
ABSTRACT
Prefetching data ahead of use has the potential to tolerate the grow-
ing processor-memory performance gap by overlapping long
latency memory accesses with useful computation. While sophisti-
cated prefetching techniques have been automated for limited
domains, such as scientific codes that access dense arrays in loop
nests, a similar level of success has eluded general-purpose pro-
grams, especially pointer-chasing codes written in languages such
as C and C++.

We address this problem by describing, implementing and
evaluating a dynamic prefetching scheme. Our technique runs on
stock hardware, is completely automatic, and works for general-
purpose programs, including pointer-chasing codes written in
weakly-typed languages, such as C and C++. It operates in three
phases. First, the profiling phase gathers a temporal data reference
profile from a running program with low-overhead. Next, the
profiling is turned off and a fast analysis algorithm extracts hot data
streams, which are data reference sequences that frequently repeat
in the same order, from the temporal profile. Then, the system
dynamically injects code at appropriate program points to detect
and prefetch these hot data streams. Finally, the process enters the
hibernation phase where no profiling or analysis is performed, and
the program continues to execute with the added prefetch
instructions. At the end of the hibernation phase, the program is de-
optimized to remove the inserted checks and prefetch instructions,
and control returns to the profiling phase. For long-running
programs, this profile, analyze and optimize, hibernate, cycle will
repeat multiple times. Our initial results from applying dynamic
prefetching are promising, indicating overall execution time
improvements of 5–19% for several memory-performance-limited
SPECint2000 benchmarks running their largest (ref) inputs.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – code generation,
optimization, run-time environments.

General Terms
Measurement, Performance.

Keywords
dynamic profiling, temporal profiling, data reference profiling,
dynamic optimization, memory performance optimization,
prefetching.

1. INTRODUCTION
The demise of Moore’s law has been greatly exaggerated and pro-
cessor speed continues to double every 18 months. By comparison,
memory speed has been increasing at the relatively glacial rate of
10% per year. The unfortunate, though inevitable consequence of
these trends is a rapidly growing processor-memory performance
gap. Computer architects have tried to mitigate the performance
impact of this imbalance with small high-speed cache memories
that store recently accessed data. This solution is effective only if
most of the data referenced by a program is available in the cache.
Unfortunately, many general-purpose programs, which use
dynamic, pointer-based data structures, often suffer from high
cache miss rates, and are limited by their memory system perfor-
mance.

Prefetching data ahead of use has the potential to tolerate this
processor-memory performance gap by overlapping long latency
memory accesses with useful computation. Successful prefetching
is accurate—correctly anticipating the data objects that will be
accessed in the future—and timely—fetching the data early enough
so that it is available in the cache when required. Sophisticated
automatic prefetching techniques have been developed for
scientific codes that access dense arrays in tightly nested loops (for
e.g., [24]). They rely on static compiler analyses to predict the
program’s data accesses and insert prefetch instructions at
appropriate program points. However, the reference pattern of
general-purpose programs, which use dynamic, pointer-based data
structures, is much more complex, and the same techniques do not
apply.

If static analyses cannot predict the access patterns of general-
purpose programs, perhaps program data reference profiles may
suffice. Recent research has shown that programs possess a small
number of hot data streams, which are data reference sequences that
frequently repeat in the same order, and these account for around
90% of program references and more than 80% of cache misses [8,
28]. These hot data streams can be prefetched accurately since they
repeat frequently in the same order and thus are predictable. They
are long enough (15–20 object references on average) so that they
can be prefetched ahead of use in a timely manner.

In prior work, Chilimbi instrumented a program to collect the trace
of its data memory references; then used a compression algorithm
called Sequitur to process the trace off-line and extract hot data
streams [8]. These hot data streams have been shown to be fairly
stable across program inputs and could serve as the basis for an off-
line static prefetching scheme [10]. On the other hand, for programs
with distinct phase behavior, a dynamic prefetching scheme that
adapts to program phase transitions may perform better. In this
paper, we explore a dynamic software prefetching scheme and
leave a comparison with static prefetching for future work.

A dynamic prefetching scheme must be able to detect hot data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PLDI’02, June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006...$5.00.

Dynamic Hot Data Stream Prefetching for General-Purpose
Programs

Trishul M. Chilimbi
Microsoft Research
One Microsoft Way

Redmond, WA 98052

trishulc@microsoft.com

Martin Hirzel
Computer Science Dept.
University of Colorado

Boulder, CO 80309

martin.hirzel@colorado.edu

199

streams online with little overhead. This paper describes a dynamic
framework for online detection of hot data streams and
demonstrates that this can be accomplished with extremely low-
overhead. Rather than collect the trace of all data references, our
dynamic framework uses sampling to collect a temporal data
reference profile. Unlike conventional sampling, we sample data
reference bursts, which are short sequences of consecutive data
references. The framework uses Sequitur to process the trace
online, and a novel algorithm for fast detection of hot data streams
from the temporal profile data.

The hot data streams consist of a sequence of <pc, addr> pairs.
Our hot data stream analysis is configured to only detect streams
that are sufficiently long to justify prefetching (i.e., containing
more than ten unique references). Once these streams have been
detected, our prefetching engine dynamically injects checks in the
program to match stream prefixes, followed by prefetch
instructions for the remaining stream addresses. For example,
given a hot data stream abacdce, once the addresses a.addr, b.addr,
a.addr are detected by checks inserted at a.pc, b.pc, a.pc
respectively, prefetches are issued for the addresses, c.addr, d.addr,
e.addr. The hot data stream prefix length that must match before
prefetching is initiated needs to be set carefully. A prefix that is too
short may hurt prefetching accuracy, and too large a prefix reduces
the prefetching opportunity and incurs additional stream matching
overhead.

Conceptually, one can think of the prefix-matching mechanism for
a hot data stream as corresponding to a deterministic finite state
machine (DFSM), where the states correspond to possible stream
prefixes, and transitions are implemented by inserted prefix-match
checks. To avoid redundant checks, and efficiently orchestrate
matches for all hot data streams, our prefetching engine constructs
a single DFSM that keeps track of matching prefixes for all hot
data streams simultaneously (see Section 3.1). The prefetching
engine uses a dynamic implementation of Vulcan [32] (a binary
editing tool for the x86, similar to ATOM [31]), to insert checks
into the running program that implement the stream prefix
matching DFSM. In addition, it adds prefetch instructions that
target the remaining data stream addresses, on successful stream
prefix matches.

