
Streams that Compose using Macros that Oblige

Martin Hirzel Buğra Gedik
IBM Watson Research Center
{hirzel,bgedik}@us.ibm.com

Abstract
Since the end of frequency scaling, the programming languages
community has started to embrace multi-core and even distributed
systems. One paradigm that lends itself well to distribution is
stream processing. In stream processing, an application consists
of a directed graph of streams and operators, where streams are in-
finite sequences of data items, and operators fire in infinite loops to
process data. This model directly exposes parallelism, requires no
shared memory, and is a good match for several emerging applica-
tion domains. Unfortunately, streaming languages have so far been
lacking in abstraction. This paper introduces higher-order compos-
ite operators, which encapsulate stream subgraphs, and contracts,
which specify pre- and post-conditions for composites. Composites
are expanded at compile time, in a manner similar to macros. Their
contractual obligations are also checked at compile-time. We build
on existing work on macros and contracts to implement higher-
order composites. The user-visible language features provide a
consistent look-and-feel for the streaming language, whereas the
underlying implementation provides high-quality static error mes-
sages and prevents accidental name capture.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Performance, Reliability

1. Introduction
The research for this paper was triggered by the requirement to
make it easier to reuse SPL code [10]. SPL is the streaming lan-
guage for IBM’s InfoSphere Streams platform. An SPL program
describes a stream graph in which directed edges are streams of
data, and vertices are operators that transform streams. Operators
run continuously, and since they are parallel and communicate only
via streams, the system can distribute them on a shared-nothing
cluster for scaling. SPL and its platform have been applied in di-
verse domains, including but not limited to algorithmic trading,
telecommunications, traffic monitoring, health care, and large-scale
data analysis. As users started to build more and more sophisticated
applications, SPL needed better abstraction features.

A composite operator encapsulates a stream subgraph. It helps
avoid repetitive code, because the subgraph is written only once,
but gets expanded in each place the composite is used. We wanted
to add higher-order composites to SPL, meaning they can take

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’12, January 23–24, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1118-2/12/01. . . $10.00

other operators, including other composites, as parameters. The
benefit of a composite that takes other operators as parameters is
that it abstracts over the shape of a subgraph with details to be
filled in. And the benefit of permitting any operators, including
composites, as parameters is generality and orthogonality.

Pipeline SplitMerge FeedbackLoop

While MapConcat Eddy Exchange

Figure 1. Example higher-order composite stream processing op-
erators. White vertices indicate parameter operators.

Figure 1 shows several common higher-order composites.
Pipeline, SplitMerge, and FeedbackLoop are built into the
StreamIt language [20]; in SPL, they are not built-in, but can be
user-defined. While helps express iterative algorithms such as
PageRank [15]; Exchange reshuffles data between parallel seg-
ments [8]; MapConcat is useful for translating nested-relational
algebra [16]; and Eddy encapsulates an online feedback-directed
optimization [2]. SPL is the first streaming language that allows
users to define these and more higher-order composites. Our de-
sign had the following objectives:

• Consistent look-and-feel. Using a composite operator should
feel just like using a primitive operator. Furthermore, the def-
inition of a composite operator should follow the same graph-
of-operators model as the rest of the language.

• Hygiene [13]. Composite operator expansion should not lead to
accidental name capture.

• Good error messages. If there are errors during expansion, their
messages should be concise and understandable based on the
signature, not the implementation, of the composite.

Much like macros, stream graphs are expanded at compile time.
The literature on macros has established solutions for hygiene, for
instance, macros that work [4]. And the literature on higher-order
functions has established solutions for obtaining good error mes-
sages via contracts, in other words, preconditions and postcon-
ditions [7]. Intuitively, we felt that these techniques should help
satisfy the requirements of look-and-feel, hygiene, and good error
messages for composites. However, macros and higher-order con-
tracts have not been combined with each other in prior published
literature. Hence, the research questions were: how can we adapt
established techniques for macros and contracts such that they can
be combined? And how can we then use macros and contracts to
expand composite operators in SPL?

The main challenges were supporting an intuitive syntax, and
dividing the responsibility for each of the objectives between

141

OL: Composites + contracts

Stream subgraphs

(Expand)
Translate

Evaluate

OL: Flat stream graph

IL: Macros + contracts

Opaque fragments

Figure 2. Compiler steps for Streams that Compose.

the compiler components, such that each component has just the
knowledge it needs. Figure 2 outlines our solution. We refer to
SPL as the object-language (OL). The goal is to expand a program
with composites that encapsulate subgraphs into a flat OL stream
graph. We accomplish that in two steps: the first step, which is
OL-dependent, translates from SPL to an intermediate language
(IL). The IL is a simple functional language that supports macros
with contracts. Macros encapsulate fragments of OL code; we set
things up such that the fragments are opaque, in other words, the in-
terpreter for the IL need not know their meaning. The second step,
which is OL-independent, evaluates the IL code with the interpreter
and yields the expanded flat OL stream graph. Separating the two
steps helped us obtain a cleaner implementation, and also a cleaner
description in this paper so readers can separately understand the
components. The contributions of this paper are:

• The design of higher-order composite operators for the SPL
stream processing language.

• Compile-time contracts for composites in stream processing.
• An approach for implementing composites by translation to an

intermediate language with macros and contracts.

We have implemented the SPL language in our production com-
piler. The customer response has been extremely encouraging. This
paper describes both the design and the implementation of compos-
ites, which make it easier for SPL users to build distributed stream
processing applications. While this paper uses macros that oblige
to implement a streaming language, it has a broader impact. Since
higher-order macros are effective at avoiding repetitive code, they
are widely used in practice, including the C preprocessor (the popu-
lar Boost library provides higher-order macros) and C++ templates
(which are effectively a higher-order macro-like language feature).
This paper shows a way to make higher-order macros more robust.

2. Macros with Contracts
This section describes our intermediate language, which adds con-
tracts to higher-order macros. The advantage of macros is that they
extend their base language and avoid repetitive code, but the draw-
back is that error messages can be hard to understand, because they
refer to implementation details of the macro. Contracts fix that,
since contract error messages refer to the pre- and post-conditions,
not the implementation, of a macro. No background on stream pro-
cessing is needed to understand this section.

2.1 Intermediate Language
The design of the intermediate language (IL) is shaped by the
following goals: first, it obviously needs to support both macros
and contracts. The macros need to be higher-order, and they need
to support object-language (OL) hygiene. At the same time, the
IL should be independent of the OL: while the IL can express
macros that generate OL code, the IL semantics should not be
intertwined with the OL. As Figure 2 shows, the IL is the target
of a translator from OL, and the source of an interpreter that
evaluates IL. Therefore, it must strike the right balance between
expressiveness (to make the translator easy to write) and simplicity
(to make the evaluator easy to write).

expr ::= primExpr | prefixExpr | infixExpr | listExpr | indexExpr
| recordExpr | attribExpr | ifExpr | letExpr | callExpr
| fnExpr | quoteExpr

The start symbol of the IL grammar is the expression. Before elab-
orating on the individual expression kinds, we need some overview
information. The IL manipulates seven kinds of values: booleans,
integers, strings, lists, records, closures, and fragments. The last
two are the most interesting: a closure is a function value, created
by fnExpr and called by callExpr; and a fragment is an opaque piece
of OL code, created by quoteExpr but never evaluated by the IL in-
terpreter. A macro is a function that returns a fragment. There is no
separate kind of value or expression for contracts; as we shall see,
contracts are syntactically part of fnExpr, and their values are com-
posed of normal records and functions. An intrinsic function can be
called like any other function, but is implemented as a special case
by the interpreter. Intrinsics access internals of the interpreter to
implement functionality that cannot be expressed otherwise, such
as finding the line number of the caller on the call-stack.

