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Abstract
Higher-level languages interface with lower-level languages
such as C to access platform functionality, reuse legacy li-
braries, or improve performance. This raises the issue of
how to best integrate different languages while also recon-
ciling productivity, safety, portability, and efficiency. This
paper presents Jeannie, a new language design for integrat-
ing Java with C. In Jeannie, both Java and C code are nested
within each other in the same file and compile down to JNI,
the Java platform’s standard foreign function interface. By
combining the two languages’ syntax and semantics, Jean-
nie eliminates verbose boiler-plate code, enables static error
detection across the language boundary, and simplifies dy-
namic resource management. We describe the Jeannie lan-
guage and its compiler, while also highlighting lessons from
composing two mature programming languages.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.2.12
[Software Engineering]: Interoperability; D.3.4 [Program-
ming Languages]: Processors

General Terms design, languages

Keywords programming language composition, Java, C,
JNI, foreign function interface, xtc, modular syntax, Rats!

1. Introduction
Higher-level languages must interface with lower-level lan-
guages, typically C, to access platform functionality, reuse
legacy libraries, and improve efficiency. For example, most
Java programs execute native code, since several methods
of even class Object at the root of Java’s class hierarchy
are written in C. Foreign-function interfaces (FFIs) accom-
plish this task, providing access to C code and data from
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higher-level languages and vice versa. For example, a Java
project can reuse a high-performance C library for binary
decision diagrams (BDDs) through the Java Native Inter-
face [38] (JNI), which is the standard FFI for Java.

FFI designs aim for productivity, safety, portability, and
efficiency. Unfortunately, these goals are often at odds. For
instance, Sun’s original FFI for Java, the Native Method In-
terface [52, 53] (NMI), directly exposed Java objects as C
structs and thus provided simple and fast access to object
fields. However, this is unsafe, since C code can violate Java
types, notably by storing an object of incompatible type in a
field. Furthermore, it constrains garbage collectors and just-
in-time compilers, since changes to the data representation
may break native code. In fact, NMI required a conserva-
tive garbage collector because direct field access prevents
the Java virtual machine (JVM) from tracking references in
native code. Finally, native code that depends on a virtual
machine’s object layout is hard to port to other JVMs.

In contrast to the Native Method Interface, the Java Na-
tive Interface is well encapsulated. As a result, C code is
easily portable while also permitting efficient and differing
Java virtual machine implementations. But JNI’s reflection-
like API requires verbose boiler-plate code, which reduces
productivity when writing and maintaining native code. Fur-
thermore, it is still unsafe—typing errors cannot be checked
statically, nor does the JNI specification require dynamic
checks. It is also less efficient than unportable FFIs that ex-
pose language implementation details.

This paper presents Jeannie, a new FFI for Java that pro-
vides higher productivity and safety than JNI without com-
promising the latter’s portability. Jeannie achieves this by
combining Java and C into one language that nests program
fragments written in either language within each other. Con-
sequently, Jeannie inherits most of the syntax and semantics
from the two languages, with extensions designed to seam-
lessly bridge between the two. By analyzing both Java and
C together, the Jeannie compiler can produce high-quality
error messages that prevent many a maintenance nightmare.
Our compiler is implemented using Rats! [29], a parser gen-
erator supporting modular syntax, and xtc [28], a language
composition framework. It accepts the complete Jeannie lan-
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#include <jni.h>

jint
Java_my_net_Socket_available(JniEnv *env, jobject this)

#include <sys/ioctl.h>
#include <errno.h>
#include <string.h>

{
  int num, fd;

  if (ioctl(fd, FIONREAD, &num) != 0) {
 

  }
  return num;
}

jclass cls; jfieldID fid;
cls = (*env)->GetObjectClass(env, this);
fid = (*env)->GetFieldID(env, cls, "native_fd", "I");
fd  = (*env)->GetIntField(env, this, fid);

1

2

jclass exc =
  (*env)->FindClass(env, "Ljava/io/IOException;");

(*env)->ThrowNew(env, exc,                  );
return 0; 

strerror(errno)

3

4

5

package my.net;
import java.io.IOException;

public class Socket {
  static {
    System.loadLibrary("Network");
  }
  protected int native_fd;
  protected native int available() throws IOException;
  …
}

Figure 1. JNI example, with Java on top and C on bottom.

guage, including Java 1.4 code and most gcc extensions to
C, and its backend produces conventional JNI code. Future
work will explore alternative backends that, for example,
produce code optimized for specific JVMs.

