a C function Java Call-

38

1. JNIEXPORT void JNICALL Java Callback bind(JNIEnv *env,
2. jclass clazz, jclass receiver, jstring name, jstring desc)
3. { /* Register an event call-back to a Java listener. */
4. EventCallBack* cb = create event callback();
5. cb->handler = callback;
6. cb->receiver = receiver ; /* receiver is a local reference.*/
7. cb->mid = find java method(env, receiver, name, desc);
8. if (cb->mid != NULL) register callback(cb);
9. else destroy callback(cb);

10. } /* receiver is a dead reference. */

11. static void callback(EventCallBack* cb, Event* event) {
12. JNIEnv* env = find env pointer from current thread();
13. jvalue* jargs = marshal event(cb, env, event);
14. /* BUG: dereference of now invalid cb->receiver. */
15. (*env)->CallStaticVoidMethodA(
16. env, cb->receiver, cb->mid, jargs);
17. }

Figure 1. JNI invalid local reference error in a call-back routine
from GNOME (Bug 576111) [29].

Error:
Dangling

Before
Acquire Acquired Released

(line 1) (line 10) (line 16)
acquire release use

State Language Triggering
transition transition functions
Acquire Call:Java→C Native method taking reference

e.g., Java Callback bind

Return:Java→C JNI function returning reference
e.g., GetObjectField

Release Return:Java→C DeleteLocalRef

Return:C→Java Any native method
e.g., Java Callback bind

Use Call:C→Java JNI function taking reference
e.g., CallStaticVoidMethodA

Return:C→Java Native method returning reference
e.g., Class.getClassContext

Figure 2. A resource tracking state machine for local references
and the mapping from state transitions to Java/C language transi-
tions (calls and returns) to dynamically detect the bug in Figure 1.

back bind that implements a Java native method using the JNI. An
example call from Java to C takes the following form:

Callback.bind(receiverClass, “methodName”, “description”);

This call invokes the C function Java Callback bind, which registers
a new C heap object cb storing the receiver class and method
name passed as parameters from Java. The C function callback
referenced on Line 5 is defined starting at Line 11. It uses the cb
parameter object to call from C code to the specified Java method.
Line 15 shows this call from C to Java. It uses a JNI API function
CallStaticVoidMethodA, which resides in a struct referenced by the
JNI environment pointer env.

This code is buggy. The parameter receiver in Line 2 is a local
reference. A local reference in JNI is only valid until the enclosing
function returns, because, otherwise, the garbage collector would
need to communicate with the C runtime about live references.
Thus, cb->receiver becomes invalid when the function returns at
Line 10. But Line 6 stores receiver in a heap object, letting it
escape. When Line 16 retrieves receiver from the heap and uses it
as a parameter to CallStaticVoidMethodA, it is an invalid dangling

1. void wrapped Java Callback bind(JNIEnv *env,
2. jclass clazz, jclass receiver, jstring name, jstring desc)
3. {
4. /* Instrument Call:Java→C for Acquire state transition. */
5. jobject set refs = jinn acquire thread local jobject set();
6. if (clazz != NULL) { jinn refs acquire(refs, clazz); }
7. if (receiver != NULL) { jinn refs acquire(refs, receiver); }
8. if (name != NULL) { jinn refs acquire(refs, name); }
9. if (desc != NULL) { jinn refs acquire(refs, desc); }

10. /* Call the wrapped native method. */
11. Java Callback bind(env, clazz, receiver, name, desc);

12. /* Instr. Return:C→Java for Release state transition. */
13. jinn release thread local jobject set(refs);
14. }

Figure 3. Wrapper for function Java Callback bind from Figure 1
with instrumentation for Acquire and Release state transitions.

1. void wrapped CallStaticVoidMethodA(JNIEnv *env,
2. jclass clazz, jmethodID mid, jvalue *args)
3. {
4. /* Instrument Call:C→Java for Use state transition. */
5. jobject set refs = jinn get thread local jobject set();
6. if ((clazz != NULL) && !jinn refs contains(refs, clazz)) {
7. /* Raise a JNI exception. */
8. return jinn throw JNIException(env, ”Error: dangling”);
9. }

10. /* Call the wrapped JNI function. */
11. CallStaticVoidMethodA(env, clazz, mid, args);
12. }

Figure 4. Wrapper for function CallStaticVoidMethodA from Fig-
ure 1 Line 15 with instrumentation for Use state transition.

reference, and the JVM’s garbage collector may have either moved
the object or reclaimed it and reused the corresponding memory.

The JNI specification merely says that this reference is invalid
and leaves the consequences up to the vendor’s Java implementa-
tion [19]. This kind of bug is difficult to find with static analysis,
because it involves complex data flow through the heap, and com-
plex control flow through disjoint indirect calls and returns across
languages. For instance, the syntax analysis in J-BEAM [16] misses
this bug. The other static analyses in Table 1 can generate warnings
on all such stores (e.g., at Line 6), but will also generate thousands
of false alarms.

3.2 Example FFI Bug Detector
This section shows how to identify this bug dynamically using
a state machine. Figure 2 shows a simplified state machine that
enforces local usage rules, applied to the receiver parameter at
runtime. On entry to the method (Figure 1: Line 1), the state
of receiver transitions from Before Acquire to Acquired. When the
method returns back to Java (Line 10), the state transitions from
Acquired to Released. Finally, the call from C to Java at Line 16
uses the reference cb->receiver, triggering a transition to the Error:
Dangling state and thus detecting the bug.

The table in Figure 2 shows more generally where state tran-
sitions occur. For example, dynamic analysis must execute the
Acquire transition for all reference parameters on all calls from
Java to C. On return from C to Java, dynamic analysis must ex-
ecute the Release transition for all local references. To instrument
both calls and returns, we wrap these calls. For example, our dy-
namic checker replaces Java Callback bind with the wrapper func-
tion wrapped Java Callback bind shown in Figure 3. The instrumen-
tation attaches state machines to entities (threads, parameters, and
return values) by using thread-local storage (refs).

39

We also instrument the JNI functions that implement the C API
for interacting with the Java virtual machine. For example, the Use
transition in the table happens on calls from C to Java if the callee is
a JNI function taking a reference, such as CallStaticVoidMethodA.
Such a use is an error if the reference is in the Released state.
Figure 4 shows the wrapper with the instrumentation.

For illustration purposes, these example wrappers omit other
checks our system performs. For example, JNI limits the number of
available local references, so there is another possible error state for
overflow. Developers may manually manage the number of avail-
able local references with the JNI functions PushLocalFrame and
PopLocalFrame and the corresponding dynamic analysis requires
instrumentation to count references. The figures also omit checks
for thread state, exception state, and parameter nullness. Section 5
explains all the constraints we check and their encoding in state
machines.

4. Dynamic Analysis Synthesis
We use state machine specifications like the one in Figure 2 to
synthesize a dynamic analysis. Each state machine specification
describes state transitions, which are triggered by language tran-
sitions. Their cross-product yields thousands of checks in the
dynamic analysis. For example, before executing the JNI call in
Line 15 of Figure 1, the analysis enforces at least eight constraints:

• The Java interface pointer, env, matches the current C thread.
• The current JVM thread does not have pending exceptions.
• The current JVM thread did not disable GC to directly access

Java objects including arrays.
• cb->mid is not NULL.
• cb->receiver is not NULL.
• cb->receiver is not a dangling JNI reference.
• cb->receiver is a reference to a Java Class object.
• The formal arguments of cb->mid are compatible with the ac-

tual arguments in cb->receiver and jargs.