2.1.1 Core IL Features
The core expressions of the IL are unsurprising and are listed here
for completeness. For each expression, we first show the syntax
rules, followed by a description paragraph.

primExpr ::= ID | LITERAL | ‘(’ expr ‘)’
A primitive expression can be an identifier like x; a literal like
true, 42, or "Hello"; or a parenthesized expression like (x+y).

prefixExpr ::= ‘!’ expr | ‘-’ expr
A prefix expression can be a logical negation like !isDone; or an
arithmetic negation like -(x+y).

infixExpr ::= expr infixOp expr
An infix expression like isDone || (x+y == 0) consists of two
expressions connected by an infix operator, including C-style arith-
metic, logic, and comparison operators with their usual precedence.

listExpr ::= ‘[’ expr∗ ‘]’
A list expression constructs a list value from zero or more comma-
separated elements, like [42, x+y, -1]. Lists can contain any
kinds of values, including other lists, records, closures, or frag-
ments. Lists are implemented as arrays.

indexExpr ::= expr ‘[’ expr ‘]’
An index expression accesses a list element, like a[2]. Indexing is
0-based: if len(a)==3, then a consists of a[0], a[1], and a[2].

recordExpr ::= ‘{’ (ID ‘=’ expr)+ ‘}’
A record expression constructs a record value from one or more
comma-separate attributes, like {x=1, y=2}. Records are similar
to structs in C. Attributes can contain any values, including other
records, lists, closures, or fragments.

attribExpr ::= expr ‘.’ ID
An attribute expression accesses a record attribute, like r.x.

ifExpr ::= ‘if’ expr ‘then’ expr ‘else’ expr
An if expression like if x<y then x else y first evaluates the
condition, and, depending on the result, returns either the value
of the then-expression or the else-expression. If-expressions are
similar to the ?: operator in C.

letExpr ::= ‘let’ (ID ‘=’ expr)+ ‘in’ expr
A let expression creates a scope with local variable bindings, like
let x=1, y=x+1 in y+1. Let-expressions are similar to letrec-
expressions in Scheme: they permit recursion in case the local
variables are bound to closures.

callExpr ::= expr ‘(’ expr∗ ‘)’
A call expression invokes a closure with zero or more comma-
separated actual parameter values, like gcd(9, 6).

2.1.2 Advanced IL Features
Besides the core features, the IL provides function expressions with
contracts, and quote expressions with escapes.

142

fnExpr ::= ‘fn’ ‘(’ ID∗ ‘)’ (‘@’ expr)? ‘=>’ expr
A function expression constructs an anonymous closure, such as
fn(x, y) @ c => x / y. Section 2.3 will describe what the
optional contract, such as @ c in the example, means. Closures use
lexical scoping. Closures can be recursive.

quoteExpr ::= ‘‘’ fragment
escape ::= ‘%’ primExpr

A quote expression constructs an opaque fragment of OL code,
like ‘{int %old=%x; bar(%x); %x=%old;}, that may contain
escaped IL expressions, like %old. The quote ‘ and escape %
operators are similar to quasi-quote and comma in Lisp: the quote
prevents a fragment from being evaluated, and the escape forces an
expression to be evaluated, locally reversing the effect of quote.

A compiler that uses the IL as shown in Figure 2 uses the OL
parser to turn OL fragments into abstract syntax trees (ASTs) an-
notated with source locations. When the IL interpreter encounters a
quote, it walks the AST of the fragment to find escaped expressions,
evaluates those expressions, and grafts the resulting OL fragments
into a copy of the AST.

2.2 Hygiene Support in the IL
Rather than fully automating hygiene in the IL interpreter, we pro-
vide sufficient IL features for implementing OL hygiene. Hygiene
means avoiding accidental name capture and is an essential quality
for macro systems. Hygienic macros are macros that obey HC/ME,
the hygiene condition for macro expansion: “Generated identifiers
that become binding instances in the completely expanded program
must only bind variables that are generated in the same transcrip-
tion step” [13]. The C preprocessor does not support hygiene, and
thus, the following example represents a typical bug in C [6]:

1 #define foo(x) {int old=x; bar(x); x=old;}
2 int old = Methuselah();
3 foo(old);

Line 3 passes old as an actual parameter to foo. The program-
mer expects old to be bound to the declaration from Line 2. But
the problem is that in Line 1, after substituting old for x, it will get
captured by the local declaration of old instead. Thus, the state-
ment x=old fails to restore the value of the variable from Line 2,
and instead only pointlessly re-assigns the variable from Line 1. In
our IL, we would fix the example as follows:

let foo = fn(x)=>
let old = freshId()
in ‘{int %old=%x; bar(%x); %x=%old;}

in ‘{ int old = Methuselah();
%(foo(‘old)) }

Each call to the freshId intrinsic generates a fresh identifier.
The IL interpreter does a pre-pass before evaluation, which gathers
the set of all OL identifiers in all code fragments, and initializes
the state for freshId with that set. Later during evaluation, each
freshId call returns an identifier that is not already in its state,
and records it in the state for the next call. It is up to the OL trans-
lator to generate the correct calls to freshId, since this requires
understanding the OL scoping rules. In general, freshId must be
called for each binding instance of a variable, such as int old=x.
Specifically, we will see an example for an OL translator when we
discuss the implementation of our streaming language.

2.3 Contracts in the IL
Figure 3 shows an example with a higher-order contract. There are
two kinds of contracts. A flat contract, such as fn(x)=> true
in the example, is just a boolean function on a flat value (not a
closure). A non-flat contract applies to a closure. It is a record with
three attributes param, pre, and post, such as cCmp or cFind
in the example. Attribute param holds a list of (flat or non-flat)

1 let
2 cCmp = {
3 param = [fn(x)=> true, fn(y)=> true],
4 pre = fn(x,y)=> true,
5 post = fn(x,y,r)=> r==-1 || r==0 || r==1 },
6 cFind = {
7 param = [fn(a)=> true, fn(v)=> true, cCmp],
8 pre = fn(a,v,c)=> true,
9 post = fn(a,v,c,r)=> r==-1 || c(a[r],v)==0 },

10 find = fn(a,v,c) @ cFind =>
11 let f = fn(i)=> if i >= len(a) then -1
12 else if c(a[i],v) == 0 then i
13 else f(i + 1)
14 in f(0),
15 cmpAsc = fn(x,y)=>
16 if x < y then -1 else if x == y then 0 else 1
17 in
18 find([4,9,7,3], 7, cmpAsc)

Figure 3. Example with higher-order contract.