Figure 1 provides an overview of our dynamic prefetching process
that operates in three phases—profiling, analysis and optimization,
and hibernation. First, the profiling phase collects a temporal data
reference profile from a running program with low-overhead. This
is accomplished using bursty tracing [15], which is an extension of
Arnold and Ryder’s low-overhead profiling technique [3]. The
Sequitur compression algorithm incrementally builds an online

grammar representation of the traced data references. Once
sufficient data references have been traced, profiling is turned off
and the analysis and optimization phase begins. A fast analysis
algorithm extracts hot data streams from the Sequitur grammar
representation. The prefetching engine builds a stream prefix
matching DFSM for these hot data streams, and dynamically
injects checks at appropriate program points to detect and prefetch
these hot data streams. Finally, the process enters the hibernation
phase where no profiling or analysis is performed, and the program
continues to execute with the added prefetch instructions. At the
end of the hibernation phase, the program is de-optimized to
remove the inserted checks and prefetch instructions, and control
returns to the profiling phase. For long-running programs this
profile, analyze and optimize, hibernate cycle will repeat multiple
times.

The paper makes the following contributions:

• It presents a dynamic, low-overhead framework for detecting
hot data streams (see Section 2).

• It describes an automatic, dynamic prefetching scheme that
works for general-purpose programs. The prefetching is driven
by the hot data streams supplied by the online profiling and
analysis framework (see Section 3).

• It presents empirical evidence that dynamic prefetching is
effective, producing overall execution time improvements of
5–19% for several memory performance limited SPECint2000
benchmarks (see Section 4).

2. DYNAMIC DATA REFERENCE PROFIL-
ING AND ANALYSIS
This section discusses our online, low-overhead framework for
detecting hot data streams. The framework first collects a temporal
data reference profile with low-overhead, and then uses a fast
analysis algorithm to extract hot data streams from this temporal
profile.

2.1 Bursty Tracing Framework for Low-Over-
head Temporal Profiling

A data reference r is a load or store of a particular address,
represented as a pair (r.pc,r.addr). The sequence of all data
references during execution is the data reference trace. A temporal
data reference profile captures not only the frequencies of
individual data references in the trace, but also temporal
relationships between them. For example, it would distinguish the
traces cdeabcdeabfg and abcdefabcdeg, even though all data

p r o g r a m
im a g e

f in i te s ta te
m a c h in e

g r a m m a r

h o t d a ta
s tr e a m s

d a ta r e fe r e n c e
s e q u e n c e

e x e c u t io n w ith
p r o f il in g S e q u itu r

a n a ly s is

s ta te s p a c e
e x p lo r a tio n

c o d e
in je c t io n

e x e c u t io n w ith
p r e fe tc h in g

d e o p tim iz a t io n

p r o f i l in g

a n a ly s is a n d
o p tim iz a tio n

h ib e r n a tio n

Figure 1. Dynamic prefetching overview

200

references have the same frequencies in both of them. In the
second trace, the subsequence abcde is a hot data stream and
presents a prefetching opportunity.

Our framework must collect a temporal data reference profile with
low overhead, because the slow-down from profiling has to be
recovered by the speed-up from optimization. A common way to
reduce the overhead of profiling is sampling: instead of recording
all data references, sample a small, but representative fraction of
them. Our profiler obtains a temporal profile with low overhead by
sampling bursts of data references, which are subsequences of the
reference trace.

We use the bursty tracing profiling framework [15], which is an
extension of the Arnold-Ryder framework [3]. The code of each
procedure is duplicated (see Figure 2). Both versions of the code
contain the original instructions, but only one version is
instrumented to also profile data references. Both versions of the
code periodically transfer control to checks at procedure entries or
loop back-edges. The checks use a pair of counters, nCheck and
nInstr, to decide in which version of the code execution should
continue.

At startup, nCheck is nCheck0 and nInstr is zero. Most of the time,
the checking code is executed, and nCheck is decremented at every
check. When it reaches zero, nInstr is initialized with nInstr0
(where nInstr0<<nCheck0) and the check transfers control to the
instrumented code. While in the instrumented code, nInstr is
decremented at every check. When it reaches zero, nCheck is
initialized with nCheck0 and control returns back to the checking
code.

The bursty tracing profiling framework does not require operating
system or hardware support and is deterministic. We implemented
it using Vulcan [32], (an executable-editing tool for x86, similar to
ATOM [31]), and hence it does not require access to program
source code or recompilation. The profiling overhead is easy to
control: there is a basic overhead for the checks, and beyond that
the overhead is proportional to the sampling rate r = nInstr0/
(nCheck0+nInstr0). Via nCheck0 and nInstr0, we can freely chose
the burst length and the sampling rate.

2.2 Extensions for Online Optimization
The counters nCheck0 and nInstr0 of the bursty tracing profiling
framework control its overhead and the amount of profiling
information it generates. For example, setting nCheck0 to 9900 and
nInstr0 to 100 results in a sampling rate of 100/10000=1% and a

burst length of 100 dynamic checks. We term nCheck0+nInstr0
dynamic checks a burst-period (see Figure 3).

For online optimization, we extended the bursty tracing framework
to alternate between two phases, awake and hibernating. The
profiler starts out awake and stays that way for nAwake0 burst-
periods, yielding nAwake0*nInstr0 checks's worth of traced data
references. Then, the online optimizer performs the optimizations;
after that, the profiler hibernates. This is done by setting nCheck0
to nCheck0+nInstr0 - 1 and nInstr0 to 1 for the next nHibernate0
burst-periods, where nHibernate0 >> nAwake0. When the
hibernating phase is over, the profiler is woken up by resetting
nCheck0 and nInstr0 to their old values (see Figure 3).