Jeannie’s contributions are threefold:

• Improved productivity and safety for JNI;
• Deep interoperability of full programming languages;
• Language composition lessons from a large example.

We evaluate Jeannie based on a partial port of the JavaBDD
library [60] and on micro-benchmarks that exercise new lan-
guage features. Our results demonstrate that Jeannie code is
simpler than the corresponding JNI code, while introducing
little performance overhead and maintaining JNI’s portabil-
ity.

2. Point of Departure: JNI
This section provides a flavor of JNI, the Java Native Inter-
face, as described in Liang’s book “The Java Native Inter-
face: Programmer’s Guide and Specification” [38]. Figure 1
illustrates how a socket abstraction can use JNI to interface
with the operating system. The Java class on top declares a
native method available with no Java body. The method is
implemented by the body (2) of C function Java_my_net_-
Socket_available on bottom. A downcall from Java to C
looks like any other Java method call. On the other hand, C
code uses a reflection-like API for upcalls to Java methods

package my.net;
import java.io.IOException;

public class Socket {
  protected int native_fd;
  protected native int available() throws IOException

 …
}

`.C {
#include <sys/ioctl.h>
#include <errno.h>
#include <string.h>
}

`{
  int num;

  int fd =                  ;

  if (ioctl(fd, FIONREAD, &num) != 0)

  return num;
}

`this.native_fd

`throw new
  IOException(                                  );`_newJavaString(strerror(errno))

1

2

3

4

5

Figure 2. Jeannie version of code from Figure 1.

and for Java field accesses. In the example, C Snippet 3 reads
the Java field this.native_fd.

The JNI interface pointer env is the first argument to
all C functions implementing Java native methods. The
corresponding type JNIEnv, declared in jni.h, points to
a struct of function pointers that are implemented by the
Java virtual machine. In the struct, the field access func-
tion GetIntField used by Snippet 3 of Figure 1 is repli-
cated for several other types, including GetBooleanField
and GetObjectField. JNI also provides similar functions
for calling methods. Snippet 4 illustrates JNI’s facilities for
raising Java exceptions. Since C lacks exception handling fa-
cilities, the C code must emulate the abrupt control flow with
an explicit return statement. JNI also provides functions to
check for pending Java exceptions, entering and leaving syn-
chronization monitors, acquiring and releasing Java arrays
for direct access in C, and many more. Finally, JNI functions
use types such as jint, jclass, and jfieldID, which are
also declared in jni.h.

Before first calling a native method, a Java virtual ma-
chine needs to link the corresponding native library. The
System.loadLibrary call in the static initializer of class
Socket in Figure 1 identifies the library’s name, which is
mapped to a shared object file (.so or .dll) on the JVM’s
library path. After loading the object file, the JVM locates
the C function implementing available by following the
name mangling rules of the JNI specification. Repeated calls
to System.loadLibrary for the same library are ignored,
so that the C functions for several Java classes can be in-
cluded in the same library.

3. Jeannie Overview
Figure 2 shows the JNI code from Figure 1 rewritten in
Jeannie. The outer Jeannie code in Figure 2 corresponds
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to the Java code in Figure 1. Nested code snippets in both
figures that correspond to each other are labeled with the
same numbers (1 through 5). The Jeannie file starts with a
`.C block of top-level C declarations included from header
files (1). It continues like a normal Java file with a package
declaration, imports, and one or more top-level Java class
or interface declarations. Unlike in Java, native methods
in Jeannie have a body (2). The backtick ` toggles to the
opposite language, which is C in the case of Snippet 2.
Consequently, Java code can be nested in C (Snippets 3
and 4), and C code can be nested in Java (Snippet 5), to
arbitrary depth. The JNI code in Figure 1 illustrates that such
deep nesting occurs naturally.