Hand-coding all these constraints would be tedious and error-
prone. Instead, we specify state machines as follows.

Defining state machine states and transitions: Each FFI con-
straint is defined by a state machine. The individual states are
encoded as C data structures and the transitions as C code,
which also checks whether a transition has, in fact, been trig-
gered. For example, the if-statement in Line 6 of Figure 4 is
a transition check for determining whether the entity is cur-
rently in the Released state and should therefore transition to
the Error: Dangling state. Each state machine specification Mi

has a set of state transitions Mi.stateTransitions.

Mapping state transitions to language transitions: Each speci-
fication has a function Mi.languageTransitionsFor that maps
state transitions to language transitions. The synthesizer con-
sults this mapping to inject context-specific instrumentation
into wrapper functions. For example, Figure 2 illustrates a map-
ping. Figures 3 and 4 show generated wrappers. Each state
transition sa→sb may occur at a set

L = Mi.languageTransitionsFor(sa→sb)

of language transitions. Each language transition ` in this set is
a record containing the fields function, direction (Call or Return),
and entities (threads, parameters, and return values).

Applying state machines to entities: At runtime, the wrappers at-
tach state machines to entities and then transition the entity-
specific state machine(s) based on context, encoding the state
machine states in thread-local storage. For example, the wrap-
per in Figure 3 associates a state machine with the receiver ref-

Algorithm 1 Input: state machine specifications M1, . . . , Mn.
Output: FFI wrapper functions instrumented with dynamic checker.

1: for each state machine specification Mi ∈ {M1, . . . , Mn} do
2: for each state transition sa→sb ∈ Mi.stateTransitions do
3: let L = Mi.languageTransitionsFor(sa→sb)
4: for each language transition ` ∈ L do
5: let w be the wrapper for `.function
6: add the following synthesized code to the start or

end of w, depending on whether `.direction is Call or
Return:

7: for each entity e ∈ `.entities do
8: if e satisfies the transition check for sa→sb then
9: modify the state machine encoding to record the

transition of e from sa to sb.

analysis driver
state machine
specifications

Jinn Synthesizer

custom
exception

libjinn.so

Figure 5. Structure of Jinn Synthesis.

erence, transitions its state to Acquired, and encodes this infor-
mation by adding the reference to the thread-local list refs. As
already mentioned above, the analysis developer specifies state
machine encodings as a set of mutable data structures and func-
tions that manipulate those structures.

The state machine specifications consisting of these three compo-
nents (state transitions, mappings from state transitions to language
transitions, and state machine encodings) serve as input to Algo-
rithm 1. The algorithm computes the cross product of state transi-
tions and FFI functions, and then generates a wrapper for each FFI
function that performs the appropriate state transformations and er-
ror checking. This functionality is the core of the Jinn Synthesizer
component in Figure 5.

The synthesizer takes two additional inputs: an analysis driver
and a custom exception. The output of the synthesizer is Jinn—a
shared object file that the JVM dynamically loads using the JVM
tools interface (JVMTI). The analysis driver initializes the state ma-
chine encodings and dynamically injects the generated, wrapped
FFI functions into a running program. The custom exception de-
fines how the dynamic analysis reports errors. Jinn monitors run-
time events and program state. When Jinn detects a bug, it throws
the custom exception. If the exception is not handled, the JVM
prints a message with the JNI constraint violation and the faulting
JNI function call. If Jinn is invoked within a debugger, the program-
mer can inspect the call chain, program state, and other potential
causes of the failure.

We now turn our attention to specifying the state machines.

5. JNI Constraint Classification
This section describes how three classes of constraints summarize
all JNI constraints and how to encode these constraints in eleven
state machines. These JNI constraints encompass 1,500+ rules from
the JNI manual. As far as we are aware, no other work specifies the
JNI FFI, other FFIs, or any other API so concisely.

40

Constraint Count Description
JVM state constraints

JNIEnv* state 229 Current thread matches
JNIEnv* thread

Exception state 209 No exception pending for
sensitive call

Critical-section state 225 No critical section
Type constraints

Fixed typing 157 Parameter matches API
function signature

Entity-specific typing 131 Parameter matches Java
entity signature

Access control 18 Written field is non-final
Nullness 416 Parameter is not null

Resource constraints
Pinned or copied 12 No leak or double-free
string or array
Monitor 1 No leak
Global or weak global 247 No leak or dangling refer-
reference ence
Local reference 284 No overflow or dangling

reference
Table 2. Classification and number of JNI constraints.

We classify JNI constraints into three classes. (1) JVM state
constraints ensure that the JVM is in the right state before calls
from C. (2) Type constraints ensure that C passes valid arguments
to Java. (3) Resource constraints ensure that C code manages JNI
resources correctly. Table 2 summarizes these constraints and in-
dicates the number of times Jinn’s language interposition agent
checks them. For example, the “JNIEnv* state” constraint appears
229 times, because Jinn checks its validity in all 229 JNI functions.

For each of the three classes, Figures 6, 7, and 8 summarize
the state-machine representations, the entities to which they apply,
and the errors they find. The remainder of this section describes in
detail each constraint, its state machine representation, and how it
detects errors.

5.1 JVM State Constraints
To enter the JVM through any JNI function, C code must satisfy
three conditions. (1) The JNI environment pointer JNIEnv* and the
caller belong to the same thread. (2) Either no exception is pending,
or the callee is exception-oblivious. (3) Either no critical region is
active, or the callee is critical-region oblivious. Figures 6 shows the
state machines for these three types of JVM constraints.

JNIEnv* state constraint. All calls from Java to C implicitly pass
a pointer to the JNIEnv structure, which specifies the JVM-internal
and thread-local state. All calls from C to Java must explicitly pass
the correct pointer when invoking a JNI function. When the pro-
gram creates a native thread, Jinn learns about the JNIEnv* pointer
from the JVM, and retrieves the thread ID from the operating sys-
tem. It enters both into the state machine encoding, which is a map
from thread ID to JNIEnv* pointer. Later, when a native thread calls
any of the 229 JNI functions, Jinn looks up the expected JNIEnv*
from the state machine encoding and compares it to the actual pa-
rameter of the call, reporting an error if the pointers differ.

Exception state constraints. When Java code throws an excep-
tion and returns to C, the C code does not automatically transfer
control to the nearest exception handler. The program must explic-
itly consume or propagate the pending exception. This constraint

JNIEnv* state

Observed entity: A thread.
Error(s) discovered: JNIEnv* mismatch.
State machine encoding: Map from thread IDs to their expected

JNIEnv* pointers.
State machine diagram: Trivial, omitted for brevity.