1 oblige = fn(ctr, fun)=>
2 fn(fun.formals)=>
3 let
4 pos = fun.srcLoc,
5 neg = getCaller().srcLoc
6 in obligePN(ctr, fun, pos, neg)(fun.formals)

Figure 4. Pseudo-code for intrinsic oblige.

contracts; attribute pre holds a boolean function of the parameters;
and attribute post holds a boolean function of the parameters
and the result of the computation. In Line 5 of the example, the
postcondition of contract cCmp promises that the return value is
in {−1, 0, 1}. Line 7 in contract cFind requires that the third
parameter satisfies contract cCmp. Line 10 decorates the definition
of function find with contract cFind. Function find(a,v,c)
finds value v in list a, using comparator c.

Line 18 calls find. Function find is higher-order, because it
takes function cmpAsc as a parameter. Contract cFind is higher-
order, because it applies contract cCmp to a parameter. The contract
checks that cmpAsc always returns values in {−1, 0, 1}. In this pro-
gram, there are no contract violations, and the program returns 2,
which is the 0-based index of 7 in [4,9,7,3].

2.3.1 Obligation Rewrite
To support contracts, the IL interpreter does a pre-pass before
evaluation, rewriting each function expression with a contract ctr

fn(x1,...,xn) @ ctr => expr

into a call to the oblige intrinsic function

oblige(ctr, fn(x1,...,xn)=> expr)

Figure 4 shows the pseudo-code for oblige. It takes two pa-
rameters, a contract ctr and a function fun, and generates a func-
tion that has the same signature as fun, but checks ctr. Because
oblige reflects over dynamic interpreter-internal meta-data, it is
implemented as an intrinsic. Most of the work of oblige actually
happens in another intrinsic function obligePN that takes two ad-
ditional parameters pos (for positive contract partner) and neg (for
negative contract partner). Parameters pos and neg hold the source
locations, i.e., file names and line and column numbers, of the func-
tion and its dynamic caller. When a precondition or postcondition
fails, the error message can blame pos or neg as appropriate.

143

1 obligePN = fn(ctr, val, pos, neg)=>
2 if isFlat(ctr)
3 then
4 if ctr(val)
5 then val
6 else blame(pos, neg, ctr.srcLoc)
7 else
8 fn(ctr.post.formals[0, ..., N-2])=>
9 if ctr.pre(ctr.post.formals[0, ..., N-2])

10 then
11 let ctr.post.formals[N-1] = val(
12 obligePN(ctr.params[0],
13 ctr.post.formals[0],
14 neg, pos),
15 ...,
16 obligePN(ctr.params[N-2],
17 ctr.post.formals[N-2],
18 neg, pos))
19 in
20 if ctr.post(ctr.post.formals)
21 then ctr.post.formals[N-1]
22 else blame(pos, neg, ctr.post.srcLoc)
23 else blame(neg, pos, ctr.pre.srcLoc)

Figure 5. Pseudo-code for intrinsic obligePN.

2.3.2 Obligation Contravariance
The insight behind the pos and neg parameters is that blame
alternates in higher-order contracts [7]:

1. If the precondition of a function is violated, blame the caller
neg; if the postcondition is violated, blame the callee pos.

2. If the precondition of a parameter to the function is violated,
blame the callee pos; if the postcondition is violated, blame the
caller neg.

3. If the precondition of a parameter to a parameter to the function
is violated, blame the caller neg; if the postcondition is violated,
blame the callee pos.

4. And so on, flipping the “sign” of which partner, pos or neg, to
blame with each level of higher-order parameters.

For an example of a contract violation, assume function cmpAsc in
Lines 15-16 of Figure 3 is replaced by:

cmpAsc = fn(x,y)=> x - y

This version of cmpAsc fails the postcondition, because the result
is not always in {−1, 0, 1}. The scenario matches the second-order
case 2 above: the postcondition of parameter cmpAsc to function
find is violated. Therefore, the error message blames the caller:

find.il:5:13: contract violated
find.il:18:3: ... blamed partner in contract
find.il:10:10: ... innocent partner in contract

That makes sense, because the caller (Line 18) is responsible for
passing a function to find that fails its postcondition.

2.3.3 The obligePN Function
Figure 5 shows the pseudo-code for the obligePN intrinsic func-
tion. It has two cases: the flat (zero-order) case where the contract is
just a function, and the non-flat (first- or higher-order) case where
the contract is a param/pre/post record. The flat case in Lines 4-
6 checks contract ctr on value val, returning val on success and
generating an error blaming pos on failure. For example, in the call

obligePN(fn(x)=> x>0, 0, srcLoc_0, neg)

the value 0 violates the flat contract x>0. Therefore, this call yields
an error message blaming the source location srcLoc_0 responsi-
ble for the value 0.

The non-flat case of Figure 5 checks the precondition pre
(Line 9); wraps all parameters in contracts from param (Lines
12-18); calls the original function (Line 11); and finally checks
the postcondition post (Line 20). In Line 8, the list slicing no-
tation ctr.post.formals[0,...,N-2] refers to all but the last
formal parameters of the postcondition, since the last parameter
ctr.post.formals[N-1] holds the result and needs to be treated
specially. The following call illustrates the non-flat case:

1 obligePN({ param = [fn(x)=> true, fn(y)=> true],
2 pre = fn(x, y)=> x * y > 0,
3 post = fn(x, y, res)=> res >= x + y },
4 fun, pos, neg)

This call wraps the function fun in contract checks:

1 fn(x, y)=>
2 if x * y > 0
3 then
4 let res = fun(
5 obligePN(fn(x)=> true, x, neg, pos),
6 obligePN(fn(y)=> true, y, neg, pos))
7 in
8 if res >= x + y
9 then res

10 else blame(pos, neg, "input:3:21")
11 else blame(neg, pos, "input:2:21")

If the precondition x * y > 0 is violated, Line 11 generates an
error message blaming neg. If the postcondition res >= x + y is
violated, Line 10 generates an error message blaming pos. Lines
5-6 apply the contracts from param to the parameters of fun.

2.4 Macros with Contracts: Putting it All Together
This section described an IL that provides both macros (via quote ‘
and escape %) and contracts (via @ decorations on function expres-
sions). The implementation uses two pre-passes (one to find OL
identifiers for hygiene, the other to rewrite contracts), and an inter-
preter. The interpreter evaluates the IL code, and the end result is
the returned OL code. The evaluation uses a handful of special in-
trinsic functions: freshId, oblige, getCaller, obligePN, and
blame. Functions and their contracts can be higher-order. The re-
sponsibility for hygiene is shared between the IL interpreter and the
OL translator by using freshId.

3. Composite Operators
Composite operators in a streaming language are operators that
encapsulate a stream subgraph. Our composites are higher-order:
a composite operator can take another operator, including another
composite, as a parameter. We expand composites (replace them by
their subgraphs until only primitive operators remain) at compile-
time. Our composites can have contracts, which lead to better
expansion-time error messages. Expansion is implemented in two
steps: translate to the IL from Section 2, then evaluate the IL.

3.1 Eddy Example
The running example for this section

f1 f2

in0

in2
out2

in1
out1

out

Eddy

eddy
Controller

is the Eddy higher-order composite
operator [2]. It has two parameters:
operator f1 and operator f2. Each
time a data item arrives on in0, the
eddyController decides whether
to send it first to f1 and then to f2,
or vice versa. Both f1 and f2 are assumed to be selection operators,
meaning they might drop data items. If a data item is not dropped,

144

it goes to the other operator next; if it is not dropped there either,
it goes to out. The Eddy dynamically optimizes performance by
deciding the order in which data items go through f1 and f2 based
on their observed cost and selectivity. For example, if both cost the
same, but f1 drops more data, it is cheaper to send data through f1
first: if a data item gets dropped, the time for f2 is saved.