Nested Java code in Jeannie does not need to use fully
qualified names: where Snippet 4 in Figure 1 refers to
java.io.IOException, Snippet 4 in Figure 2 uses the sim-
ple name IOException, which Jeannie resolves using the
import declaration. The Jeannie compiler verifies statically
that names and types are used consistently across nested Java
and C code. It also verifies that throws clauses declare all
checked exceptions, while extending Java’s exception han-
dling discipline to nested C code and automatically releasing
resources such as locks and memory on abrupt control flow.
As a result, Jeannie can avoid a large class of bugs that JNI
code is susceptible to.

Figure 3 illustrates the Jeannie pipeline for compiling
a file. Socket.jni corresponds to Jeannie source code as
shown in Figure 2. The pipeline first injects

#include <jni.h>

into the initial `.C block (e.g., Snippet 1 in Figure 2). It
then runs the C preprocessor, which is necessary to ensure
that all C code in the Jeannie file is syntactically valid and
referentially complete. The result is the intermediate file
Socket.jni.i, which serves as the input to the Jeannie
compiler proper.

The Jeannie compiler converts the intermediate file into
two separate files Socket.i and Socket.java, with pure
preprocessed C code that uses JNI on the one hand and pure
Java code with native methods and a System.loadLibrary
call on the other hand. Jeannie’s parser is generated by
Rats! [29] from a grammar that reuses separate C and Java
grammars. The name and type analysis is based on xtc [28]
and reuses separate C and Java semantic analyzers. If the
input program has syntactic or semantic errors, the compiler
reports them to the user. Otherwise, the code generator pro-
duces two separate abstract syntax trees (ASTs) for C and
Java, which are converted back into source code by pretty-
printers from xtc.

From this point on, the compilation pipeline proceeds as
if the JNI code had been written by hand. The platform C
compiler compiles Socket.i together with other C files into
a shared object file Network.dll, and the Java compiler
compiles Socket.java together with other Java files into
Java bytecode, which it may place into a file Network.jar.

Process

Socket.jni.pp

Socket.jni

Socket.jni.i

Socket.i Socket.java

Java 
Sources

Network.dll Network.jar

Inject #include <jni.h>

C Preprocessor

Jeannie
Compiler

C Sources

C
Compiler

Java
Compiler

AST and
Symbol Table

C AST Java AST

Syntactic Analysis

Semantic Analysis

Pretty Printing

Translation

Jeannie AST

Figure 3. The Jeannie build process and compiler stages.

Later, the JVM’s dynamic linker combines the code into
a running application. In general, the Network.dll and
Network.jar files are not self-contained, but interact with
significant other code written independently of Jeannie, such
as the operating system kernel or the Java standard libraries.

4. Jeannie Language
Jeannie combines Java and C. It inherits most of the syntax
and semantics from the two base languages [27, 34]. The
primary contribution of this paper is to show how to integrate
the two languages generally and seamlessly.

4.1 Syntax
Jeannie nests C code in Java and Java code in C. It supports
the complete syntax of both C and Java and relies on the
backtick operator ` to switch between the two languages.
For example, when the current language is Java,

`{ int x=42; printf("%d", x); }

denotes a C block nested in Java code. Conversely, when the
current language is C,

`{ int x=42; System.out.print(x); }
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denotes a Java block nested in C code. The backtick opera-
tor can also be applied to expressions; it has the same prece-
dence as other unary prefix operators such as logical nega-
tion !. For example, when the current language is Java,

`((jboolean)feof(stdin))

denotes a C expression nested in Java code. In this example,
the parentheses around the C cast expression are necessary
because the cast operator has lower precedence than the
backtick operator.