While the profiler is hibernating, it traces next to no data
references and hence incurs only the basic overhead of executing
checks. We designed the hibernation extension so that burst-
periods correspond to the same time (measured in executed
checks) in either phase (see Figure 3). This makes it easy to control
the relative length of the awake and hibernating phases using the
counters, nAwake0 and nHibernate0. Note that with our extension,
bursty tracing is still deterministic. Since our optimization is also
deterministic, executions of deterministic benchmarks are
repeatable, which helps testing. When nHibernate0 >> nAwake0 >>
1 and nChecking0 >> nInstr0 >>1 the sampling rate approximates
to

(nAwake0*nInstr0)/((nAwake0+nHibernate0)*(nInstr0+nCheck0)).

2.3 Fast Hot Data Stream Detection
Bursty tracing collects a temporal data reference profile. This must

A

B

A

B

A’

B’
checking
code

instrumented
code

back-
edge
check

entry-
check

modified procedure (bursty tracing)
original
procedure

(a) (b)

Figure 2. Instrumentation for low-overhead temporal profiling

awakephase hibernatingphase unit:
burst
period

unit:
phase

nAwake0 nHiberbate0

unit:
dynamic
check

nCheck0 nInstr0 nCheck0+nInstr0–1 1
checking profiling checking

time

Figure 3. Profiling timeline.

S

B

C

A

a b c

S -> AaBB

A -> ab

B-> CC

C -> Ac

abaabcabcabcabc

Input string

SEQUITUR
grammar

DAG representation

Figure 4. Sequitur grammar for w=abaabcabcabcabc.

201

be analyzed to find hot data streams. Our online profiling and
analysis framework first uses the Sequitur algorithm [23] to
compress the profile and infer its hierarchical structure. Each
observed data reference can be viewed as a symbol, and the
concatenation of the profiled bursts as a string w of symbols.
Sequitur constructs a context-free grammar for the language {w}
consisting of exactly one word, the string w. Sequitur runs in time
O(w.length). It is incremental (we can append one symbol at a
time) and deterministic. The grammar is a compressed
representation of the trace, it is unambiguous and acyclic in the
sense that no non-terminal directly or indirectly defines itself.
Figure 4 shows a Sequitur grammar for w=abaabcabcabcabc, and
its representation as a multi-dag.

Before describing our online analysis for finding hot data streams
from this Sequitur grammar, we review some definitions from [8].
A hot data stream is a data reference subsequence whose
regularity magnitude exceeds a predetermined heat threshold, H.
Given a data reference subsequence v, we define its regularity
magnitude as v.heat = v.length*v.frequency, where v.frequency is
the number of non-overlapping occurrences of v in the trace. Larus
describes an algorithm for finding a set of hot data streams from a
Sequitur grammar [21]; we use a faster, less precise algorithm that
relies more heavily on the ability of Sequitur to infer hierarchical
structure.

Our analysis algorithm uses the observation that each non-terminal
A of a Sequitur grammar generates a language L(A) = {wA} with
just one word wA. We define the regularity magnitude of a non-
terminal A as A.heat = wA.length*A.coldUses, where A.coldUses is
the number of times A occurs in the (unique) parse tree of the

complete grammar, not counting occurrences in sub-trees
belonging to hot non-terminals other than A. A non-terminal A is
hot iff minLen <= A.length <= maxLen and H <= A.heat, where H
is the predetermined heat threshold. The result of the analysis is the
set {wA | A is a hot non-terminal} of hot data streams.

Figure 5 shows pseudo-code for the analysis. We call a non-
terminal B, a child of another non-terminal A, if it occurs on the
right-hand side of the grammar rule for A. We assume that we
already have wA.length for each non-terminal A; this is easy to
maintain in Sequitur. The analysis first numbers the non-terminals
such that whenever B is a child of A, we have A.index < B.index.
This important property guarantees that in the rest of the algorithm,
we never visit a non-terminal before having visited all its
predecessors. Then, the algorithm finds how often each non-
terminal is used in the parse-tree of the grammar. Finally, it finds
hot non-terminals such that a non-terminal is only considered hot if
it accounts for enough of the trace on its own, where it is not part
of the expansion of other non-terminals. The running time of the
algorithm is linear in the size of the grammar.

Consider, for example, the grammar shown in Figure 4. Assume
the heat threshold, H = 8, and the length restrictions are minLen =
2, maxLen = 7. The values computed by the analysis are shown in
Figure 6 and Table 1. Note that the non-terminal C is completely
subsumed by the hot non-terminal B and therefore not considered
hot. Note that even though the non-terminal A also appears outside
of the parse trees of hot non-terminals, its regularity magnitude
A.heat = 2 does not exceed the heat threshold H. In this example,
we would find just one hot data stream wB = abcabc with heat 12
that accounts for 12/15=80% of all data references.

//find reverse post-order numbering for non-terminals

int next = nRules;

function doNumbering = lambda(NonTerminal A){

if(have not yet visited A){

for(each child B of A)

doNumbering(B);

next--;

A.index = next;

}

}

doNumbering(S);

//find uses for non-terminals, initialize coldUses to uses

for(each non-terminal A)

A.uses = A.coldUses = 0;

S.uses = S.coldUses = 1;

for(each non-terminal A, ascending order of A.index)

for(each child B or A)

B.uses = B.coldUses = (B.uses + A.uses);

//find hot non-terminals

for(each non-terminal A, ascending order of A.index){

A.heat = wA.length * A.coldUses;

fHot = minLen<=A.length<=maxLen && H<=A.heat;

if(fHot)

reportHotDataStream(wA, A.heat);

subtract = fHot ? A.uses : (A.uses-A.coldUses);

for(each child B of A)

B.coldUses = B.coldUses - subtract;

}

Figure 5. Algorithm for fast approximation of hot data streams.

S

A

B

C

B

abaabcabcabcabc

C CC

AA AA

parsetree

S

B

C

A

grammar
(omitting
terminals)

S

B

C

A

S

B

C

A

S

B

C

A

reverse
postorder
numbering

0

1

2

3

uses:
word
length

1:15

2:6

4:3

5:2

colduses:
word
length

1:15

2:6

0:3

1:2

Figure 6. Hot data stream analysis example.

X Child Length Index Use cold-
Use

Heat Report?

S A,B
,B

15 0 1 1 15 no, start

A - 2 3 5 1 2 no, cold

B C,C 6 1 2 2 12 yes

C A 3 2 4 0 0 no, cold

Table 1: Computed values for hot data stream analysis.