3.2 Streaming Language with Composite Operators
We have designed and implemented composite operators for our
production streaming language SPL [10], but for now, we will de-
scribe them based on Soulé et al.’s core streaming calculus Brook-
let [18]. The calculus helps focus on the essentials while keeping
the description self-contained; Section 5 will discuss our experi-
ences with composites in the full language. This section describes
Brooklet, extended with parameters, composite operators, and con-
tracts. One of the design goals for composites was to have a con-
sistent look-and-feel with the rest of the language. No background
on macros is needed to understand Brooklet. For each feature, we
first show the syntax rules, followed by a description paragraph.

opInvoke ::= ‘(’ ID+ ‘)’ ‘<-’ ID actuals? ‘(’ ID+ ‘)’
(‘prop’ ID)? ‘;’

actuals ::= ‘{’ expr+ ‘}’
An operator invocation specifies a ver-

f1
prop r1

in1 out1
tex and its immediate edges, such as
(out1) <- f1(in1) prop r1;. The
example uses an operator f1 to consume a stream in1 and produce
a stream out1. The operator f1 might be a primitive operator im-
plemented in a traditional language such as C++ or Java, or it might
be a composite operator; the invocation looks the same either way
for orthogonality. The optional actuals? are actual parameters; e.g.,
a primitive selection operator can be parameterized by its filter
condition, or a composite operator can be parameterized by other
operators. During expansion, an operator invocation returns not just
the generated code, but also domain-specific properties such as a
data rate. The optional (‘prop’ ID)?, like prop r1 in the example,
gives a name to the properties returned by the operator invocation.
Properties can be used from postconditions, as we shall see later.

composite ::= ‘composite’ signature pre? compPost?

‘{’ opInvoke+ ‘}’
signature ::= ‘(’ ID+ ‘)’ ‘<-’ ID formals? ‘(’ ID+ ‘)’
formals ::= ‘{’ (ID (‘@’ ID)?)+ ‘}’

A composite definition encapsulates a subgraph, such as

1 composite (out) <- Eddy{f1, f2}(in0) {
2 (out,in1,in2) <- eddyController(in0,out1,out2);
3 (out1) <- f1(in1) prop r1;
4 (out2) <- f2(in2) prop r2;
5 }

The example omits

eddy
Controller

f1
prop r1

f2
prop r2

in0

in2 out2 in1 out1

out

Eddy
the optional em-
bedded contract
pre?, compPost?, and
(‘@’ ID)?, which will
be described later.
The signature of the
composite definition
is designed to resemble an operator invocation. Syntactical re-
semblance between definitions and invocations makes code more
readable, because the correspondence between each part of the
signature and the invocation is immediately obvious. The parts
of the signature specify the composite’s output streams, name,
optional formal parameters, and input streams. In the example, f1
and f2 are formals, and the body of the composite uses them as
operators. That means that Eddy is higher-order.

pre ::= ‘pre’ expr
compPost ::= ‘prop’ recordExpr

| ‘prop’ ID ‘=’ recordExpr ‘post’ expr

1 composite (out) <- Eddy{f1 @ cf, f2 @ cf}(in0)
2 prop r = { use = union(r1.use, r2.use),
3 def = union(r1.def, r2.def) }
4 post disjoint(r1.use, r2.def)
5 && disjoint(r1.def, r2.use)
6 {
7 (out,in1,in2) <- eddyController(in0,out1,out2);
8 (out1) <- f1(in1) prop r1;
9 (out2) <- f2(in2) prop r2;

10 }

Figure 6. Eddy composite with contract.

The embedded contract of a composite consists of checks to per-
form during expansion. Figure 6 shows the Eddy composite from
before with an embedded contract. The post clause in Lines 4-5
specifies a postcondition predicate. The compiler checks this pred-
icate after expanding the composite. The predicate refers to prop-
erty records r1 and r2 of operators invoked in the subgraph. The
prop clause in Lines 2-3 specifies properties of this composite op-
erator itself. The compiler returns them along with the expanded
subgraph. They can be referred to by contracts further out in the
expansion hierarchy. In the Eddy example, the operators f1 and
f2 are expected to return, at compile-time, property records with
attributes use and def, holding sets that describe used or defined
stream data. The postcondition of the Eddy checks that the sets do
not interfere, and the property record of the Eddy combines and re-
turns the sets to the site where the Eddy was invoked. The names
use and def have no special meaning to Brooklet, the user can
freely choose any identifiers that make sense for the properties they
care about. In practice, we assume that the names reside in names-
paces to avoid clashes in large development teams.

contract ::= ‘contract’ signature pre? contPost? ‘;’
contPost ::= ‘prop’ ID ‘post’ expr

A named contract resembles a composite operator definition with-
out a subgraph, like contract (qo) <- cf(qi);. This exam-
ple specifies a contract cf for an operator with exactly one output
stream qo and one input stream qi. Such a named contract can
then be attached to formal parameters, like f1 @ cf, f2 @ cf in
Line 1 of Figure 6. Unlike a composite, a named contract does not
define its own properties record, though it may give a name to the
existing properties record of the operator it attaches to for use in
the postcondition.

program ::= (composite | contract)+

A Brooklet program

Eddy{
 SeizureDetector,
 VisitorDetector}

video alerts

main
consists of one or
more composite and
named contract def-
initions. One of the
composites must be called main, such as:

1 composite (alerts) <- main(video) {
2 (alerts) <- Eddy { SeizureDetector,
3 VisitorDetector } (video);
4 }

This example passes two video analysis operators to the Eddy
for a health-care application. The SeizureDetector generates
an alert when the video shows a patient having a seizure. The
VisitorDetector cancels the alert when the video shows that
visitors are present, to suppress false positives. The Eddy operator
dynamically decides the order in which it sends the video feed to
both operators, optimizing for observed cost and selectivity [2].

3.3 Composite Operator Expansion
Expansion starts from the main composite. In the running exam-
ple, the expansion of main triggers the expansion of Eddy with the

145

following bindings: out 7→ alerts, f1 7→ SeizureDetector,
f2 7→ VisitorDetector, and in0 7→ video.

The result is the eddy
Controller

Seizure
Detector

Visitor
Detector

video

in2 out2 in1 out1

alerts
flat graph consisting of
the subgraph of the
Eddywith the appropri-
ate substitutions. While
this expansion only has
two levels, in our experience with SPL, multi-level expansions are
not uncommon in practice. The graphical view of expansion is intu-
itive to users. But the implementation of expansion must take care
to preserve hygiene and to check contracts. It does so by translating
composites in Brooklet to macros in the IL. The Brooklet program
before translation is:

1 composite (alerts) <- main(video) ...
2 contract (qo) <- cf(qi);
3 composite (out) <- Eddy{f1 @ cf, f2 @ cf}(in0) ...