Jeannie also supports a qualified form of the backtick op-
erator for switching between the two languages; depending
on the destination language, it is denoted `.C or `.Java.
The simple and qualified forms are interchangeable, allow-
ing developers to trade off terseness and clarity as desired.

Synchronization
In Java, the synchronized (m) { CS } statement acquires a
monitor m, then executes the code in the critical section CS,
then releases m. Java semantics are designed so that the
monitor is always released, even in the presence of abrupt
control flow due to, for example, exceptions. However, since
C lacks language support for synchronization, JNI provides
two separate functions MonitorEnter and MonitorExit.
It is the programmer’s responsibility to ensure the typestate
properties of a monitor object along all control paths for JNI
code.

Jeannie leverages Java’s monitor discipline by allowing
synchronized statements to be nested in C code with a
backtick. For example,

`synchronized (lock) { counter.incr(); }

denotes a Java synchronized statement nested in C code.
The monitor is the object in variable lock and the critical
section contains a method call counter.incr(). Of course,
the critical section can also use a backtick to switch back into
C. For example,

`synchronized(flock) `{ fprintf(fd, s); }

denotes a synchronized statement whose body is a C
block.

Exception Handling
In Java, a try/catch/finally statement first executes the
try block. If the try block abruptly terminates with an ex-
ception and there is a matching catch block, it then exe-
cutes that exception handler. Either way, it then executes the
finally block (if present). In contrast, C does not support
exceptions. Instead, programmers rely on error codes and
explicit control transfer through goto and return.

Jeannie leverages Java’s exception handling discipline by
allowing Java try statements to be nested in C code with a
backtick. For example,

`try{ f(); } catch (Exception e) { h(e); }

denotes a Java try statement nested in C code. Of course,
any of the try, catch, and finally blocks can use a back-
tick to switch back into C. C code can also throw an excep-
tion by using a Java throw statement with a backtick. For
example,

`throw new Exception("boo");

tries to startle the program by throwing an exception from C
code. To complete integration of Java’s exception handling
discipline with C, Jeannie also allows C functions to declare
exceptions with a `throws clause. For example,

void
printf(char* f, ...) `throws IOException;

declares a C function printf that may signal a Java IOEx-
ception (instead of returning a status code).

String and Array Access
The Jeannie syntax presented so far already supports C code
accessing Java arrays and strings. For example, when the
current language is C,

cChar = `javaString.charAt(3);
cFloat = `javaArray[3];
`(javaArray[3] = `sqrt(cFloat));

reads a character from a Java string, reads a floating point
number from a Java array, and writes that number’s square
root back into the Java array. While succinct, this idiom for
accessing arrays and strings may be inefficient. For example,

for (jint i=0, n=`ja.length; i<n; i++)
s += `ja[`i];

repeatedly crosses language boundaries as it sums up the
elements of Java array ja.

To speed up bulk access to strings and arrays, Jeannie
provides the _copyFromJava and _copyToJava built-ins.
Comparable to C’s memcpy and Java’s System.arrayCopy,
the two functions copy regions of strings and arrays, but
across languages. For example,

_copyFromJava(ca, cStart, ja, jStart, len)

copies the array elements ja[jStart] through ja[jStart+
len-1] to ca starting at ca[cStart]. Java strings are
treated as read-only character arrays and can be copied in
their native UTF-16 encoding or converted into UTF-8 en-
coding. To let C code allocate an appropriately sized buffer,
the _getUTF8Length built-in returns the length of a Java
string in UTF-8 encoding. Furthermore, to convert C strings
into Java strings, the _newJavaString built-in illustrated in
Figure 2 creates a new Java string from a C string. Consis-
tent with C99’s practice for evolving the language, Jeannie
prefixes new C built-ins and keywords with an underscore,
thus reducing the likelihood of naming conflicts with exist-
ing code. The jeannie.h header file provides convenience
macros such as
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Example Code Nonterminal Parsing Expression
`.C { #include <stdio.h> } class A {} File = `.C { C.Declarations } Java.File