202

2.4 Discussion
Our online profiling and analysis framework implementation
batches and sends traced data references to Sequitur, as soon as
they are collected, rather than at the end of the awake phase. This
is possible since Sequitur constructs the grammar representation
incrementally. During the hibernation phase, our online profiler
enters the instrumented code once per burst period (see Figure 3).
These data references traced during hibernation are ignored by
Sequitur to avoid trace contamination and unnecessary additional
trace analysis overhead.

3. DYNAMIC PREFETCHING
Prior work has shown that the data references of programs have a
high degree of regularity [8]. A data reference r is a load or store of
a particular address, represented as a pair (r.pc,r.addr). Most data
references of a program take place in only a few hot data streams,
which are sequences of data references that repeat frequently, and
these account for most of the program’s cache misses [8]. For
example, if abacadae is a hot data stream, then the program often
performs a data access at a.pc from address a.addr, followed by a
data access at b.pc from address b.addr, and so on.

Our prefetching optimizer matches hot data stream prefixes, and
then issues prefetches for the remaining data stream addresses. For
example, given the hot data stream abacadae, when the optimizer
detects the data references aba, it prefetches from the addresses
c.addr,a.addr,d.addr,e.addr. Ideally, the data from these addresses
will be cache resident by the time the data references cadae take
place, avoiding cache misses and speeding up the program.

Figure 1 shows an overview of our optimizer. It profiles the
program to find hot data streams. When it has collected enough
profiling information, it stops profiling and injects code for
detecting prefixes and prefetching suffixes of hot data streams.
Then it continues running the optimized program. For long-
running applications, it may repeat these steps later. We use
dynamic Vulcan [32], which is an executable editing tool similar to
ATOM [31], to edit the binary of the currently executing program.

3.1 Generating Detection and Prefetching
Code

After the profiling and analysis phase finds the hot data streams,
the optimizer must match their prefixes and prefetch their suffixes.
The optimizer uses a fixed constant headLen to divide each hot
data stream v = v1v2...v{v.length} into a head v.head = v1v2...vheadLen
and a tail v.tail = v{headLen+1}v{headLen+2}...v{v.length}. When it
detects the data references of v.head, it prefetches from the
addresses of v.tail.

Consider how we might match and prefetch when headLen = 3 and
there is only one hot data stream, v = abacadae. The detection/
matching code makes use of a counter v.seen, that keeps track of
how much of v.head has been matched. When v.seen = 0 nothing
has been matched, when v.seen = 1, we have a partial match a,
when v.seen = 2, we have a partial match ab, and when v.seen = 3
we have a complete match for v.head = abc, and prefetch from the
addresses in v.tail, i.e. from addresses c.addr, a.addr, d.addr,
e.addr. To drive v.seen, we need to insert detection and prefetching
code at the pc's of v.head that make comparisons to the addresses
of v.head and the variable v.seen. Figure 7 shows pseudo-code for
this.

Note in Figure 7 that we have exploited the fact that the same
symbol a occurs multiple times in v.head = aba. Also note that we
treat the cases of initial, failed, and complete matches specially.
The initial match of data reference a works regardless of how much
of v.head we have seen. A failed match resets v.seen to 0. A

a.pc: if(accessing a.addr){

if(v.seen == 2){

v.seen = 3;

prefetch c.addr,a.addr,d.addr,e.addr;

}else{

v.seen = 1;

}

}else{

v.seen = 0;

}

b.pc: if(accessing b.addr)

if(v.seen == 1)

v.seen = 2;

else

v.seen = 0;

else

v.seen = 0;

Figure 7. Inserted prefetching code for stream abacadae.

s 0

s 1

s 2

s 3

s 4

s 5

s 6

a

b

a

a

a
a

b
a

b
b

b
b

g

b

a

{ }

{ [v , 1] } { [v , 2] , [w , 1] } { [v , 3] , [v , 1] }

{ [w , 1] } { [w , 2] } { [w , 3] }

Figure 8. Prefix-matching DFSM for hot data streams v=abacadae and w=bbghij.

203

complete match, besides driving v.seen, prefetches the addresses
in v.tail. Finally, note that it is possible that a.pc == b.pc, in which
case the if(accessing b.addr) clause would appear in a.pc's
instrumentation.

Now that we know how to detect the head and prefetch the tail of a
single hot data stream, there is a straight-forward way to do it for
multiple hot data streams. We could introduce one variable v.seen,
for each hot data stream v, and inject the code independently.
While this simple approach works, it may lead to a lot of redundant
work. Consider, for example, the hot data streams v = abacadae
and w = bbghij. When v.seen == 2, we know that w.seen == 1, so
we could save some work by combining the matching of v and w.
This even holds inside one hot data stream: when w.seen == 2 and
we observe another b, we should keep w.seen = 2.

Conceptually, each hot data stream v corresponds to a deterministic
finite state machine (DFSM) v.dfsm, where the states are
represented by v.seen and the detection code implements the
transitions. Instead of driving one DFSM per hot data stream, we
would like to drive just one DFSM that keeps track of matching for
all hot data streams simultaneously. By incurring the one-time cost
of constructing the DFSM, we make the frequent detection and
prefetching of hot data streams faster.

Figure 8 illustrates a prefix-matching DFSM that simultaneously
tracks hot data streams abacadae and bbghij. Before we describe
how to come up with a DFSM that matches all hot data streams
simultaneously, let us consider how we would generate code to
drive it. Without loss of generality, let S = {0,...,m} be the set of
states and let A be the set of data references (symbols) that appear
in prefixes of hot data streams. The transition function d:S*A-->S
indicates that when you are in a state s and observe the data
reference a, you drive the state to s' = d(s,a). In other words, a.pc
has instrumentation of the form

a.pc: if((accessing a.addr) && (state==s))

state = s';

Additionally, some states s in S would be annotated with prefetches
s.prefetches, for the suffixes of the streams that have been
completely matched when state s is reached. Thus, the
instrumentation would become

a.pc: if((accessing a.addr) && (state==s)){

state = s';

prefetch s'.prefetches;

}

We again treat the cases of initial, failed, and complete matches
specially as indicated in Figure 7. Note that besides combining
matches for the same address, but different states under the same
outer if branch, we can sort the if-branches in such a way that more
likely cases come first. This further reduces the work for detecting
prefixes of hot data streams.