The IL program after translation is:

1 let main = fn(alerts, video) ...,
2 cf = ...,
3 Eddy = fn(out, f1, f2, in0) ...
4 in let p = main ...
5 in p.code

All streams and formals in an operator’s signature turn into formals
in the corresponding macro (compare for example Line 3 before
vs. after translation). Each macro returns a record with a code
attribute. Expansion starts by calling main (Line 4) and ends by
returning the resulting code (Line 5). The remainder of this section
refers to Brooklet as the object language (OL), and explains how
hygiene and contracts work for Brooklet.

3.4 Hygiene in the OL
Hygiene is about avoiding accidental name captures. In the case of
Brooklet, the names that are at risk of being captured are stream
names. For example, the following program uses the name t both
in main and in comp, and the expansion needs to make sure it does
not get them mixed up.

composite (s) <- main(t) {
(s) <- comp(t);

}
composite (x) <- comp(y) {

(t) <- prim(y);
(x) <- prim(t);

} prim prim

comp
x t y

comp

main
s t

The Brooklet code after expansion is:

(t0) <- prim(t);
(s) <- prim(t0);

prim prim
(t)

s t0 t

A naive substitution would have captured the name t. But instead,
the compiler created a fresh identifier t0 to use in place of the
version of t that was strictly internal to comp. The implementation
for this relies on the IL intrinsic freshId. The translator from
OL to IL is responsible for putting in calls to freshId, and the
interpreter of IL is responsible for evaluating freshId. We already
saw the interpreter part in Section 2.2, so here, we focus on the
translator part.

The translator creates one IL-level variable for each OL-level
stream, holding a fragment with the identifier. Each OL fragment
uses escapes to splice in those identifier-fragments. The IL-level
variables can be either parameters of the current function (macro),
or they can be local to the current function. If they are local to the
current function, they are initialized with freshId to generate a
fresh identifier. The IL code for the hygiene example is:

1 let main = fn(s, t) =>
2 let p0 = comp(s, t)
3 in { code = p0.code },
4 comp = fn(x, y) =>
5 let t = freshId("t")
6 in { code = ‘((%t) <- prim(%y);
7 (%x) <- prim(%t);) }
8 in let s = freshId("s"), t = freshId("t"),
9 p = main(s, t)

10 in p.code
Unlike in Section 2.2, here the freshId intrinsic takes a string
parameter with the original name, e.g., freshId("t") in Line 5.
This enables the interpreter to generate names that are similar to
the original name, e.g. t0, making the generated code easier to
understand. The above IL program is actually simplified compared
to what the translator really produces: it omits any IL code related
to contracts, those are the subject of the following section.

3.5 Contracts in the OL
The OL has contracts, and the IL has contracts, so obviously, the
goal is to translate OL contracts into IL contracts. That way, the
IL interpreter can take care of the contra-variant blame tracking
discussed in Section 2.3. However, there are a couple of compli-
cations to consider in the translation. First, the OL contract con-
tains not just the explicit user-defined predicates, but also implicit
structural information such as arity. Second, the OL contract can be
higher-order, by attaching a named contract to a parameter with the
@-syntax. Third, if the graph clause of one composite (the caller,
such as Eddy) invokes another operator (the callee, such as f1),
then the caller’s contract can refer to the callee’s properties (such
as r1) in the OL. Hence, the translated IL must arrange for these
properties to be passed around.

The translator from OL to IL establishes the following data
structure conventions. Each parameter stream identifier is a record
{code=..., type=...}, where code is a fragment with just an iden-
tifier, and type is either the string "out" or the string "in", used
to check structural properties. The result of each composite is a
record {code=..., props}, where code is the fragment with the
expanded subgraph, and props are the other attributes for user-
defined properties in the contract. Since the postcondition needs
access to not just the result of the composite itself, but also the re-
sults of nested operator invocations, the function returns not just
one {code=..., props} record, but rather a whole list of them. The
result of the composite itself is at index 0 in that list.

Before we explain these data structure conventions with an
example, recall that in the IL, a non-flat contract is a record
{param=..., pre=..., post=...}. We will use the Eddy with an
embedded contract from Figure 6 as the example illustrating the
translation. The explanation works up to Figure 7, introducing be-
fore and after snippets of OL and IL bit by bit.

In the OL, the Eddy signature is (Figure 6 Line 1):

composite (out) <- Eddy{f1 @ cf, f2 @ cf}(in0)

In the IL, the first three lines are:

Eddy = fn(out, f1, f2, in0)
@ { param = [fn(out)=> "out" == out.type, cf,

cf, fn(in0)=> "in" == in0.type],

Explanation: Predicate fn(out)=> "out" == out.type checks
the structural contract that out is an output stream identifier.
The two occurrences of cf check the higher-order contract on
f1 and f2. Finally, predicate fn(in0)=> "in" == in0.type
checks the structural contract that in0 is an input stream identifier.

In the OL, the Eddy subgraph is (Figure 6 Lines 7-9):

(out,in1,in2) <- eddyController(in0,out1,out2);
(out1) <- f1(in1) prop r1;
(out2) <- f2(in2) prop r2;

146

In the IL, the corresponding calls to f1 and f2 are:

let in1=freshId("in1"), out1=freshId("out1"),
in2=freshId("in2"), out2=freshId("out2"),
r1 = f1({ type="out", code=out1 },

{ type="in", code=in1 })[0],
r2 = f2({ type="out", code=out2 },

{ type="in", code=in2 })[0]

Explanation: The freshId calls were explained in Section 3.4 on
hygiene. Each parameter is tagged with its type ("in" or "out").
By the data structure conventions, the call to f1 returns a list of
results, and subscript [0] retrieves the result of f1 itself, which
gets bound to r1. Likewise, the result of f2 gets bound to r2.

In the OL, the prop clause is (Figure 6 Lines 2-3):

prop r = { use = union(r1.use, r2.use),
def = union(r1.def, r2.def) }

In the IL, the code that returns the result is:

[{ code = ‘((%(out.code), %in1, %in2)
<- eddyController

(%(in0.code), %out1, %out2);
%(r1.code)
%(r2.code)),

use = union(r1.use, r2.use),
def = union(r1.def, r2.def) },

r1, r2]

Explanation: By the data structure conventions, the result of the
Eddy function is a list: the first element (at index 0) holds the
expanded code and properties of the Eddy itself, whereas the other
elements r1 and r2 hold results of nested operator invocations.

In the IL, the post clause is (Figure 6 Lines 4-5):

post disjoint(r1.use, r2.def)
&& disjoint(r1.def, r2.use)

In the IL, the post attribute of the contract is:

post = fn(out, f1, f2, in0, r0)=>
let r1=r0[1], r2=r0[2]
in disjoint(r1.use, r2.def)

&& disjoint(r1.def, r2.use)

Explanation: The return value from the function serves as the last
parameter r0 to the postcondition. By the data structure conven-
tions, r0 is a list, and let r1=r0[1], r2=r0[2] pulls out ele-
ments from the list. The body of the postcondition is copied verba-
tim from the OL to the IL.