State Language Triggering
transition transition functions
JNI call Call:C→Java Any JNI function

e.g., CallVoidMethod

Exception state

Observed entity: A thread.
Error(s) discovered: Unhandled Java exception.
State machine encoding: Internal JVM structures.
State machine diagram:

Exception
free

Exception
pending

if exception pending
JNI return

clear
or

return to JavaJNI return

exception-
sensitive

call

exception-
oblivious

call

Error

State Language Triggering
transition transition functions

JNI return Return:Java→C Any JNI function
e.g., CallVoidMethod

Clear or Return:Java→C ExceptionClear
return to Java Return:C→Java Return from any native method
Exception- Call:C→Java Small set of clean-up functions
oblivious call e.g., ReleaseStringChars

Exception- Call:C→Java All other JNI functions
sensitive call e.g., GetStringChars

Critical-section state

Observed entity: A thread.
Error(s) discovered: Critical section violation.
State machine encoding: Map from a critical resource Ri to the num-

ber of times a given thread has acquired that resource.
State machine diagram:

Not in
critical
section

In
critical
section

acquire(Ri)

release(Ri)

acquire(Ri)

release(Ri)
if ∑j(|Rj|) = 1

if ∑j(|Rj|) > 1

critical-section-
sensitive

call
Error

State Language Triggering
transition transition Functions

Acquire Return:Java→C GetStringCritical or
GetPrimitiveArrayCritical

Release Return:Java→C ReleaseStringCritical or
ReleasePrimitiveArrayCritical

Critical-section Call:C→Java All other JNI functions
sensitive call e.g., CallVoidMethod

Figure 6. State machines for JVM state constraints.

41

Fixed typing

Observed entity: A reference parameter.
Error(s) discovered: Type mismatch between actual and formal

parameter to JNI function.
State machine encoding: Map from entity IDs to their signatures.
State machine diagram: Trivial, omitted for brevity.

State Language Triggering
transition transition functions
JNI call Call:C→Java JNI function defining a parameter

with a fixed type, e.g., clazz
parameter to CallStaticVoidMethod

Entity-specific typing

Observed entity: A pair of ID parameters.
Error(s) discovered: Type mismatch for Java field assignment or

between actual and formal of a Java method.
State machine encoding: Map from entity IDs to their signatures.
State machine diagram: Trivial, omitted for brevity.

State Language Triggering
transition transition functions
JNI call Call: JNI function defining parameters

C→Java with interrelated types, e.g., clazz
and method in CallStaticVoidMethod

Access control

Observed entity: A field ID.
Error(s) discovered: Assignment to final field.
State machine encoding: Map from field IDs to their modifiers.
State machine diagram: Trivial, omitted for brevity.

State Language Triggering
transition transition functions
JNI call Call:C→Java Set<Type>Field or

SetStatic<Type>Field

Nullness

Observed entity: A reference parameter.
Error(s) discovered: Unexpected null value passed to JNI function.
State machine encoding: None.
State machine diagram: Trivial, omitted for brevity.

State Language Triggering
transition transition functions
JNI call Call:C→Java JNI function defining a parameter

that must not be null, e.g., method
parameter to CallStaticVoidMethod

Figure 7. State machines for type constraints.

results from the semantic mismatch in how C and Java handle ex-
ceptions. Any JNI call may lead to Java code that throws an ex-
ception, which causes a transition to the “exception pending” state
when the JNI call returns. The JVM internally records this state
transition for each Java thread, so Jinn does not need to interpose
on JNI returns to track exception states, and can instead simply rely
on the JVM-internal data structure for its state machine encoding.
If the program returns from a JNI call and an exception is pending,
the program must consume or propagate the exception. To do so,
the programmer may first select from one of 20 exception-oblivious
JNI functions that query the exception state and release JVM re-
sources, before calling JNI’s ExceptionClear function. If the pro-
grammer calls any of the remaining exception-sensitive JNI func-
tions while an exception is pending, Jinn intercedes and wraps the
pending exception in an error report to the user.

Critical-section state constraints. JNI defines the phrase “JNI
critical section” to describe a piece of C code that has direct access
to a Java string or array, during which the JVM may take drastic
measures such as disabling the garbage collector. A critical sec-
tion starts with GetStringCritical or GetPrimitiveArrayCritical, and
ends with the matching ReleaseStringCritical or ReleasePrimitive-
ArrayCritical. C code should hold these resources only for a short
time. To prevent deadlock, C code must not interact with the JVM
other than to acquire or release critical resources. In other words,
during a critical section, C code must only call one of the four
functions that get/release arrays/strings. We call these four func-
tions critical-section insensitive, and all the remaining JNI func-
tions critical-section sensitive. Jinn encodes the state machines by
keeping, for each thread, a tally of the number of times that thread
has acquired a specific critical resource. Jinn instruments the four
“get” and “release” calls to manage these counts. Each acquisition
of a resource Ri must be matched by a corresponding release. When
the list of critical resources for a thread toggles between empty
and non-empty, the critical-section state machine transitions corre-
spondingly. Jinn interposes on all the 225 critical-section sensitive

functions to verify that the thread currently maintains no critical
resources and that releases are well-matched.

Critical sections are tricky because they prohibit calls to most
JNI functions, including those that Jinn uses for its own error
checking. For example, Jinn does not check whether the argument
to ReleaseStringCritical is in fact a Java string, since that would
require calling IsAssignableFrom from within a critical region. At
the same time, C code cannot exercise much JNI functionality
while in a critical section and can legally call only four functions—
to acquire more critical sections and to release them again.

5.2 Type Constraints
When Java code calls a Java method, the compiler and JVM check
type constraints on the parameters. But when C code calls a Java
method, the compiler and JVM do not check type constraints,
and type violations cause unspecified JVM behavior. For example,
given the Java code

Collections.sort(ls, cmp);

the Java compiler checks that class Collections has a static method
sort, and that the actual parameters ls and cmp conform to the
formal parameters of sort. Consider the equivalent code expressed
with Java reflection.

Class clazz = Collections.class;
Method method =

clazz.getMethod(“sort”, List.class, Comparator.class);
method.invoke(Collections.class, ls, cmp);

The Java compiler cannot statically verify its safety, but if the
program is unsafe at runtime, then the JVM throws an exception.
In JNI, this code is expressed as follows.

jclass clazz = (*env)->FindClass(env, “java/util/Collections”);
jmethodID method = (*env)->GetStaticMethodID(env, clazz,

“sort”, “(Ljava/lang/List;Ljava/util/Comparator;)V”);
(*env)->CallStaticVoidMethod(env, clazz, method, ls, cmp);

Since the C code expresses Java type information in strings, stan-
dard static type checking cannot resolve the types and even sophis-

42

ticated interprocedural analysis cannot always resolve them [10,
28]. Consequently, the C compiler does not statically enforce typ-
ing constraints on the “Collections” and “sort” names or the ls and
cmp parameters. Furthermore, and unlike Java reflection, JNI does
not even dynamically enforce typing constraints on the clazz and
method descriptors.

In contrast, Jinn does enforce these and other JNI type con-
straints dynamically. Figure 7 summarizes the four constraints on
types and the remainder of the section discusses them in detail. The
figure omits the trivial state machines for brevity.