C nested in Java Modifications to Java grammar
`{ int x=42; printf("%d", x); } Java.Block += . . . / CInJava C.Block
`((jboolean)feof(stdin)) Java.UnaryExpression += . . . / CInJava C.UnaryExpression
`.C CInJava = `.C / `

Java nested in C Modifications to C grammar
`{ int x=42; System.out.print(x); } C.Block += . . . / JavaInC Java.Block
`new HashMap(); C.UnaryExpression += . . . / JavaInC Java.UnaryExpression
`java.util.Map C.TypeSpecifier += . . . / JavaInC Java.QualifiedIdentifier
f(char *s) `throws IOException C.FunctionDeclarator := C.DirectDeclarator ( C.ParameterDeclaration )

〈 JavaInC Java.ThrowsClause 〉
?

C.Statement += . . .
`synchronized(act) { act.deposit(); } / JavaInC Java.SynchronizedStatement
`try { f(); } catch (Exception e) { h(e); } / JavaInC Java.TryStatement
`throw new Exception("boo"); / JavaInC Java.ThrowStatement
`.Java JavaInC = `.Java / `

New C constructs Modifications to C grammar
C.Statement += . . .

_with (jint* ca = `ja) { sendMsg(ca); } / _with ( WithInitializer ) C.Block
_abort ca; / _abort C.Identifier ;

_commit ca; / _commit C.Identifier ;

WithInitializer =
msg->data = `ja C.AssignmentExpression
jint* ca = `v.toArray() / C.Declaration

Figure 4. Jeannie syntax. For exposition, parsing expressions are somewhat simplified when compared to the actual grammar.
Literals are set in monospace font, without double quotes.

#define copyFromJava _copyFromJava

to eliminate unsightly underscores from most programs.
To avoid manual buffer management and enable opti-

mizations that avoid copying altogether, Jeannie’s _with
statement provides a more disciplined way of accessing Java
strings and arrays from C code. For example,

_with (jint* ca = `ja) {
for (jint i=0, n=`ja.length; i<n; i++)
s += ca[i];

}

acquires a copy of Java array ja’s contents, sums up its
elements, and then releases the copy while also copy-
ing back the contents. Following the example of Java’s
synchronized statement, Jeannie’s _with statement uses
syntactic nesting to enforce the proper pairing of acquire
and release operations on a resource. By default, the string
or array is released when control reaches the end of a _with
block; Jeannie also supports leaving the statement abruptly
by using a _commit ca or _abort ca statement.

Formal Syntax
Figure 4 shows the Jeannie grammar. The first column shows
example code for each construct, while the other columns
specify the syntax using parsing expressions and the gram-
mar modification facilities of Rats! [29]. For example,

Java.Block += . . . / CInJava C.Block

modifies the Java grammar: the nonterminal Java.Block, in
addition (+=) to recognizing Java blocks (. . .) now recog-
nizes a backtick (CInJava) followed by a C block (C.Block).
As another example, the rule

C.FunctionDeclarator := C.DirectDeclarator
(C.ParameterDeclaration )
〈 JavaInC Java.ThrowsClause 〉

?

modifies the C grammar: the nonterminal C.FunctionDeclar-
ator, instead of (:=) recognizing just a C function declarator,
now recognizes a C function declarator followed by an op-
tional backtick and Java throws clause.

The Jeannie grammar’s start symbol is File. As illustrated
in Figure 2, a Jeannie source file starts with C declarations,
which typically come from header files, followed by the
usual contents of a Java source file, i.e., the package, import,
and top-level class and interface declarations.

One modification to the C grammar not yet discussed is
the ability to use a backticked Java type name as a C type
specifier. For example, when the current language is C,

const `java.util.Map m = . . .;

defines a C variable m that contains a constant opaque refer-
ence to a Java Map. As illustrated by this example, C code
may not only use Java types but also combine them with C
qualifiers such as const.