3.6 Composites: Putting it all Together
This section describes our design and implementation of compos-
ite streaming operators with contracts. To simplify the presentation,
this section uses an extended version of the Brooklet calculus. The
design provides a syntax for composites that has the same look-
and-feel as the base language. To reuse mechanisms for hygiene
and contract checking, the compiler translates to the IL from Sec-
tion 2. Brooklet composites and contracts turn into IL functions
and contracts, respectively. The functions return not just the gen-
erated code, but also user-defined properties of the code, and the
contracts use those properties to check user-defined predicates. Af-
ter translation to IL, the interpreter takes over. However, both steps
(translation and interpretation) are integrated into a single compiler,
interfacing via the abstract syntax tree. Working with trees instead
of text enables the compiler to graft OL code safely and efficiently,
and to track line number information as tree node decorations.

4. Brooklet vs. SPL
We have implemented compilers for both the Brooklet calculus
and the SPL language [10]. While Section 3 uses Brooklet to

1 Eddy = fn(out, f1, f2, in0)
2 @ { param = [fn(out)=> "out" == out.type, cf,
3 cf, fn(in0)=> "in" == in0.type],
4 pre = fn(out, f1, f2, in0)=> true,
5 post = fn(out, f1, f2, in0, r0)=>
6 let r1=r0[1], r2=r0[2]
7 in disjoint(r1.use, r2.def)
8 && disjoint(r1.def, r2.use) }
9 => let in1=freshId("in1"), out1=freshId("out1"),

10 in2=freshId("in2"), out2=freshId("out2"),
11 r1 = f1({ type="out", code=out1 },
12 { type="in", code=in1 })[0],
13 r2 = f2({ type="out", code=out2 },
14 { type="in", code=in2 })[0]
15 in [{ code = ‘((%(out.code), %in1, %in2)
16 <- eddyController
17 (%(in0.code), %out1, %out2);
18 %(r1.code)
19 %(r2.code)),
20 use = union(r1.use, r2.use),
21 def = union(r1.def, r2.def) },
22 r1, r2]

Figure 7. Translated IL for the OL in Figure 6.

describe the syntax and semantics of composites in a self-contained
manner, most of this section uses SPL to report field experiences.
To compare the two, consider a Brooklet operator invocation:
(Over5) <- ThresholdFilter{5}(All);

In SPL, the same operator invo- Threshold-
Filter {5}

All Over5
cation looks as follows:
stream<int32 x> Over5 = ThresholdFilter(All)
{ param threshold : 5; }

In SPL, streams are typed, and the type is declared where the
stream is produced. In the example, stream<int32 x> is the type
for a stream of tuples, where each tuple has an int32 attribute
named x. In SPL, actual parameters are named. The example passes
5 to parameter threshold of the ThresholdFilter operator.
Like in Brooklet, the syntax for invoking primitive or composite
operators is the same.

To illustrate a composite op-

Filter
{x>$threshold}

A F

ThresholdFilter erator definition in SPL, the fol-
lowing example defines the op-
erator invoked previously:

1 composite ThresholdFilter(output F; input A) {
2 param expression $threshold;
3 graph stream<A> F = Filter(A)
4 { param filter : x > $threshold }
5 }

Line 2 declares the formal parameter, indicating that it expects
an expression as its actual. The SPL compiler substitutes the actual
for each occurrences of the formal during expansion. Besides the
expression parameter mode, formals can also be declared to
expect types, operators, or various other kinds of entities. In Line 3,
stream<A> F declares stream F with the same type as stream A.

Both Brooklet and SPL provide higher-order composites, which
are novel and a central contribution of this paper. Both compilers
implement hygiene. In Brooklet, the only names at risk of cap-
turing are stream names. In SPL, on the other hand, various en-
tities can have names, including streams, types, attributes, vari-
ables, functions, etc. Furthermore, in SPL, names can be qualified
by namespaces. This makes name handling in the SPL compiler
more complicated, but it uses the same techniques for hygiene as
described earlier. When the SPL compiler generates fresh identi-
fiers to prevent name clashes, it encodes the expansion context in
the name to help with visualization and debugging.

147

1 composite Uniq(output Out; input In) {
2 graph
3 stream<In> Out = Custom(In) {
4 logic state : {
5 mutable boolean first = true;
6 mutable In prev; }
7 onTuple In: {
8 if (first || prev != In) {
9 submit(In, Out);

10 first = false;
11 prev = In; } } } }

Figure 8. Example for Custom-in-composite pattern.

Both Brooklet and SPL provide contracts, but to different ex-
tents. Both compilers check implicit structural contracts during ex-
pansion. Also, both check user-defined first-order contracts. Only
Brooklet provides user-defined higher-order contracts as described
in this paper. SPL provides rich contracts on primitive operators,
which are written as a combination of an XML file and an optional
Perl script. The XML file, also known as the operator model, speci-
fies commonly needed properties, which may be used for optimiza-
tions. The Perl script serves as a powerful escape hatch to check
arbitrary domain-specific predicates.

5. Experiences
This section discusses experiences implementing and using the
techniques described in this paper. Composites have no impact on
run-time performance, because they are expanded at compile-time.

5.1 Simple Composites
Like the ThresholdFilter from earlier, SPL composites are
often just first-order encapsulations of reusable stream subgraphs.

Even in the first-order case,

Source Logger

LoggedSource
Tmp Out our compiler must watch out for

hygiene. For example, a compos-
ite LoggedSource might invoke a
Source to produce an internal stream Tmp, and then invoke a
Logger to gather some statistics, such as measuring throughput or
counting duplicates. If the composite operator is instantiated mul-
tiple times, Tmp must be renamed to avoid clashes.

Primitive operators for SPL are written in C++, but the language
also allows users to define the logic for simple operators directly
in SPL code. This is typically done in an invocation of a Custom
operator, and in practice, developers frequently encapsulate a single
Custom in a composite for modularity. Figure 8 shows an example.
The composite Uniq invokes Custom on the

Custom

Uniq
Out In input stream In to produce the output stream

Out. The invocation has a logic clause with
two subclauses: state declares variables,
and onTuple In declares a handler that fires each time a tuple ar-
rives on stream In. The declaration mutable In prev in Line 6
declares variable prev to have the same type as tuples on stream
In. The onTuple logic forwards a tuple if either it is the first tu-
ple on the stream, or it is different from the previous tuple on the
stream. When a stream name is used in a value context, it refers
to the current tuple on the stream. For example, prev != In in
Line 8 compares prev to the current tuple on stream In, and
submit(In, Out) in Line 9 submits that current tuple to Out.

5.2 Higher-Order Composites
A higher-order composite is like a stencil for a subgraph
with blanks to be filled in by parameters. Figure 1 in the
introduction listed several examples: Pipeline, SplitMerge,
FeedbackLoop, Exchange, MapConcat, and Eddy. We already

saw Eddy in the running example for Section 3. Here, we will use
While as another example.

Composite While

LoopBody

LoopOut

IterIn IterOut

LoopIn

While
has two parameters.
Parameter isDone is
an expression used in
the loop head, and pa-
rameter LoopBody is
an operator. As long as
isDone returns false,
data is sent repeatedly through the LoopBody; in the end, it is sent
to LoopOut. Among other things, the While operator is useful for
iterative data mining algorithms on large data sets, such as linear
regression, matrix factorization, or PageRank [15]. For instance,
in PageRank, parameter isDone is a convergence check that re-
turns true when the difference between iteration results falls below
a threshold. Parameter LoopBody is an operator that adds a fraction
of the rank of each page to the ranks of all the pages it links to.

