Auto-Parallelizing Stateful
Distributed Streaming Applications

Scott Schneider™, Martin Hirzel’,
Bugra Gedik® and Kun-Lung Wu’

"IBM Research *Bilkent University

Programming Model

e Streams applications
— Described as data-flow graphs

* An instance of a flow graph is a job in the system

— Flow graphs consist of

* Tuples: structured data item
* Operators: Reusable stream analytics
* Streams: Series of tuples with a given schema

Streaming Programming Models

Synchronous Asynchronous
e Static selectivity * Dynamic selectivity
— eg,1:3 — e.g.,1:[0,1]
for i in range(3): if input.value > 5:
result = f(i) submit(result)
submit(result) — Ingeneral, 1:*

— In general, m : n where m and

_ * In general, schedules cannot
n are statically known

. be static
* Always has static schedule

InfoSphere Streams Runtime

N

Connections

x86 host x86 host x86 host x86 host x86 host

InfoSphere Streams Runtime

x86 host x86 host x86 host x86 host x86 host

What we do

composite Main {
type
Entry = int32 uid, rstring server,
rstring msg;
Sum = uint32 uid, int32 total;
graph
stream<Entry> Msgs = ParSource() { ParSrc
param servers: "logs.x.com";
partitionBy: server;
Iy

stream<Sum> Sums = Aggregate(Msgs) { [$>
window Msgs: tumbling, time(5),
partitioned;
param partitionBy: uid;

Filter Filter Filter Filter

stream<Sum> Suspects = Filter(Sums) {
param filter: total > 100;

}

() as Sink = FileSink(Suspects) {
param file: '"suspects.csv";

}
by

Overview

Compiler:

* Apply parallel transformations

* Pick routing mechanism (e.g., hash by key)

* Pick ordering mechanism (e.g., seq. numbers)

lStream graph description

Runtime:

* Replicate segment into channels

» Add split/merge/shuffle as needed
* Enforce ordering

Transformations & Safety Conditions

Parallelize Parallelize sources Combine parallel Rotate
non-source/sink and sinks regions merge and split
|
- o— | —o E}u-q{i M
|
g $ 3 & <
|
|
| o—0
E}i— | —1<§ o—©
|
'@' | *—o %
stateless or e stateless or e stateless * incompatible
partitioned state partitioned state or keys
selectivity <1 * compatible keys
simple chain * forwarding

* Can't parallelize
— Operators with >1 fan-in or fan-out
— Punctuation dependecy later on

 Can't add operator to parallel segment if

— Another operator in segment has co-location
constraint

— Keys don't match

10

Compiler to Runtime

Compiler 0
compile-time

Graph + unexpanded

parallel regions

Fully expanded
graph submission-time

Runtime Runtime Runtime
graph graph graph
fragment fragment fragment

run-time

11

Runtime

selectivity = 1 selectivity £ 1 selectivity unknown
no state don't parallelize
partitioned state don't parallelize
unknown state don't parallelize don't parallelize don't parallelize

Operators in parallel segments:
* Forward segno & pulse

I) Merge:
Split: ~@- - * Apply ordering
* Insert seqno & pulse - - - policy
* Routing .o ~ * Remove seqno (if

there) and drop
pulse (if there) .,

Round-Robin

next

Merger Ordering

- —
0 13 101 7 :next—heap
N 1 ya
T]
4 - \I
1]
1 105 1
- — 1 last =4
1]
(T
2 15 (12 (9 1l 6 |1
N\ : J/ :
| YE——

Sequence Numbers

o=~ (CTTTN
'd II A} I
0 1(221(16 1(10 |! next-heap
_ Ny N 1
S~ Trss

- - ——— ——

—
(N\
\
\
‘\
/)
\
\ t’
(0]
A
“‘:—"é

PP i last = 4
 Conias el
2 " (24 /018 (1216]
\ \\ z : :
S | YY)
seen-heap

Sequence Numbers and Pulses

Speedup compared to the sequential case

Scalability

100

52

L R S
Per tuple processing cost (# of multiplications)

SplitMergeStateful

SplitShuffleMerge

Application Kernels

:-O-Network monitoring
{~®PageRank

Twitter NLP

| == Twitter CEP
|-*Finance

Network monitoring

r-——

>

Twitter NLP

—— N/
l=k Parset»2« Matchrk-<

|)

Twitter CEP

Finance

Questions?

Backups

Compiler Changes

Transport Changes

e TCPSender

— Added the ability to send to a subset of
connections on an output port

e Handshake

— Modified to include sender identities

e TCPReciever

— Added support for identifying which connection
has delivered a tuple

Overhead (%) over RoundRobin

Overhead

35 $eqN9 & Pglse

oo # epochs=32|
> # epochs=16
epochs=8
x—= # epochs=4
*—+ # epochs=2
epochs=1

w
N
T

+—+ # channels=1 <—< # channels=8
30|+ #channels=2 »— # channels=16
x—= # channels=4 o—o # channels=32

!

25

o]
T

Speedup compared to the sequential case

41
, ol
17,
T Ty T ol 56 o8 510 ol ol o6 ol8 520 00 52 51 96 o8 ol0 o2 ol o6 5i8 520
2 2
Per tuple processing cost (# of multiplications) Per tuple processing cost (# of multiplications)

20

Speedup compared to the sequential case

Scalability

oo # channels=32| o T e
—> # channels=16
16f| <— # channels=8
x— # channels=4
*—+ # channels=2
channels=1

Stateless

32¢

Per tuple processing cost (# of multiplications)

220

Speedup compared to the sequential case

e o # channels=32]|
—> # channels=16
16}| <— # channels=8
x—= # channels=4
*—+ # channels=2
channels=1

32¢

0.5 ‘

Per tuple processing cost (# of multiplications)

i

21

Scalability

Shuffle

oo # channels=32]|
> # channels=16 R
channels=8 | O
x—= # channels=4
*—+ # channels=2
channels=1

w
N
T

i

(o8]

N

N

=

Speedup compared to the sequential case

o
Ul

Per tuple processing cost (# of multiplications)