Most of Jeannie’s syntax has been designed for orthogo-
nality. By adding only a small number of rules to existing C
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public static native void f(int x)

`{
  jint y = 0;

  printf("%d\n", y);
}

`{
  int z;

  z = 1 +                          ;

  System.out.println(x);
  System.out.println(z);
}

1

`(y = 1 +            )`(x = 1)

2

34

Figure 5. Example code with deep nesting and assignments.

and Java grammars, it enables the seamless integration of the
two languages. However, Jeannie’s syntax does trade orthog-
onality for efficiency for string and array accesses. Further-
more, since JNI targets C and Jeannie includes the complete
C language, it is possible to use JNI within Jeannie code.
While generally discouraged, this does allow for incremen-
tal ports of JNI code to Jeannie.

4.2 Dynamic Semantics
For pure Java and pure C code, the dynamic semantics of
Jeannie are just the dynamic semantics of the respective base
language. This section clarifies the behavior of variables,
arrays, and abrupt control flow at the language boundary.

Formal Parameters and Local Variables
Consider the Jeannie code in Figure 5. Block 1 is a C block.
It can use the local variable y and an implicit parameter
JNIEnv* env for direct JNI calls. Block 2 is a Java block.
It can use the formal parameter x, the local variable z, and
an implicit parameter T this, with T being the class that
declares method f. Expression 3 is a C expression in the
scope of Block 1 and can hence use y and env. Expression 4
is a Java expression in the scope of Block 2 and can hence
use x, z, and this.

Consistent with the rule of least surprise, all Jeannie code
in the same activation of a method observes the same state.
Consequently, in Block 2 of Figure 5, the statement

System.out.println(x);

prints 1, since the preceding Expression 4 assigns that value
to x. Likewise, in Block 1, the statement

printf("%d\n", y);

prints 2, since the preceding Expression 3 assigns that value
to y.

The Jeannie language does not specify the dynamic se-
mantics of unobserved state. For example, the C code in
Figure 5 never applies the address-of operator & to y. Con-
sequently, an implementation need not store y at the same
address for Block 1 and Expression 3. Likewise, the Java
code never uses the implicit parameter this. Consequently,

an implementation need not pass it around. By only defining
the runtime semantics of observed state, Jeannie enables dif-
ferent implementation and optimization strategies. Notably,
a backend more sophisticated than our current one may per-
form inlining and register allocation across language bound-
aries similar to [51].

Non-Local Variables and Garbage Collection
JNI distinguishes between local and global references. Lo-
cal references are formal parameters and local variables in
C that refer to Java objects. They pose little challenge for
garbage collection: a Java virtual machine simply treats ref-
erences passed into C code as additional roots for the du-
ration of a native method call. Global references are static
variables and heap-allocated data structures in C that re-
fer to Java objects. By definition, static variables and heap-
allocated data structures may hold a Java reference even af-
ter a native method returns, thus raising the issue of how to
prevent the referenced objects’ premature collection.

JNI addresses this problem by requiring explicit ac-
quire and release operations through NewGlobalRef and
DeleteGlobalRef. The JVM’s garbage collector then treats
these references as additional roots. However, this approach
suffers from all the problems of manual memory manage-
ment: leaks, dangling references, and double deletes. The
alternative of using syntactic nesting to enforce the pairing
of acquire and release operations does not work for global
references. After all, they are intended to escape a language’s
stack discipline.

Instead, Jeannie recommends that programmers do not
store Java references in C’s static variables or heap-allocated
data structures. Rather, they should only store them in fields
of Java classes and objects. For example, to access a static
field f of class C, a developer merely writes `C.f, and, to
access an instance field g of object o, the developer writes
`o.g. In either case, a Java reference is only a backtick away,
while taking full advantage of garbage collection. Future
work may explore an escape analysis that warns users when
the compiler cannot prove that local references indeed stay
local.

String and Array Access
Figure 6 shows how programmers should choose between
Jeannie’s different string and array access features. While
the expression semantics of regular Java capture the dy-
namic semantics of backticked string or array accesses, the
_copyFromJava, _copyToJava, _newJavaString, and
_with constructs merit discussion.

