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Programming Model

e Streams applications
— Described as data-flow graphs

* An instance of a flow graph is a job in the system

— Flow graphs consist of

* Tuples: structured data item
* Operators: Reusable stream analytics
* Streams: Series of tuples with a given schema




Streaming Programming Models

Synchronous Asynchronous
e Static selectivity * Dynamic selectivity
— eg,1:3 — e.g.,1:[0,1]
for i in range(3): if input.value > 5:
result = f(i) submit(result)
submit(result) — Ingeneral, 1:*

— In general, m : n where m and

_ * In general, schedules cannot
n are statically known

. be static
* Always has static schedule



InfoSphere Streams Runtime
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InfoSphere Streams Runtime
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What we do

composite Main {
type
Entry = int32 uid, rstring server,
rstring msg;
Sum = uint32 uid, int32 total;
graph
stream<Entry> Msgs = ParSource() { ParSrc
param servers: "logs.x.com";
partitionBy: server;
Iy

stream<Sum> Sums = Aggregate(Msgs) { [$>
window Msgs: tumbling, time(5),
partitioned;
param partitionBy: uid;

Filter Filter Filter Filter

stream<Sum> Suspects = Filter(Sums) {
param filter: total > 100;

}

() as Sink = FileSink(Suspects) {
param file: '"suspects.csv";

}
by




Overview

Compiler:

* Apply parallel transformations

* Pick routing mechanism (e.g., hash by key)

* Pick ordering mechanism (e.g., seq. numbers)

lStream graph description

Runtime:

* Replicate segment into channels

» Add split/merge/shuffle as needed
* Enforce ordering



Transformations & Safety Conditions

Parallelize Parallelize sources Combine parallel Rotate
non-source/sink and sinks regions merge and split
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* Can't parallelize
— Operators with >1 fan-in or fan-out
— Punctuation dependecy later on

 Can't add operator to parallel segment if

— Another operator in segment has co-location
constraint

— Keys don't match
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Compiler to Runtime

Compiler 0
compile-time

Graph + unexpanded

parallel regions

Fully expanded
graph submission-time

Runtime Runtime Runtime
graph graph graph
fragment fragment fragment

run-time
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Runtime

selectivity = 1 selectivity £ 1 selectivity unknown
no state don't parallelize
partitioned state don't parallelize
unknown state don't parallelize don't parallelize don't parallelize

Operators in parallel segments:
* Forward segno & pulse

I ) Merge:
Split: ~@- - * Apply ordering
* Insert seqno & pulse - - - policy
* Routing .o ~ * Remove seqno (if

there) and drop
pulse (if there) .,



Round-Robin
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Speedup compared to the sequential case

Scalability
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Application Kernels
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Questions?



Backups



Compiler Changes




Transport Changes

e TCPSender

— Added the ability to send to a subset of
connections on an output port

e Handshake

— Modified to include sender identities

e TCPReciever

— Added support for identifying which connection
has delivered a tuple



Overhead (%) over RoundRobin

Overhead
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Speedup compared to the sequential case
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Speedup compared to the sequential case

Scalability
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Scalability

Shuffle
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