Fixed typing constraints. Type constraints require the runtime
type of actuals to conform to the formals. For many JNI func-
tions, the parameter type is, in fact, fixed by the the function it-
self. For example, in CallStaticVoidMethod(env, clazz, method, ls,
cmp), the clazz actual must always conform to type java.lang.Class.
We extracted this and comparable constraints by scanning the JNI
header file for C parameters (e.g., jstring) with well-defined cor-
responding Java types (e.g., java.lang.String). We extracted ad-
ditional fixed typing constraints from the informal JNI explana-
tion in [19]. For example, FromReflectedMethod has a jobject pa-
rameter, whose expected type is either java.lang.reflect.Method
or java.lang.reflect.Constructor. Overall, Jinn interposes on 151
JNI functions to verify 157 fixed typing constraints. For each
check, Jinn obtains the class of the actual using GetObjectType
and then checks compatibility with the expected type through
IsAssignableFrom.

Entity-specific typing constraints. A plethora of JNI functions
call Java methods or access Java fields. JNI references Java meth-
ods and fields via entity IDs. For example, in CallStaticVoid-
Method(env, clazz, method, ls, cmp), parameter method is a method
ID. In this case, the method must be static, and the method param-
eter constrains the other parameters. In particular, the clazz must
declare the method, and ls and cmp must conform to the formal
parameters of the method. Jinn records method and field signatures
upon return from JNI functions that produce method and field IDs.
The entity ID constrains the types of method parameters or field
values, and the receiver class (for static entities) or object (for in-
stance entities), for each of 131 JNI functions that access a Java
entity. When a program calls one of these functions that take an
entity ID, Jinn interposes on the call to verify that the function
conforms to the entity’s typing constraints.

Access control constraints. Even when type constraints are satis-
fied, Java semantics may prohibit accesses based on visibility and
final modifiers. For example, in SetStaticIntField(env, clazz, fid, 42),
the field identified by fid may be private or final, in which case the
assignment follows questionable coding practices. The JNI specifi-
cation is vague on legal accesses with respect to their visibility and
final constraints. After some investigation, we found that in prac-
tice, JNI usually ignores visibility, but honors the final modifier. Ig-
noring visibility rules seems surprising, but as it turns out, this per-
missiveness is consistent with the behavior of reflection, which may
suppress Java access control when setAccessible(true) was success-
ful. Honoring final is common sense. Despite the fact that reflection
may mutate final fields, mutating them interferes with JIT optimiza-
tions, concurrency, and complicates the Java memory model. As
with entity-specific typing, Jinn keeps track of field IDs, as well as
which fields are final. Jinn raises an error if native code calls any of
the 18 JNI functions that might assign to a final field.

Nullness constraints. Some JNI function parameters must not be
null. For example, in CallStaticVoidMethod(env, clazz, method, ls,
cmp), the parameters env, clazz, and method must not be null. At
the same time, some JNI functions do accept null parameters, for
example, the initial array elements in NewObjectArray. Since the

JNI specification is not always clear on which parameters may be
null, we determined these constraints experimentally. We uncov-
ered 416 non-null constraints among the 210 JNI functions that de-
fine parameters. Jinn reports to the user when the program violates
any of these constraints.

5.3 Resource Constraints
A JNI resource is a piece of Java-related data that C code can ac-
quire or release through JNI calls. For example, C code can acquire
a Java string or array. Depending on the JVM implementation, the
JVM either pins the string or array to prevent the garbage collec-
tor from moving it, or copies the array, and then passes C code a
pointer to the contents. Other JNI resources include various kinds
of opaque references to Java objects, which C code can pass to JNI
functions, and which give C code some control over Java mem-
ory management. Finally, JNI can acquire or release Java monitors,
which are a mutual-exclusion primitive for multi-threaded code.

APIs with manual or semi-automatic memory management suf-
fer from well-known problems. (1) Section 3.2 illustrated one
such problem: a use after a release corrupts JVM state through
a dangling reference. There are three other common resource er-
rors. (2) An acquire at insufficient capacity causes an overflow.
(3) A missing release at the end of reference lifetime causes a leak.
(4) A second release is a double-free. The Jinn analysis depends on
the resource (e.g., array, string reference, object). In a few cases,
Jinn cannot detect certain error conditions, because they are under-
specified or hidden in C code. For instance, Jinn currently cannot
detect when C code uses an invalid C pointer without calling a
JNI function. In a few cases, Jinn need not check resource-related
errors, since the JVM or other Jinn state machines already trap
them. For example, when the JVM throws an OutOfMemoryError
exception, Jinn already checks for correct exception handling.

While the state machines and error cases for all kinds of JNI
resources are similar, they differ in the details due to the above rea-
sons. Figures 8 shows these four different resource cases separately,
and we now discuss each in more detail.

Pinned or copied string or array constraints. C code can tem-
porarily obtain direct access to the contents of a Java string or array.
JVMs may pin or copy the object to facilitate garbage collection.
To make sure the JVM unpins the object or frees the copy, the C
code must properly pair acquire/release calls. Jinn reports a leak
for any resource that has not been released at program termination.
Jinn reports a double-free for a resource it has already evicted from
its state machine representation due to an earlier free. Jinn does not
check for dangling references, because their uses happen in C code.
Jinn does not check for overflow (i.e., an out-of-memory condition)
in this state machine, because its exception checking subsumes this
check.

Monitor constraints. A monitor is a Java mutual exclusion prim-
itive. Jinn need not check overflow or double-free for monitors,
since the JVM already throws exceptions. Jinn cannot check dan-
gling monitors, since that requires divining when the programmer
intended to release it. Jinn does report if a monitor is not released
at program termination, which indicates a risk of deadlock.

Global reference or weak global reference constraints. A global
or weak global reference is an opaque pointer from C to a Java
object that is valid across JNI calls and threads. These references
are explicitly managed, because the garbage collector needs to up-
date them when moving objects and also treat global (but not weak)
references as root. Jinn reports a leak for any unreleased global or
weak global reference at program termination. Jinn reports a dan-
gling reference error if the program uses a reference after a free.
Double-free is a special case of the dangling reference error and
overflow is a special case of Jinn’s exception state constraints.

43

Pinned or copied string or array

Observed entity: A Java string or array that is pinned or copied.
Error(s) discovered: Leak and double-free.
State machine encoding: A list of acquired JVM resources.
State machine diagram:

Error:
Double-free

Error:
Leak

Before
Acquire Acquired Releasedacquire release

program
termination release

State Language Triggering
transition transition functions
Acquire Return:Java→C Get<Type>ArrayElements

and similar getter functions
Release Return:Java→C Release<Type>ArrayElements

and similar release functions
Program termination JVMTI callback

Monitor

Observed entity: A monitor.
Error(s) discovered: Leak.
State machine encoding: A set of monitors currently held by JNI

and, for each monitor, the current entry count.
State machine diagram:

Error:
Leak

Before
Acquire Acquired Releasedacquire release

program
termination

State Language Triggering
transition transition functions
Acquire Call:C→Java MonitorEnter

Release Call:C→Java MonitorExit

Program termination JVMTI callback

Global reference or weak global reference

Observed entity: A global or weak global JNI reference
Error(s) discovered: Leak and dangling reference.
State machine encoding: A list of acquired global references.
State machine diagram:

Error:
Dangling

Error:
Leak

Before
Acquire Acquired Releasedacquire release

use

useprogram
termination

State Language Triggering
transition transition functions
Acquire Return:Java→C NewGlobalRef and

NewWeakGlobalRef

Release Return:Java→C DeleteGlobalRef and
DeleteWeakGlobalRef

Use Call:C→Java JNI function taking reference
e.g., CallVoidMethod

Return:C→Java Native method returning reference,
e.g., Class.getClassContext

Program termination JVMTI callback

Local reference

Observed entity: A local JNI reference
Error(s) discovered: Overflow, leak, dangling, and double-free.
State machine encoding: For each thread, a stack of frames. Each

frame has a capacity and a list of local references.
State machine diagram:

Error:
Overflow

Error:
Double-free

Error:
Dangling

Error:
Leak

Before
Acquire Acquired Releasedacquire release

function
return

use

use
PopLocalFrame()acquire

if capacity = 0

if capacity > 0

if frame stack not empty if frame stack
empty

State Language Triggering
transition transition functions
Acquire Call:Java→C Native method taking reference

Return:Java→C JNI function returning reference
e.g., GetObjectField

Release Return:Java→C DeleteLocalRef or PopLocalFrame

Return:C→Java Return from any native method
Use Call:C→Java JNI function taking reference

e.g., CallVoidMethod

Return:C→Java Native method returning reference,
e.g., Class.getClassContext

Figure 8. State machines for resource constraints.

Local reference constraints. JNI manages local references semi-
automatically: acquire and release are more often implicit than ex-
plicit. Native code implicitly acquires a local reference when a
Java native call passes it to C, or when a JNI function returns
it. The JVM releases local references automatically when native
code returns to Java, but the user can also manually release one
(DeleteLocalRef) or several (PopLocalFrame) local references. Jinn
enters the reference into its state machine encoding upon acquire

and removes it upon release. Jinn performs bookkeeping to sup-
port overflow checks, since the JNI specification only guarantees
space for up to 16 local references. If more are needed, the user
must explicitly request additional capacity with PushLocalFrame,
and later release that space with PopLocalFrame. Jinn keeps track
of local frames and checks four error cases as follows. (1) Jinn de-
tects overflow if the current local frame exceeds capacity. (2) JNI
releases individual local references automatically; Jinn checks for

44

leaked local reference frames when native code returns to Java.
(3) Jinn checks that local references passed as parameters to JNI
functions are not dangling and, furthermore, belong to the current
thread. (4) Jinn detects a double-free when DeleteLocalRef is called
twice for the same reference, or if nothing is left to pop on a call to
PopLocalFrame.

6. Experimental Results
This section evaluates the performance, coverage, and usability of
Jinn to support our claim that it is the most practical FFI bug finder
to date.

6.1 Methodology
Experimental environments. We used two production JVMs,
Sun HotSpot Client 1.6.0 10 and IBM J9 1.6.0 SR5. We conducted
all experiments on a Pentium D T3200 with 2GHz clock, 1MB L2
cache, and 2GB main memory. The machine runs Ubuntu 9.10 on
the Linux 2.6.31-19 kernel.

JNI programs. We used several JNI programs: microbench-
marks, SPECjvm98 [23], DaCapo [6], Subversion 39004 (2009-
08-31), Java-gnome-4.0.10, and Eclipse 3.4. The microbenchmarks
are a collection of 16 small JNI programs, which are designed to
trigger one each of the error states in the eleven state machines
shown in Figures 6, 7, and 8. The microbenchmarks also cover
all pitfalls in Table 1 with exception of Pitfall 8, which cannot
be detected at the language boundary. SPECjvm98 and DaCapo
are written in Java, but exercise native code in the system library.
Subversion, Java-gnome, and Eclipse mix Java and C in user-level
libraries. Except for Eclipse 3.4, we use fixed inputs.

Dynamic JNI checkers. We compare three dynamic JNI check-
ers: runtime checking in IBM and SUN JVMs, which is turned
on by the -Xcheck:jni option, and Jinn, which is turned on by the
-agentlib:jinn option in any JVM.

Experimental data. We collected timing and statistics results by
taking the median of 30-100 trials to statistically tolerate exper-
imental noise. The runtime systems show non-deterministic be-
havior from a variety of sources: micro-architectural events, OS
scheduling, and adaptive JIT optimizations.

6.2 Performance
This section evaluates the performance of Jinn. Table 3 shows the
results. Jinn adds instructions to every language transition between
the JVM and native libraries, interposing and checking transitions.
The second column counts the total number of transitions between
Java and C in the system libraries using HotSpot. The third column
shows the execution times of runtime checking for HotSpot. Exe-
cution times are normalized to production runs of HotSpot without
any dynamic checking. The fourth column reports Jinn’s frame-
work overhead due to interposition on language transitions. The
fifth column reports the total time, which includes state machine
encoding, transitions, and error checking. On average, Jinn has a
modest 14% execution time overhead and most of the overhead (all
but 4%) comes from runtime interposition, rather than executing
the analysis code.

6.3 Coverage of Jinn and JVM Runtime Checking
This section shows that Jinn covers qualitatively and quantitatively
more JNI bugs than the state-of-art dynamic checking in production
JVMs.

Quality. We run the 16 microbenchmarks with HotSpot, J9, and
Jinn. Figure 9 compares their error messages on the representa-
tive ExceptionState microbenchmark, which violates the exception

Language Normalized execution times
transition Runtime Jinn

Benchmark counts checking Interposing Checking
antlr 441,789 1.04 0.98 1.05
bloat 839,930 1.02 1.19 1.20
chart 1,006,933 1.02 1.08 1.12
eclipse 8,456,840 1.01 1.17 1.20
fop 1,976,384 1.07 1.14 1.37
hsqldb 206,829 0.88 1.04 1.05
jython 56,318,101 1.03 1.10 1.16
luindex 1,339,059 1.03 1.08 1.13
lusearch 4,080,540 1.04 1.09 1.21
pmd 967,430 1.04 1.10 1.13
xalan 1,114,000 1.01 1.17 1.19
compress 14,878 0.98 1.09 1.08
jess 153,118 0.99 1.22 1.17
raytrace 29,977 1.04 1.16 1.14
db 133,112 0.99 1.01 1.02
javac 258,553 1.06 1.16 1.14
mpegaudio 46,208 1.00 1.01 1.04
mtrt 32,231 1.01 1.11 1.14
jack 1,332,678 1.04 1.10 1.21
GeoMean 1.01 1.10 1.14

Table 3. Jinn performance on SPECjvm and DaCapo with
HotSpot.

state constraints of Section 5.1. The C code in the benchmark ig-
nores an exception raised by Java code and calls two JNI functions:
GetMethodID and CallVoidMethod. HotSpot reports that there were
two illegal JNI calls, but does not identify the offending JNI func-
tion calls. J9 reports the first JNI function (GetMethodID), but does
not show the calling context for the first bad JNI call because J9
aborts the JVM.

Jinn reports both illegal JNI calls, their calling contexts, and
the source location of the original Java exception. In addition to
precise reports, Jinn’s error reporting integrates with debuggers.
Java debuggers like jdb and Eclipse JDT can catch the custom
exception, and programmers can then inspect the Java state to find
the failure’s cause. Even better, the Blink Java/C debugger [17] can
present the entire program state, including the full calling context
consisting of both Java and C frames.