The _copyFromJava and _copyToJava built-ins per-
form their copy operation unless the Java reference is null
or the Java indices are out of bounds; in those cases, the
built-ins throw an appropriate exception. In contrast and con-
sistent with C semantics, an invalid C pointer or index pro-
duces undefined behavior. Trying to copy a string to Java is a
static error. When copying a string from Java, the pointer can
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Preallocated C buffer, 
accesses to small region, 

or unidirectional copy?

Accesses
limited in number or

off critical path?

Y

N

_copyFromJava  /  _copyToJava
Y

`ja[…] /* Nested Java. */

N

_with(…) {…}

Figure 6. Decision diagram for how to access arrays and
strings (modeled after similar diagrams in the JNI specifica-
tion [38, §3.2.7, §3.3.4]).

public static native int
replace(char[] chars, char oldC, char newC)

`{
  jchar old =        , new =        ;

  jint  len =                ;

  _with (jchar* s =         ) {

    for (int i=0; i<len; i++) {
      if (old == s[i]) {
        s[i] = new;
        return i;
      }
    }
    _abort s;
  }
  return -1;
}

`chars

`oldC `newC

`chars.length

Figure 7. Example code for _with statement. Note that new
is not a keyword in C code even though it is for Java.

be of type jbyte* or jchar*. In the former case, the result
is a UTF-8 encoded C array; in the latter case, it is UTF-16
encoded just like Java strings. In both cases, the length ar-
gument counts Java characters in the Java string, while the
return value counts C characters in the C string. Comparable
to _copyFromJava, the _newJavaString built-in accepts a
C string of type jbyte* or jchar*, converting from UTF-8
to UTF-16 for the former.

As shown in Figure 4, the _with statement takes the
following form:

_with (ca = ja) { . . . }

If ja is null, the _with statement signals a NullPointer-
Exception. Otherwise, it initializes ca to point to a copy
of ja. As for the built-in copy functions, strings are UTF-
8 encoded if ca is of type jbyte* and UTF-16 encoded if
ca is of type jchar*. Independent of encoding, modifying a
string leads to undefined behavior.

The _commit and _abort statements initiate an abrupt
control transfer to the code immediately following a _with
statement. A _commit statement copies any changes back

into ja, whereas _abort discards them. For example, in
Figure 7, the _abort statement indicates that no changes
need to be copied back to ja. Both _commit and _abort
release any resources necessary for implementing the _with
statement, notably the copy’s memory.

Control flow can also leave a _with statement through
completion of the block, a return statement, or an ex-
ception. The first two cases represent an implicit _commit,
while the third case represents an implicit _abort. In all
three cases, Jeannie code behaves exactly as if the _commit
or _abort was present, including releasing any resources.
For example, in Figure 7, the return i statement inside the
loop represents an implicit _commit, and the modified char-
acter array is copied back before control leaves the _with
statement. Thanks to the explicit _abort at the end of the
_with statement’s block, the array is not copied back if no
character was replaced.

Abrupt Control Flow
Jeannie has several language features that abruptly change
control flow: explicit function or method returns, excep-
tions, array aborts and commits, and break, continue, and
goto statements. To avoid unnecessary complexity, break,
continue, and goto statements must not cross language
boundaries or _with statements. When abrupt control flow
leaves synchronized, _with, or try blocks, Jeannie re-
leases any locks or arrays while also executing any finally
blocks—just as it does for regular control flow. Function and
method returns go back to the call site, just as in C and Java,
and exceptions propagate to the dynamically closest match-
ing catch clause, just as in Java.

4.3 Static Semantics
Similar to Jeannie’s dynamic semantics, the static semantics
of Jeannie are largely just the static semantics of the respec-
tive base language—with one crucial difference: the Jeannie
compiler checks that Jeannie code is well-formed and well-
typed for both base languages at the same time and across the
language boundary. In other words, Jeannie not only replaces
JNI’s reflection-like API with direct language support, but
also enforces the static semantics of the combined language,
thus significantly reducing the potential for software errors.