Now let us examine how to construct a DFSM that matches all hot
data streams simultaneously. A state is a set of state elements,
where state element e is a pair of a hot data stream
e.hotDataStream and an integer e.seen. If the current state is
s={[v,2],[w,1]} this means the prefix matcher has seen the first two
data accesses of the hot data stream v, and the first data access of
hot data stream w, and no data accesses of any other hot data
streams. State s0 = {} is the start state where nothing has been
matched.

Let s be a state and a be a data reference. The transition function
d:S*A-->A yields a target state (set of state elements) as follows:

d(s,a) = {[v,n+1] | n<headLen && [v,n] in s && a==v{n+1}}

union {[w,1] | a==w1}

We construct the DFSM with a lazy work-list algorithm starting
from s0. We represent the DFSM as a directed graph, where the
nodes are reachable states and a transition d(a,s) is stored as an
edge from s to d(a,s) labelled with a. We do not explicitly represent
any edges to the start state. Figure 9 shows the pseudo-code. Let n
be the number of hot data streams, and n <= 100 if H is set such
that each hot data stream covers at least 1% of the profile. Then
there are headLen*n different state elements and thus up to
2(headLen*n)=O(2n) different states. We have never observed this
exponential blow-up; we usually find close to headLen*n+1 states.

3.2 Injecting Detection and Prefetching Code
Our online optimizer uses dynamic Vulcan to inject the detection
and prefetching code into the running benchmark image [32].
Dynamic Vulcan stops all running program threads while binary
modifications are in progress and restarts them on completion. For
every procedure that contains one or more pc’s for which the
optimizer wants to inject code, it does the following. First, it makes
a copy of the procedure. Second, it injects the code into the copy.
Third, it overwrites the first instruction of the original with an
unconditional jump to the copy. When the optimizer wants to
deoptimize later, it need only remove those jumps.

Note that we do not patch any pointers to the original code of
optimized procedures in the data of the program. In particular, the
return addresses on the stack still refer to the original
procedures. Hence, we will return to original procedures for at
most as many times as there were activation records on the stack at
optimization time. This is safe, but may lead to a few missed

add {} to the workList;

while(!workList.isEmpty){

take state s out of workList;

function addTransition = lambda(Symbol a){

if(s doesn't yet have a transition for a){

s' = {[v,n+1] | n<headLen && [v,n] in s &&

a==v{n+1}} union {[w,1] | a==w1}

if(s' doesn't yet exist){

add s' to the states of the DFSM;

add s' to the workList;

}

if(s' != {})

introduce the transition (a,s') for s;

}

}

for(each state element e in s)

if(e.seen < headLen)

addTransition(e.hotDataStreame.seen+1);

for(each symbol a for which there

exists a hot data stream v with v1==a)

addTransition(a);

}

Figure 9. Algorithm for prefetching FSM construction.

204

prefetching opportunities.

Figure 10 shows how our system uses Vulcan. Before execution,
static Vulcan modifies the x86 binary of the benchmark to
implement the bursty tracing framework from Section 2.1. The
resulting modified binary is linked with the runtime system of our
dynamic optimizer, which includes code for the algorithms
described in Section 2.3 and Section 3.1.

4. EXPERIMENTAL EVALUATION
This section evaluates our online profiling and analysis framework
and investigates the performance impact of dynamic prefetching.

4.1 Experimental Methodology
The programs used in this study include several of the memory-
performance-limited SPECint2000 benchmarks, and boxsim, a
graphics application that simulates spheres bouncing in a box. We
applied our dynamic prefetching framework to these benchmarks
and used the prefetcht0 instruction supplied on the Pentium III to
prefetch data into both levels of the cache hierarchy. The following
framework settings were used for all experiments, unless men-
tioned otherwise. The bursty tracing sampling rate was set at 0.5%
during the active profiling period, with profiling bursts extending
through 60 dynamic checks (i.e., nCheck0=11,940 and nInstr0=
60). The online optimization controls were set to actively profile
and analyze 1 second of every 50 seconds of program execution,
where active periods are 50 burst periods long (i.e., nAwake0 = 50,

nHibernate0 = 2,450). The hot data stream analysis detected
streams that contain more than 10 references, and account for at
least 1% of the collected trace. These settings are not the result of
careful tuning; rather our experience indicates that a fairly broad
range of reasonable settings performs equivalently. Measurements
were performed on a uniprocessor 550 Mhz Pentium III PC with
512 MB of memory, 256 KB, 8-way L2, and 16KB, 4-way L1 data
cache, both with 32 byte cache blocks, running Windows 2000
Server. The SPEC benchmarks were run with their largest input
data set (ref). boxsim was used to simulate 1000 bouncing spheres.
All measurements report the average of five runs.

4.2 Evaluating the Online Profiling and Analy-
sis Framework

Figure 11 reports the overhead of our online profiling and analysis
infrastructure. The Basic bar indicates the overhead of just the
dynamic checks without (virtually) any data reference profiling.
This is measured by setting nCheck0 to an extremely large value
and nInstr0 to 1. We applied the techniques described in [15] to
reduce this dynamic check overhead. It is important that this over-
head be small since any dynamic optimization must overcome this
to produce performance improvements. In addition, unlike other
sampling-related overhead, this cannot be reduced by changing the
framework’s counter settings. As Figure 11 shows, this overhead is
reasonably low, ranging from around 2.5% for boxsim to 6% for
parser. The Prof bar indicates the overhead of collecting the tempo-
ral data reference trace at the counter settings discussed in Section
4.1. Data reference profiling at this sampling rate adds very little
additional overhead, which ranges from almost nothing for mcf to
1.6% overhead for vortex. Thus, we can collect sampled temporal
data reference profiles for all our benchmarks with a maximal
overhead of only 6.5%, in the case of twolf and parser. Finally, the
Hds bar indicates the overhead of collecting the temporal data ref-
erence profiles and analyzing them to detect hot data streams
according to the parameters in Section 4.1. Again, this adds very
little overhead; vortex at 1.4% incurs the largest additional over-
head. Considering all three contributors to overhead, we see that at
the current sampling rate most of the overhead arises from the
dynamic checks. The overall overhead of our online profiling and
analysis is reasonably low, and ranges from around 3% for mcf to
7% for parser and vortex. Any dynamic optimization based on hot
data streams, that operates in our framework must produce greater
improvements than this to positively impact overall program per-
formance.

original
binary

modified
binary

instrument
for profiling

inject detection
and prefetching
code

dynamic
optimizer
runtime

dynamic
Vulcan

original
benchmark self-optimizing benchmark

Figure 10. Dynamic Injection of Prefetching Code.