Quantity. The behavior of the production runs without dynamic
checkers ranges from ignoring the bug to simply crashing to rais-
ing a null pointer exception—none of which is correct. The dy-
namic checkers built into the HotSpot and J9 JVMs also behave
inconsistently in more than half of our microbenchmarks (9 of 16).
Jinn is the only dynamic bug-finder that consistently detects and
reports the JNI bugs in our 16 microbenchmarks by throwing an
exception. Quantitative coverage of Jinn, HotSpot, and J9 is 100%,
56%, and 50%, respectively, with exceptions, warnings (print to
console and keep running), and errors (print to console and termi-
nate) counting as valid bug reports. Jinn’s 100% coverage on our
own, specifically designed testsuite is hardly surprising and does
not imply that Jinn catches all JNI bugs. But the low JVM coverage
demonstrates that error checking in previous practice was at best in-
complete. Furthermore, JNI constraint violations are common and
well-documented [10, 11, 16, 17, 18, 26, 27], underlining the need
for better constraint enforcement.

6.4 Usability with Open Source Programs
This section evaluates the usability of Jinn based on our experience
of running Jinn over Subversion, Java-gnome, and Eclipse. All

45

WARNING in native method:
JNI call made with exception pending at
ExceptionState.call(Native Method) at
ExceptionState.main(ExceptionState.java:5)

WARNING in native method:
JNI call made with exception pending at
ExceptionState.call(Native Method) at
ExceptionState.main(ExceptionState.java:5)

(a) HotSpot

JVMJNCK028E JNI error in GetMethodID: This function
cannot be called when an exception is pending

JVMJNCK077E Error detected in ExceptionState.call()V
JVMJNCK024E JNI error detected. Aborting.
JVMJNCK025I Use -Xcheck:jni:nonfatal to continue running

when errors are detected.
Fatal error: JNI error

(b) J9

Exception in thread ”main” JNIAssertionFailure:
An exception is pending in CallVoidMethod.
at jinn.JNIAssertionFailure.assertFail
at ExceptionState.call(Native Method)
at ExceptionState.main(ExceptionState.java:5)

Caused by: jinn.JNIAssertionFailure:
An exception is pending in GetMethodID.
... 3 more

Caused by: java.lang.RuntimeException:
checked by native code
at ExceptionState.foo(ExceptionState.java:9)
... 2 more

(c) Jinn

Figure 9. Representative JVM and Jinn error messages using a
microbenchmark that violates the exception state constraint.

Time
0

5

10

15

Nu
m

be
r o

f a
cq

ui
re

d
 lo

ca
l r

ef
er

en
ce

s Capacity
Original Program
Fixed Program

Figure 10. Time-series of acquired local references with leak
and its fix in the fourth execution of a Java native method:
Java org tigris subversion javahl SVNClient info2.

these open-source programs are in wide industrial and academic
use with a long revision history. These case studies show that Jinn
finds errors in widely-used programs.

6.4.1 Subversion
Running Subversion’s regression test suite under Jinn, we found
two overflows of local references and one dangling local reference.

Overflow of local references. Jinn found that Subversion allo-
cated more than 16 local references in two call sites to JNI func-
tions: line 99 in Outputer.cpp and line 144 in InfoCallback.cpp. Fig-
ure 10 compares the time-series of acquired local references for the
original and the fixed program. The original program overflows the
pool of 16 local references without requesting more capacity—as

detected by Jinn when acquiring yet another local reference. One
reported source line is:

jstring jreportUUID =
JNIUtil::makeJString(info->repos UUID);

After looking at the calling context, we found that the program
misses a call to DeleteLocalRef. We inserted the following lines:

env->DeleteLocalRef(jreportUUID);
if (JNIUtil::isJavaExceptionThrown()) return NULL;

After re-compiling, the program passes the regression test even
under Jinn, since the number of active local references never ex-
ceeds 8. This overflow did not crash HotSpot and J9, but represents
a time bomb. A highly optimized JVM may crash if it assumes that
JNI code is well-behaved and eliminates bound checking of the
bump pointer for local references.

Use of dangling local reference. The use of a dangling local
reference happens at the execution of a C++ destructor when the
C++ variable path goes out of scope in file CopySources.cpp.

{
JNIStringHolder path(jpath);
env->DeleteLocalRef(jpath);

} /* The destructor of JNIStringHolder is executed here. */

At the declaration of path, the constructor of JNIStringHolder stores
the JNI local reference jpath in the member variable path::m jtext.
Later the call DeleteLocalRef releases the jpath local reference, and
thus, path::m jtext becomes dead. When the program exits from the
C++ block, it calls the destructor of JNIStringHolder. Unfortunately,
this destructor uses the dead JNI local reference:

JNIStringHolder::~JNIStringHolder() {
if (m jtext && m str)

m env->ReleaseStringUTFChars(m jtext, m str);
}

The JNI function ReleaseStringUTFChars uses the dangling JNI
reference (m jtext). This bug is not syntactically visible to the
programmer because the C++ destructor feature obscures con-
trol flow when releasing resources. In our experience, this bug
did not crash production JVMs. To understand this better, we
looked at the internal implementation of ReleaseStringUTFChars in
an open-source Java virtual machine (Jikes RVM). In Jikes RVM,
ReleaseStringUTFChars ignores its first parameter, rendering the
fact that the actual is a dangling reference irrelevant. If other JVMs
are implemented similarly, this bug will remain hidden. But the
code again represents a time bomb, because the bug will be exposed
as soon as the program runs on a JVM where the implementation
of ReleaseStringUTFChars uses its first parameter. For example, a
JVM may internally represent strings in UTF8 format as proposed
by Zilles [30] and then share them directly with JNI.

6.4.2 Java-gnome
Running Java-gnome’s regression test suite under Jinn, we found
one nullness bug and one dangling local reference.

Nullness. Jinn reports a bug identified in the Blink debugger
paper [17]. Note, however, that Blink requires running the Java
program in a full-fledged debugger, while Jinn is a light-weight
dynamic checker.

Use of dangling local reference. Jinn reports and diagnoses
bug 576111 for the Java-gnome project, which violates a con-
straint on semi-automatic resources. Jinn reports that Line 348
of binding java signal.c violates a local reference constraint.

(*env)->CallStaticVoidMethodA(env, bjc->receiver,
bjc->method, jargs);

The bjc->receiver is a dead local reference. A Java-gnome devel-
oper confirmed the diagnosis. This bug did not crash HotSpot and
J9, but, as noted before, bugs that are only benign due to implemen-

46

tation characteristics of a specific JVM vendor are time bombs and
should be fixed.

6.4.3 Eclipse 3.4
We opened a Java project in Eclipse-3.4, and Jinn reported one
violation of the entity-specific subtyping constraint in line 698 of
callback.c in its SWT 3.4 component.

result =
(*env)->CallStaticSWT PTRMethodV(env, object, mid, vl);

The object must point to a Java class which has a static Java method
identified by mid. The actual class did not have the static method,
but its superclass declares the method. It is challenging for the
programmer to ensure this constraint, because the source of the
error involves dynamic callback control and a Java inner class.
Because the production JVM may not use the object value, this bug
has survived multiple revisions.