5.3 Telco Benchmark
We have built a telecommunications benchmark in SPL, which
makes heavy use of composite operators, including higher-order
ones. It consists of 39 applications implementing common opera-
tions used to monitor logs produced from server-side telecommuni-
cations software. The goal is to collect, summarize, and report op-
erational statistics in real-time. The applications cover parsing, for-
matting, filtering, enrichment, projection, aggregation, state man-
agement, splitting, correlation, and pattern detection to name a few.

An important aspect of the benchmark applications is their scale
and distributed nature. Each application processes 40 data sources
divided into two groups, where data from pairs of sources belong-
ing to different groups needs to be brought together for correlation.
The correlated results are further categorized into 4 pools and then
merged on a per-pool basis. Eventually, per-pool results are com-
bined into a final result stream. The average benchmark application
has a complex topology consisting of 337 primitive operator in-
stances. Not only are portions of these topologies common across
many applications, but they also have similar constraints for which
operators to place on which hosts. Two challenges we faced during
the design of this benchmark were i) to minimize code repetition
and ii) to abstract away the details of the topology and placement
by separating it from the core application logic.

Composites in SPL in general, and user-defined higher-order
composites in particular, have effectively resolved both challenges.
As part of the benchmark suite, we have created a toolkit of com-
posites that are shared across all benchmark applications. This
toolkit contains two sets of artifacts.

1. First-order composite operators that encapsulate common
stream manipulations used in different applications.

2. Higher-order composite operators that encapsulate common
topologies and placements. These composites take as param-
eters other operators with the core application logic to be em-
bedded into the boiler-plate topology.

The first set of composites facilitate reuse, reducing code repe-
tition. The second set of operators not only achieve the same reuse
goals, but also abstract away the details of the topology and place-
ment from the main application logic. With this toolkit in place,
each application only defines its core logic as a few composites, and
instantiates the topology by calling one of the higher-order com-
posites from the toolkit. Furthermore, the core application logic
frequently uses the first-order composites from the toolkit.

The Telco benchmark has a total of 7,029 lines of code (LOC),
including 4,350 LOC in the toolkit and the remaining 2,679 LOC
in the 39 applications. We modified the SPL compiler to print the

148

Toolkit Applications
Avg. None ≥ 1 Avg. None ≥ 1

Input ports 0.42 34 19 0.36 39 22
Output ports 0.55 28 25 0.36 39 22
Formal parameters 4.13 1 52 3.23 0 61

... operators 1.62 20 33 0.00 61 0
OpInvokes in subgraph 5.25 3 50 4.38 0 61

... composite 4.77 15 38 1.92 6 55

... parameter 0.21 44 9 0.00 61 0

Table 1. Statistics about the 114 non-main composite operator definitions
in the Telco benchmark. Columns Avg. show the average number of occur-
rences per composite. Columns None count the number of composites with
zero occurrences, and Columns ≥1 count remaining composites.

source code for the stream graph after expanding all composite
operators. After expansion, the Telco benchmark has a total of
316,725 LOC, an expansion factor of 45. Before expansion, the
average application has 69 LOC, with a minimum of 36 and a
maximum of 184. That means that the applications really only
define core logic. After expansion, the average application has
8,121 LOC, with a minimum of 3,369 and a maximum of 13,010.
Composite operators saved us from writing a lot of repetitive code
in the Telco benchmark.

The Telco benchmark has a total of 153 composite operator def-
initions, including 39 main composites (one per application) and 53
composites in the toolkit. Table 1 characterizes the non-main com-
posites, separated into toolkit vs. application. Row “Formal param-
eters: operators” column “≥ 1” shows that 33 composites have a
non-zero number of parameters that are operators, in other words,
33 composites are higher-order. That accounts for 62% of the com-
posites in the toolkit; none of the composites in the applications are
higher-order. Row “OpInvokes in subgraph” column “None” shows
that 3 composites have empty subgraphs: they are used as default
values for the optional parameters of some of the higher-order com-
posites, in order to implement optional subgraphs. A specific use-
case for empty composites is optional workload generators. Some
of the higher-order composites take as a parameter the workload
generator to use, which by default is an empty composite, i.e., no
workload is generated on-the-fly. Row “OpInvokes in subgraph: pa-
rameter” column “≥ 1” shows that out of the 33 higher-order com-
posites, only 9 directly invoke their operator parameters in their
subgraph. The other higher-order composites merely pass operator
parameters through to other composites.

After expansion, the Telco

39  39  132 

1,342 

3,141 

4,976 

2,202 

0
1,000
2,000
3,000
4,000
5,000
6,000

0  1  2  3  4  5  6 

Table 2. Depth histogram of
composite operator instances.

benchmark has a total of
11,866 composite operator
instances. Their depths range
from 0 for main composites
to 6 for composites nested
deeply in the expansion, with
an average depth of 4.63. The
average composite instance
has 2.04 immediate children,
with an average of 1.01 primitive and 1.03 composite immediate
children. 762 composite instances have zero immediate children;
those are instances of the 3 empty composite definitions. An exam-
ple of a deep expansion chain is:

0 Main
1 CommonMainWithBSidedMergedChains
2 ChainContainerForBSidedMergedChainsForP1AndP3
3 ChainContainerForBSidedMergedChains
4 $coreB
5 OrderAndCompletenessDetector
6 OrderMessages
7 Custom

The expansion starts from the Main composite at depth 0. It
passes the core application logic as operator parameters to generate
the topology. One of the parameters gets passed through up to
depth 4, where the operator parameter itself is instantiated. The
core application logic is at depth 5; it invokes an operator from the
toolkit at depth 6 to reuse common functionality. Finally, expansion
ends with a primitive operator at depth 7.

5.4 Contracts
A contract on a composite specifies pre- and post-conditions to
check during expansion. Section 3 already showed such a contract
for the Eddy running example. This section discusses rates for
synchronous data flow (SDF) [14] as another example. The SDF
data rate of an operator is the number of data items it produces per
data item it consumes. For example, a Dup operator might have a
rate of 2, indicating that it produces 2 output items for each input
item. The term synchronous is defined to mean that all the rates are
constant and known at compile time. That is useful for compiler
optimizations such as double-buffering.

Brooklet’s contracts for composite operators can be used to
compute and check rates. For example, the rate of a Pipeline
composite is the product of the rates of its stages. As another
example, in a SplitMerge composite, all parallel stages must have
the same rate, which becomes the rate of the SplitMerge itself.
If the stages have different rates, the compiler raises a contract-
violation error. Figure 9 shows an example stream graph, expanded
from a nested Pipeline in a SplitMerge, with rates.

Dup
{rate=2}

In

Pipeline {rate=2}

Dup
{rate=2}

Fwd
{rate=1}

Split Merge

Tmp

Out

SplitMerge {rate=2}

Figure 9. Stream graph with SDF data rates. The dashed ovals
indicate expanded composite operators.

In SPL, contracts get used extensively for primitive operators,
and can be quite sophisticated. For example, the contracts for
database adapter operators in our library access the schema of the
database instance, and check that the adapter is typed correctly. As
another example, the contract for the relational Join operator in
our library checks relationships between parameters for inner, left
outer, or right outer joins. Besides user-defined contracts for prim-
itive operators, the SPL compiler checks implicit structural con-
tracts, such as operator arity, parameter names, and stream types.