Figure 11. Overhead of online profiling and analysis.

0

1

2

3

4

5

6

7

8

9

10

vpr mcf twolf parser vortex boxsim

%
o

ve
rh

ea
d

Base

Prof

Hds

205

4.3 Dynamic Prefetching Evaluation
Figure 12 shows the overall impact of our dynamic prefetching
scheme on program performance, normalized to the execution time
of the original unoptimized program. The Y axis measures
percentage overhead; positive values indicate performance
degradation, and negative values indicate speedups. The No-pref
bars report the cost of performing all the profiling, analysis and hot
data stream prefix matching, yet not inserting prefetches. This
measures the overhead of our dynamic prefetching analysis, which
must be overcome by effective prefetching to yield net
performance gains. The prefix-match checks add an additional
0.5% (mcf, parser) to 4% (boxsim) overhead compared with the
hot data stream analysis (compare No-pref with Hds bar in Figure
11), for a configuration that matched the first two references of a
hot data stream prior to initiating prefetching. Changing this to
match a single data stream element before initiating prefetching
lowered this overhead, but at the cost of less effective prefetching,
yielding a net performance loss. Matching the first three data
stream elements before initiating prefetching increased this
overhead without providing any corresponding benefit in
prefetching accuracy, resulting in a net performance loss as well..
In addition, our current implementation makes no attempt to
schedule prefetches (they are triggered as soon as the prefix
matches). More intelligent prefetch scheduling could produce
larger benefits.

The Seq-pref bars measures the benefit of a prefetching scheme
that uses the hot data stream analysis to insert dynamic prefetches
at appropriate program points, but ignores the data stream
addresses. Instead, it prefetches cache blocks that sequentially
follow the last prefix-matched hot data stream reference (i.e., the
stream reference, which when matched, causes the prefetch
sequence to be initiated). This scheme is equivalent to our dynamic
prefetching scheme if hot data streams are sequentially allocated.
The data indicates that with the sole exception of parser, which has
several sequentially allocated hot data streams and runs around 5%
faster overall, none of the benchmarks benefit from this approach.
The other benchmarks suffer performance degradations that range
from 7% (mcf) to 12% (twolf), which indicates that these
prefetches pollute the cache.

Finally, the Dyn-pref bars reports the performance of our dynamic
prefetching implementation (achieved by setting the hot data
stream prefix matching length to 2). Prefetching produces a net
performance improvement of 5% (vortex) to 19% (vpr). This is
despite the 4–8% overhead that the prefetching has to overcome to
show net performance improvements. Comparing these results to
the Seq-pref numbers highlights the importance of using the hot
data streams addresses as prefetch targets. In addition, manual
examination of the hot data addresses indicates that many will not
be successfully prefetched using a simple stride-based prefetching
scheme. However, a stride-based prefetcher could complement our

Figure 12. Performance impact of dynamic prefetching.

-20

-15

-10

-5

0

5

10

15

20

vp
r

m
cf

tw
olf

pa
rse

r

vo
rte

x

bo
xs

im%
o

ve
rh

ea
d

No-pref

Seq-pref

Dyn-Pref

Table 2: Detailed dynamic prefetching characterization

Benchmark
of opt.
cycles

of traced refs
(per cycle avg.)

of hds
(per cycle avg.)

of DFSM states,
transitions (per cycle avg.)

of procs. modified
(per cycle avg.)

vpr 17 83,231 41 <79 states, 68 checks> 7

mcf 36 72,537 37 <75 states, 74checks> 6

twolf 55 87,981 25 <42 states, 41checks> 11

parser 4 73,244 21 <43 states, 42 checks> 9

vortex 3 67,852 14 <29 states, 28 checks> 12

boxsim 19 87,818 23 <40 states, 36 checks> 7

206

scheme by prefetching data address sequences that do not qualify
as hot data streams.

Table 2 provides a more detailed characterization of our dynamic
prefetching implementation. The second column indicates the
number of prefetch optimization cycles performed during program
execution. Longer running programs produce a greater number of
these optimization cycles. The next three columns show the
number of traced references, hot data streams detected, and the size
of the DFSMs used for prefix matching, all averaged on a per
optimization cycle basis. The last column contain the number of
procedures modified to insert prefix-match checks or prefetches,
again averaged on a per cycle basis. The results indicate that the
prefetching benefits arise from targeting a small set of program hot
data streams.

5. RELATED WORK
This section discusses related work on prefetching and software
dynamic optimization.

5.1 Prefetching
Prefetching is a well known optimization that attempts to hide
latency resulting from poor reference locality. We are concerned
with data prefetching (as opposed to instruction prefetching) into
the processor cache. Prefetching mechanisms can be classified as
software prefetching (using non-blocking load instructions
provided by most modern processors) and hardware prefetching
(extending the memory management subsystem architecture).
Prefetching mechanisms can also be characterized by the kind of
regularity they require of the target program and by their degree of
automation. We review only the most closely related techniques
here; a survey of prefetching techniques is [35].

Early prefetching techniques mainly focused on improving the
performance of scientific codes with nested loops that access dense
arrays. Both software and hardware techniques exist for such
regular codes. The software techniques use program analysis to
determine the data addresses needed by future loop iterations, and
employ program transformations, such as loop unrolling and
software pipelining to exploit that information [20, 24]. Hardware
prefetching techniques include stride prefetchers and stream
buffers. Stride prefetchers learn if load address sequences are
related by a fixed delta and then exploit this information to predict
and prefetch future load addresses [7]. Stream buffers can fetch
linear sequences of data and avoid polluting the processor cache by
buffering the data [17]. These techniques are mostly limited to
programs that make heavy use of loops and arrays, producing
regular access patterns.