6.5 Limitations
While Jinn consistently detects more JNI bugs than previous
work, it currently falls short on three categories of bugs: (1) con-
straint checking requires currently forbidden JNI functionality, (2)
“correctness” is not black-and-white, and (3) checks at the lan-
guage boundary are insufficient. The primary example for Cat-
egory 1, JNI functionality being forbidden, are the JNI critical
sections discussed in Section 5.1, which prevent Jinn from calling
IsAssignableFrom to enforce type constraints. An example for Cate-
gory 2, correctness gray-zone, is whether or not Jinn should report
C code accessing private fields of Java objects. The JNI specifica-
tion is silent about this, and accessing private Java fields from C
is an entrenched practice. Another gray-zone example is whether
or not a piece of code must be guarded by a monitor. After all,
one person’s race condition is another person’s optimization. An
example for Category 3, checks at the language boundary being in-
sufficient, is Pitfall 8 from Table 1. JNI does no terminate Unicode
strings with NULL characters when returning them to C. Since
C code subsequently manipulates the string data directly without
calls through JNI functions, correctness checking at the language
boundary as done by Jinn is insufficient. It instead requires check-
ing C memory safety as performed, for instance, by SafeJNI [25].
Another example for Category 3 is the currently omitted “dangling”
state of the state machine for a pinned or copied string or array (see
Figure 8). As before, since C code manipulates the string or array
directly, Jinn’s language boundary checks are insufficient.

7. Generalization
This section demonstrates that our technique generalizes to other
languages by applying it to Python/C 2.6 [1]. We first discuss
the similarities and differences between JNI and Python/C. We
then present a synthesized dynamic checker for Python/C’s manual
memory management. We leave to future work the full specification
of Python/C FFI constraints and the complete implementation of a
dynamic analysis for these constraints.

7.1 Python/C Constraint Classification
Like JNI, the Python/C specification describes numerous rules that
constrain how programmers can combine Python and C. These
constraints fall into the same classes from Section 5: (1) interpreter
state constraints, (2) type constraints, and (3) resource constraints.

State constraints. Python/C constrains the behavior of excep-
tions and threads. Python/C’s exception constraints mirror those
of JNI: C code should immediately handle the exception or prop-
agate it back to Python. While not explicitly stated in the man-
ual, these constraints also imply that native code should not invoke

1. static PyObject* dangle bug(PyObject* self, PyObject* args) {
2. PyObject *pythons, *first;
3. /* Create and delete a list with a string element.*/
4. pythons = Py BuildValue(”[ssssss]”,
5. ”Eric”, ”Graham”, ”John”, ”Michael”, ”Terry”, ”Terry”);
6. first = PyList GetItem(pythons, 0);
7. printf(”1. first = %s.\n”, PyString AsString(first));
8. Py DECREF(pythons);
9. /* Use dangling reference. */

10. printf(”2. first = %s.\n”, PyString AsString(first));
11. /* Return ownership of the Python None object. */
12. Py INCREF(Py None);
13. return Py None;
14. }

Figure 11. Python/C dangling reference error. The borrowed ref-
erence first becomes a dangling reference when pythons dies.

other Python/C functions while an exception is pending. For thread
constraints, Python/C differs slightly from JNI because Python’s
threading model is simpler than Java’s. For each instantiation of
the Python interpreter, a thread must possess the Global Interpreter
Lock (GIL) to execute. The Python interpreter contains a sched-
uler that periodically acquires and releases the GIL on behalf of a
program’s threads.

Python/C permits C code to release and re-acquire the GIL
around blocking I/O operations. It also permits C code to create its
own threads and bootstrap them into Python. Because C code may
manipulate thread state directly, the programmer may write code
that deadlocks. For example, the programmer may accidentally
acquire the GIL twice. As a result, Python/C requires bookkeeping
for the GIL similar to that for JNI critical sections discussed in
Section 5.1.

Type constraints. Because Python is dynamically typed, types in
Python/C are less constrained than in JNI. The Python interpreter
performs dynamic type checking for many operations on built-
in types. However, sometimes the interpreter forgoes these type
checks—as well as some null checks—for performance reasons.
Consequently, if a program passes a mistyped value to a Python/C
call, the program may crash or exhibit undefined behavior. A dy-
namic analysis based on the type constraints of Section 5.2 would
enable reliable detection of these errors, at the cost of reintroducing
dynamic checking for some Python/C functions.

Resource constraints. Python employs reference counting for
memory management. To Python code, reference counting is trans-
parent and fully automatic. However, native-code programmers
must manually increment and decrement a Python object’s refer-
ence count, according to the Python/C manual’s instructions. To
this end, the Python/C manual defines a notion of reference co-
ownership. Each reference that co-owns an object is responsible
for decrementing the object’s reference count when it no longer
needs that object. Neglecting to decrement leads to memory leaks.
C code may also borrow a reference. Borrowing a reference does
not increase its reference count, but using a borrowed reference to
a freed object is a dangling reference error. The Python/C manual
specifies which kinds of references are returned by the various FFI
functions. A dynamic checker must track the state of these refer-
ences in order to report usage violations to the user.

7.2 Synthesizing Dynamic Checkers
To ensure that FFI programs correctly use co-owned and bor-
rowed references, we implemented a use-after-release checker for
Python/C’s reference counting memory management.

Example memory management error. Figure 11 contains an ex-
ample Python/C function that mismanages its references. The refer-

47

ence first in Line 6 is borrowed from the reference pythons. When
Line 8 decrements the reference count for pythons, the reference
dies. The Python/C manual states that the program should no longer
use first, but the program uses this reference at Line 10. This use is a
dangling reference error, and Python’s semantics are undefined for
such a case. In practice, Figure 11’s behavior depends on whether
the interpreter reuses the memory for first between the implicit re-
lease in Line 8 and the explicit use in Line 10.

Synthesizer and generated checker. Our synthesizer takes a
specification file that lists which functions return new or borrowed
references. The generated checker detects memory management er-
rors by tracking co-owned references and their borrowers. For ex-
ample, the checker determines that pythons is a co-owned reference
and that first borrows from pythons. When a co-owner relinquishes
a reference by decrementing its count, all its borrowed references
become invalid. If the program uses an invalid borrowed reference,
as Figure 11 does on Line 10, then the checker signals an error.

Interposing on language transitions. Integrating the dynamic
analysis with Python/C is more challenging than for JNI. Python
lacks an interface comparable to the JVM tools interface, thus re-
quiring that the dynamic analysis be statically linked with the inter-
preter. Furthermore, Python/C bakes in some of the Python inter-
preter’s implementation details, which makes the API less portable
than JNI and complicates interposing on language transitions. In
particular, (1) Python/C makes prevalent use of C macros, (2) the
Python interpreter internally uses Python/C functions, and (3) some
variadic functions lack non-variadic counterparts.

Python/C makes extensive use of C macros. Some macros di-
rectly modify interpreter state without executing a function call.
Because Python/C does not execute a function, our dynamic anal-
ysis has nothing to interpose on and cannot track the behavior. We
overcame this limitation by replacing the macros with equivalent
functions. This change requires programmers to re-compile their
native code extensions against our customized interpreter, but it
does not require them to change their code.