6. Related Work
This paper is the first to use macros for implementing composites,
making contributions in both areas.

6.1 Related Work on Composites
The StreamIt language allows users to define first-order composite
operators [20]. StreamIt users cannot define their own higher-order
composites. Instead, StreamIt comes with three built-in higher-order
composites Pipeline, SplitMerge, and FeedbackLoop. In con-
trast, we allow users to define these and other higher-order com-
posites by hand, using a single language feature. Instead of picking
a fixed set of higher-order composites to build into the language,
we leave this up to users and library writers, thus keeping the set
of higher-order composites open. In addition, we provide contracts
to make composites more robust. Other streaming languages with
composite operators include LabView [1] and EventFlow [17]. Like

149

StreamIt and unlike our work, they restrict users to defining first-
order composites.

Whereas StreamIt, LabView, and EventFlow follow streaming
as the primary paradigm, other languages such as DryadLINQ [24]
or FlumeJava [3] are primarily object-oriented with data-flow ex-
tensions. In those languages, the main program dynamically com-
poses stream graphs. Instead of abstracting with composites, the
user has access to host language abstraction features.

This paper describes composites as an extension to the Brooklet
calculus [18]. This makes the description self-contained and helps
focus on essential features that interact with hygiene and contracts.
A minor difference to the original Brooklet is that our paper adds
operator parameters and contracts. The key difference is that our
paper adds composites.

6.2 Related Work on Macros and Contracts
Hygienic macros avoid accidental name capture [13]. In Scheme,
macros are viewed as a set of extension “forms” over a base lan-
guage. Macro expansion happens in multiple passes, until only base
language code remains. Macros that work rename identifiers at the
end after all expansion passes to achieve hygiene [4]. Subsequent
work has further improved Scheme’s macro facilities to the point
where they can support sophisticated language extensions [21]. In
contrast, our approach views the object language (OL) as a stand-
alone language with its own syntax and scoping rules. The trans-
lator to intermediate language (IL) inserts calls to freshId before
the IL interpreter expands macros. But the key difference is that we
provide hygiene for composite operators in a streaming language.

Our IL is a novel composition of established concepts, one of
them being the quote-and-escape syntax. Originating from Lisp,
quote and escape have been adopted widely as a convenient nota-
tion to toggle between stages [19, 21, 22] or even languages [11].
Quote and escape can be arbitrarily nested and are implemented by
grafting abstract syntax trees. Prior published literature on quote-
and-escape syntax has not explored its interaction with higher-order
contracts.

Our contracts for higher-order macros build upon prior work on
contracts for higher-order functions [7]. The prior work explains
the blame contra-variance issue, and how to solve it with wrapper
functions. The key difference is that we combine contracts with
macros to support composite operators. Contracts are a means to
make macros more robust. There has been other work on making
macros more robust by different means. Some systems, such as
Java Mint, accomplish this by a combined type system for both
the base language and the macro system [23]. Fortified macros
embed restrictions on macro usage with dispatch patterns [5]. C++
concepts specify restrictions on C++ templates [9]. MorphJ checks
naming constraints in code generation with Java generics [12]. Our
contracts allow users to compute arbitrary predicates, which can
even read external configuration files or database schemas.

7. Conclusions
The three main contributions of this paper are a design of higher-
order composites for streaming, contracts for the composites, and
an implementation of the composites via translation to an interme-
diate language with macros and contracts. Our implementation sep-
arates the general macro expansion technology from the domain-
specific aspects of composites. We accomplish this by putting them
into separate passes of a compilation pipeline, yielding a descrip-
tion that can be understood step by step. The steps of our approach
could also be applied to macro-like features in other languages.

Acknowledgements. We are grateful to John Field, Robert Grimm,
Byeongcheol Lee, Rodric Rabbah, Scott Schneider, and Robert Sou-
lé for feedback on earlier drafts of this paper.

References
[1] http://www.ni.com/gettingstarted/labviewbasics/.
[2] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query

processing. In International Conference on Management of Data
(SIGMOD), 2000.

[3] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Brad-
shaw, and N. Weizenbaum. FlumeJava: Easy, efficient data-parallel
pipelines. In Programming Language Design and Implementation
(PLDI), 2010.

[4] W. D. Clinger and J. Rees. Macros that work. In Principles of
Programming Languages (POPL), 1991.

[5] R. Culpepper and M. Felleisen. Fortifying macros. In International
Conference on Functional Programming (ICFP), 2010.

[6] M. D. Ernst, G. J. Badros, and D. Notkin. An empirical analysis of C
preprocessor use. Transactions on Software Engineering (TSE), 2002.

[7] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In International Conference on Functional Programming (ICFP),
2002.

[8] G. Graefe. Encapsulation of parallelism in the Volcano query process-
ing system. In Int. Conf. on Management of Data (SIGMOD), 1990.

[9] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lums-
daine. Concepts: Linguistic support for generic programming in C++.
In Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 2006.

[10] M. Hirzel, H. Andrade, B. Gedik, V. Kumar, G. Losa, M. Mendell,
H. Nasgaard, R. Soulé, and K.-L. Wu. SPL Streams Processing
Language Specification. Technical Report RC24897, IBM, 2009.

[11] M. Hirzel and R. Grimm. Jeannie: Granting Java native interface
developers their wishes. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA).

[12] S. S. Huang and Y. Smaragdakis. Expressive and safe static reflection
with MorphJ. In Programming Language Design and Implementation
(PLDI), 2008.

[13] E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba. Hygienic
macro expansion. In LISP and Functional Programming (LFP), 1986.

[14] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceed-
ings of the IEEE, 1987.

[15] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
citation ranking: Bringing order to the web. Stanford Digital Libraries
Working Paper, 1998.

[16] C. Ré, J. Siméon, and M. F. Fernàndez. A complete and efficient
algebraic compiler for XQuery. In International Conference on Data
Engineering (ICDE), 2006.

[17] N. Seyfer, R. Tibbetts, and N. Mishkin. Capture fields: Modularity
in a stream-relational event processing language. In Conference on
Distributed Event-Based Systems (DEBS), 2011.

[18] R. Soulé, M. Hirzel, R. Grimm, B. Gedik, H. Andrade, V. Kumar, and
K.-L. Wu. A universal calculus for stream processing languages. In
European Symposium on Programming (ESOP), 2010.

[19] W. Taha and T. Sheard. Multi-stage programming with explicit anno-
tation. Partial Evaluation and Program Manipulation (PEPM), 1997.

[20] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language
for streaming applications. In Compiler Construction (CC), 2002.

[21] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and
M. Felleisen. Languages as libraries. In Programming Language De-
sign and Implementation (PLDI), 2011.

[22] D. Weise and R. Crew. Programmable syntax macros. In Programming
Language Design and Implementation (PLDI), 1993.

[23] E. Westbrook, M. Ricken, J. Inoue, Y. Yao, T. Abdelatif, and W. Taha.
Mint: Java multi-stage programming using weak separability. In
Programming Language Design and Implementation (PLDI), 2010.

[24] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and
J. Currey. DryadLINQ: A system for general-purpose distributed data-
parallel computing using a high-level language. In Operating Systems
Design and Implementation (OSDI), 2008.

150