Jump pointers are a software technique for prefetching linked data
structures, overcoming the array-and-loop limitation. Artificial
jump pointers are extra pointers stored into an object that point to
an object some distance ahead in the traversal order. On future
traversals of the data structure, the targets of these extra pointers
are prefetched. Natural jump pointers are existing pointers in the
data structure used for prefetching. For example, greedy
prefetching makes the assumption that when a program uses an
object o, it will use the objects that o points to, in the near future,
and hence prefetches the targets of all pointer fields. These
techniques were introduced by Luk and Mowry in [22] and refined
in [5, 18]. Stoutchinin et al. describe a profitability analysis for
prefetching with natural jump pointers [33]. A limitation of these
techniques is that their static analyses are restricted to regular
linked data structures accessed by local regular control structures.

Various hardware techniques, related to greedy prefetching, have

been proposed for prefetching linked data structures. In
dependence-based prefetching, producer-consumer pairs of loads
are identified, and a prefetch engine speculatively traverses and
prefetches them [26]. Dependence-based prefetching has also been
combined with artificial jump-pointer prefetching in software or
hardware [27]. In dependence-graph precomputation, a backward
slice of instructions in the instruction fetch queue is used to chose a
few instructions to execute speculatively to compute a prefetch
address [1]. And in content-aware prefetching, data that is brought
in to satisfy a cache miss is scanned for values that may resemble
addresses, and those addresses are used for prefetching [12].

The hardware technique that best corresponds to history-pointers is
correlation-based prefetching. As originally proposed, it learns
digrams of a key and prefetch addresses: when the key is observed,
the prefetch is issued [6]. Joseph and Grunwald generalized this
technique by using a Markov predictor [16]. Nodes in the Markov-
model are addresses, and the transition probabilities are derived
from observed digram frequencies. Upon a data cache miss to an
address that has a node in the Markov model, prefetches for a fixed
number of transitions from that address are issued, prioritized by
their probabilities.

Our techniques differs from prior software prefetching techniques
in at least three ways. First, it is profile-based and does not rely on
static analysis. Second, being profile-based it works for arbitrary
data structure traversals. Finally, it is a dynamic technique that is
capable of adaptation as the program executes. Our dynamic
prefetching is most similar to correlation-based hardware
prefetching in that it observes past data accesses to predict future
accesses. Unlike the correlation-based prefetchers mentioned
above, it is a software technique that can be easily configured and
tuned for a particular program, performs more global access
pattern analysis, and is capable of using more context for its
predictions than digrams of data accesses.

5.2 Software Dynamic Optimization
Common examples of software dynamic optimizers are some of
the more sophisticated Java virtual machines such as Intel's
Microprocessor Research Lab VM [11], Sun's HotSpot VM [25],
and IBM's Jikes RVM [2]. All of these contain just-in-time
compilers and use runtime information to concentrate optimization
efforts on frequently executing methods. Unlike our system, they
do not focus on memory hierarchy optimizations, and possess only
limited cross-procedure optimization capabilities.

Recently, some dynamic optimizers that operate on compiled
object code have been proposed. The Wiggins/Redstone system
uses hardware performance counters to profile a program
executing on the Alpha processor, and optimizes single-entry
multiple-exit regions of hot basic blocks [13]. The University of
Queensland Dynamic Binary Translator translates an program that
is compiled for one architecture just in time for execution on
another architecture, and collects a full edge-weight profile to
identify groups of connected hot blocks for optimization [34]. The
Dynamo system interprets a program to collect a basic block
profile. Once a basic block reaches a heat threshold, Dynamo
considers the linear sequence of blocks executed directly
afterwards as a hot path, which it then optimizes [4]. All of these
systems optimize code in hot control paths that may cross
procedure boundaries. Unlike our system, they do not focus on
memory hierarchy optimizations.

A few dynamic memory hierarchy optimizers implemented in
software do exist. Saavedra and Park dynamically adapt the
prefetch distance of array-and-loop software prefetching to the

207

changing latencies of a NUMA architecture [29]. They also discuss
adaptive profiling: when profiling information changes, the
profiler starts polling more frequently. This idea may be a useful
extension to our simpler hibernation approach. Chilimbi and Larus
use a copying generational garbage collector to improve reference
locality by clustering heap objects according to their observed data
access patterns [9]. Harris performs dynamic adaptive pretenuring
for Java programs by identifying allocation sites that often allocate
long-lived objects [14]. His system modifies these allocations to
directly place objects into the old generation of a generational
garbage collector, saving the work of repeatedly scanning them in
the young generation. Kistler and Franz reorder fields in objects so
fields accessed together reside in the same cache block, and
discuss how this can be done during copying garbage collection
[19].

5.3 State Machine Predictor Generation
Sherwood and Calder propose an algorithm that generates FSM
predictors from temporal profiling data [30]. In their case study,
the profile is a trace of branch executions. Each FSM is driven by
the global branch direction bitstring, and predicts whether a
particular branch is taken or not taken. While we also generate an
FSM predictor from temporal profiling data, there are some
fundamental differences to the Sherwood-Calder approach. First of
all, Sherwood and Calder generate FSM predictors in hardware for
special-purpose processors, while we use a dynamic software
approach. They restrict FSMs to be driven by bitstrings and predict
a single bit (one step of their FSM generation algorithm represents
the predictor by a boolean formula), while we predict sets of
prefetch addresses. They use fixed-sized histories, while our hot
data streams are variable-length. They drive several FSMs in
parallel, while we combine all FSMs into one.

6. CONCLUSIONS
This paper describes a dynamic software prefetching framework
for general-purpose programs. The prefetching scheme runs on
stock hardware, is completely automatic, and can handle codes that
traverse pointer-based data structures. It targets a program’s hot
data streams, which are consecutive data reference sequences that
frequently repeat in the same order. We show how to detect hot
data streams online with low-overhead, using a combination of
bursty tracing and a fast hot data stream analysis algorithm. Our
experimental results demonstrate that our prefetching technique is
effective, providing overall execution time improvements of 5–
19% for several memory-performance-limited SPECint2000
benchmarks running their largest (ref) inputs.