Because the Python interpreter internally calls Python/C func-
tions, the dynamic analysis cannot easily detect application-level
language transitions. Even if it could detect such transitions, func-
tion interposition and transition detection would significantly slow
down the interpreter. We overcame this limitation by creating an
interpreter-only copy of every Python/C function. We then used au-
tomatic code-rewriting to make the interpreter call the unmodified
copies. Our dynamic analysis interposes on the originals, which are
used by native code extensions.

A variadic C function such as printf takes a variable number
of arguments. Our synthesizer interposes on each variadic function
by wrapping it with code that calls an equivalent, non-variadic ver-
sion of the function such as vprintf. Python does not provide non-
variadic equivalents for all its variadic functions; where necessary,
we added the non-variadic equivalents.

Despite these implementation challenges, our Python/C dy-
namic analysis substantially follows from our JNI dynamic analy-
sis, thus demonstrating the generality of our approach. Both FFIs
have large numbers of constraints that fall into three classes. Both
FFIs also support specifying the constraints as state machines, map-
ping state machine transitions to language transitions, and then
applying the state machines to program entities.

8. Conclusion
This paper seeks to improve the correctness of multilingual pro-
grams using thorough FFI specification and dynamic analysis. We
identify three classes of FFI constraints and shows how to encode
them in about a dozen state machines. The three classes capture the

key semantic mismatches that multilingual interfaces must negoti-
ate. The state machines, in turn, capture the complete constraints
for correctly using such interfaces. We also show how to use syn-
thesis for mapping the state machine specifications into context-
sensitive dynamic bug checkers inserted a language transitions. No-
tably, we generate dynamic bug checkers for JNI and Python/C.
We show that Jinn, the synthesized bug checker for JNI, uncovers
previously unknown bugs in widely-used Java native libraries. Our
approach to multilingual constraint representation, constraint gen-
eration, and FFI usage verification is the most concise, practical,
and effective on to date.

Acknowledgments
We thank our shepherd Alex Aiken and the anonymous reviewers
for their feedback on this paper. We thank Mike Bond for feed-
back on the text and his suggestion of wrapping Python/C macros,
Jungwoo Ha for explaining some details of hardware performance
counter libraries, and Jennifer Sartor for referring to Accordion Ar-
rays.

This work is supported by NSF CNS-0448349, NSF CNS-
0615129, NSF SHF-0910818, NSF CSR-0917191, NSF CCF-
0811524, NSF CNS-0719966, NSF CCF-0448128, NSF CCF-
0724979, Samsung Foundation of Culture, and CISCO. Any opin-
ions, findings, and conclusions expressed herein are the authors’
and do not necessarily reflect those of the sponsors.

References
[1] Python/C API reference manual. Python Software Foundation, http:

//docs.python.org/c-api, Nov. 2009.

[2] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble.
Adding trace matching with free variables to AspectJ. In ACM
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 345–364, 2005.

[3] M. Arnold, M. Vechev, and E. Yahav. QVM: An efficient runtime
for detecting defects in deployed systems. In ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pages 143–162, 2008.

[4] T. Ball and S. K. Rajamani. SLIC: a specifcation language for inter-
face checking (of C). Technical Report MSR-TR-2001-21, Microsoft
Research, Jan. 2002.

[5] D. M. Beazley. SWIG: An easy to use tool for integrating scripting
languages with C and C++. In USENIX Tcl/Tk Workshop (TCLTK),
pages 129–139, 1996.

[6] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. In ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pages 169–190, 2006.

[7] F. Chen and G. Rosu. MOP: An efficient and generic runtime ver-
ification framework. In ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages
569–588, 2007.

[8] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In ACM International Con-
ference on Software Engineering (ICSE), pages 411–420, 1999.

[9] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules
using system-specific, programmer-written compiler extensions. In
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 1–16, Oct. 2000.

48

[10] M. Furr and J. S. Foster. Checking type safety of foreign function
calls. In ACM Conference on Programming Language Design and
Implementation (PLDI), pages 62–72, 2005.

[11] M. Furr and J. S. Foster. Polymorphic type inference for the JNI.
In European Symposium on Programming (ESOP), pages 309–324,
2006.

[12] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification. Addison-Wesley, third edition, June 2005.

[13] M. Hirzel and R. Grimm. Jeannie: Granting Java native interface de-
velopers their wishes. In ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages
19–38, 2007.

[14] A. Kaplan, J. Bubba, and J. C. Wileden. The Exu approach to safe,
transparent and lightweight interoperability. In IEEE International
Computer Software and Applications Conference (COMPSAC), page
393, 2001.

[15] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice Hall, second edition, Apr. 1988.

[16] G. Kondoh and T. Onodera. Finding bugs in Java native interface
programs. In ACM International Symposium on Software Testing and
Analysis (ISSTA), pages 109–118, 2008.

[17] B. Lee, M. Hirzel, R. Grimm, and K. S. McKinley. Debug all your
code: Portable mixed-environment debugging. In ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pages 207–226, 2009.

[18] S. Li and G. Tan. Finding bugs in exceptional situations of JNI
programs. In ACM Conference on Computer and Communications
Security (CCS), pages 442–452, 2009.

[19] S. Liang. The Java Native Interface: Programmer’s Guide and Spec-
ification. Addison-Wesley, 1999.

[20] NaturalBridge. BulletTrain JNI Checking Examples. http://

web.archive.org/web/*/http:///www.naturalbridge.com/
jnichecking.html, Jan. 2001.

[21] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe
retrofitting of legacy code. In ACM Symposium on Principles of
Programming Languages (POPL), pages 128–139, 2002.

[22] T. Ravitch, S. Jackson, E. Aderhold, and B. Liblit. Automatic gener-
ation of library bindings using static analysis. In ACM Conference on
Programming Language Design and Implementation (PLDI), pages
352–362, 2009.

[23] Standard Performance Evaluation Corporation. SPECjvm98 Docu-
mentation, release 1.03 edition, March 1999.

[24] B. Stroustrup. The C++ Programming Language. Addison-Wesley,
special edition, Feb. 2000.

[25] G. Tan, A. W. Appel, S. Chakradhar, A. Raghunathan, S. Ravi, and
D. Wang. Safe Java native interface. In IEEE International Sympo-
sium on Secure Software Engineering (ISSSE), pages 97–106, 2006.

[26] G. Tan and J. Croft. An empirical security study of the native code in
the JDK. In Usenix Security Symposium (SS), pages 365–377, 2008.

[27] G. Tan and G. Morrisett. ILEA: Inter-language analysis across Java
and C. In ACM Conference on Object-Oriented Programming Systems
and Applications (OOPSLA), pages 39–56, 2007.

[28] Z. Tatlock, C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner. Deep
typechecking and refactoring. In ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 37–52, 2008.

[29] The GNOME Project. GNOME bug tracking system. Bug 576111
was opened 2009-03-20. http://bugzilla.gnome.org.

[30] C. Zilles. Accordion arrays: Selective compression of unicode arrays
in Java. In ACM International Symposium on Memory Management
(ISMM), pages 55–66, 2007.

49