7. REFERENCES
[1] M. Annavaram, J. Patel, and E. Davidson. “Data prefetching by

dependence graph precomputation.”In International Sympo-
sium on Computer Architecture (ISCA), 2001.

[2] M. Arnold et al. “Adaptive optimization in the Jalapeno JVM”,
In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2000.

[3] M. Arnold, and B. Ryder. “A Framework for Reducing the Cost
of Instrumented Code.” In ACM SIGPLAN’01 Conference on
Programming Languages Design and Implementation (PLDI),
2001.

[4] V. Bala, E. Duesterwald, and S. Banerjia. “Dynamo: A transpar-
ent dynamic optimization system.” In ACM SIGPLAN’00 Con-
ference on Programming Languages Design and
Implementation (PLDI), 2000.

[5] B. Cahoon, and K. McKinley. “Data flow analysis for software
prefetching linked data structures in Java.” In International
Conference on Parallel Architectures and Compilation Tech-
niques (PACT), 2001.

[6] M. Charney, and A. Reeves. “Generalized correlation based
hardware prefetching.” Tech report EE-CEG-95-1, Cornell
University, 1995.

[7] T. Chen, and J. Baer.” Reducing memory latency via non-block-
ing and prefetching caches.”In Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),1992.

[8] T.M. Chilimbi. “Efficient Representations and Abstractions for
Quantifying and Exploiting Data Reference Locality.” In Pro-
ceedings of the ACM SIGPLAN’01 Conference on Program-
ming Language Design and Implementation, June 2001

[9] T. M. Chilimbi, and J. R. Larus. “Using generational garbage
collection to implement cache-conscious data placement.” In
Proceedings of the 1998 International Symposium on Memory
Management, Oct. 1998.

[10] T. M. Chilimbi. “On the stability of temporal data reference
profiles.” In International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), 2001.

[11] M. Cierniak, G. Lueh, and J. Stichnoth. “Practicing JUDO:
Java under dynamic optimizations.” In ACM SIGPLAN’00
Conference on Programming Languages Design and Imple-
mentation (PLDI), 2000.

[12] R. Cooksey, D. Colarelli, and D. Grunwald, “Content-based
prefetching: Initial results”, In Workshop on Intelligent Memo-
ry Systems, 2000.

[13] D. Deaver, R. Gorton, and N. Rubin, ”Wiggins/Redstone: An
online program specializer.”, In Hot Chips, 1999.

[14] T. Harris. “Dynamic adaptive pre-tenuring.” In International
Symposium on Memory Management (ISMM), 2000.

[15] M. Hirzel and T. Chilimbi. “ Bursty Tracing: A Framework for
Low-Overhead Temporal Profiling”, In Workshop on Feed-
back-Directed and Dynamic Optimizations (FDDO), 2001.

[16] D. Joseph and D. Grunwald. “ Prefetching using Markov pre-
dictors”, In International Symposium on Computer Architec-
ture (ISCA), 1997.

[17] N. Jouppi. “Improving direct-mapped cache performance by
the addition of a small fully associative cache and prefetch buff-
ers”, In International Symposium on Computer Architecture
(ISCA), 1990.

[18] M. Karlsson, F. Dahlgren, and P. Stenstrom. “A Prefetching
Technique for Irregular Accesses to Linked Data Structures, In
High Performance Computer Architectures (HPCA), 1999.

[19] T. Kistler and M. Franz. “Automated data-member layout of
heap objects to improve memory-hierarchy performance.” In
Transactions on Programming Languages and Systems (TO-
PLAS), 2000.

[20] A. Klaiber and H. Levy. “An architecture for software-con-
trolled data prefetching.” In International Symposium on Com-
puter Architecture (ISCA), 1991.

[21] J. R. Larus. “Whole program paths.” In Proceedings of the
ACM SIGPLAN’99 Conference on Programming Language
Design and Implementation, pages 259-269, May 1999.

208

[22] C. K. Luk, and T. Mowry. “Compiler-based prefetching for re-
cursive data structures.” In Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 1996

[23] C. G. Nevill-Manning and I. H. Witten. “Linear-time, incre-
mental hierarchy inference for compression.” In Proceedings of
the Data Compression Conference (DCC’97), 1997.

[24] T. Mowry, M. Lam, and A. Gupta. “Design and Analysis of a
Compiler Algorithm for Prefetching.”, In Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), 1992.

[25] M. Paleczny, C. Vick, and C. Click. “The Java HotSpot server
compiler.”, In USENIX Java Virtual Machine Research and
Technology Symposium (JVM), 2001.

[26] A. Roth, A. Moshovos, and G. Sohi. “Dependence based
prefetching for linked data structures.” In Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), 1998.

[27] A. Roth and G. Sohi. “Effective jump pointer prefetching for
linked data structures.” In International Symposium on Com-
puter Architecture (ISCA), 1999.

[28]S. Rubin, R. Bodik, and T. Chilimbi. “An Efficient Profile-
Analysis Framework for Data-Layout Optimizations.” In Prin-
ciples of Programming Languages, POPL’02, Jan 2002.

[29] R. Saavedra and D. Park. “Improving the effectiveness of soft-
ware prefetching with adaptive execution.” In International
Conference on Parallel Architectures and Compilation Tech-
niques (PACT), 1996.

[30] T. Sherwood and B. Calder. “Automated design of finite state
machine predictors for customized processors.” In Internation-
al Symposium on Computer Architecture (ISCA), 2001.

[31] A. Srivastava and A. Eustace. “ATOM: A system for building
customized program analysis tools.” In Proceedings of the
ACM SIGPLAN’94 Conference on Programming Language
Design and Implementation, pages 196-205, May 1994.

[32] A. Srivastava, A. Edwards, and H. Vo. “Vulcan: Binary trans-
formation in a distributed environment.”, In Microsoft Re-
search Tech Report, MSR-TR-2001-50, 2001.

[33] A. Stoutchinin et al. “Speculative prefetching of induction
pointers.” In International Conference on Compiler Construc-
tion (CC), 2001.

[34] D. Ung, and C. Cifuentes.”Opimising hot paths in a dynamic
binary translator.”In Workshop on Binary Translation, 2000.

[35] S. VanderWiel, and D. Lilja. “Data prefetch mechanisms”, In-
ACM Computing Surveys, 2000.

209