Most of the compile-time semantic rules for C and Java
also apply to nested C and Java code in Jeannie. For in-
stance, Jeannie resolves Java class names relative to imports
and matches C functions to their prototypes, which are typ-
ically declared in header files included at the beginning of
a Jeannie file. Furthermore, Jeannie verifies that all checked
exceptions are either caught locally or declared as thrown
by the enclosing function or method. Next, Jeannie checks
that Java members are in fact accessible, i.e., that references
to fields, methods, and member types obey their visibility
(private, protected, public, or default).

In Jeannie, native methods of a Java class must have a
body and that body must be a backticked C block. Native
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methods also declare an implicit C parameter JNIEnv* env,
so that C code has access to JNI’s API. Consequently, ex-
plicit parameters of native methods cannot have the name
env. As discussed above under dynamic semantics, Jeannie
provides this feature to facilitate incremental conversion of
JNI code to Jeannie, though its use is discouraged in general.

Typing
Jeannie defines several type equivalences between Java and
C types, denoted as JT ≡ CT. Java’s primitive types are
equivalent to their corresponding typedefs in jni.h. For
example:

char ≡ jchar
int ≡ jint

Similarly, Java arrays of primitive types are equivalent to
their typedefs in jni.h, including:

char[] ≡ jcharArray
int[] ≡ jintArray

Additionally, Jeannie honors the type equivalences provided
by JNI for reference types, such as:

java.lang.Object ≡ jobject
java.lang.Object[] ≡ jobjectArray

java.lang.Throwable ≡ jthrowable

See the JNI specification for a full list [38, §12.1].
Jeannie extends the C type system by introducing an

opaque reference type for every Java class or interface. The
Java type and C type are equivalent. For example:

java.io.IOException ≡ `java.io.IOException

Jeannie has the same rules for resolving simple type names
to fully qualified type names as Java. For example, C code in
Jeannie can use the type specifier `IOException for class
java.io.IOException if the current file is part of package
java.io or if it has the appropriate import declaration.

C assignments, variable initializers, function invocations,
and return statements can implicitly widen opaque refer-
ences to Java classes or interfaces. For example, when the
current language is C, the second assignment in

`java.util.HashMap h = . . . ;
`java.util.Map m = h;

is legal because class HashMap implements interface Map.
When a Java expression is nested in C code, Jeannie type-

checks the C code as if the Java expression had the equiv-
alent C type. Likewise, when a C expression is nested in
Java code, Jeannie type-checks the Java code as if the C ex-
pression had the equivalent Java type. However, C pointers,
structs, and unions have no equivalent in Java, and a Jeannie
compiler flags an error when a program attempts to use them
in Java code.

In addition to these type equivalence and widening rules,
each base language has its own implicit and explicit con-

versions, which are observed by the Jeannie compiler. For
example, when the current language is Java,

if (`((jboolean)feof(stdin))) return;

first explicitly casts the return value of the function call
feof(stdin) to jboolean and then relies on Jeannie’s
type equivalence rules to implicitly convert the C typedef
jboolean into the Java primitive type boolean. That type,
in turn, is the expected type for the if statement’s condition.

Jeannie treats Java reference types in C no more and no
less opaquely than JNI. For example, Sun’s default jni.h
header defines jobject to be a pointer to an undefined C
struct _jobject. This prevents mistakes caused by inatten-
tiveness, since dereferencing a variable of type jobject
leads to a compile-time error. However, it cannot prevent
programmers from casting jobject to a pointer to another,
defined C struct and then accessing the object’s contents. In
other words, C code in Jeannie is just as weakly typed as any
C code, including JNI. At the same time, Jeannie’s support
for opaque Java references and implicit widening operations
within nested C code considerably reduces the need for us-
ing explicit and potentially unsafe C casts.

Storage Model
To ensure well-defined semantics, primary identifiers require
the context of the declaring language. For example, the fol-
lowing code is malformed:

int x = 42;
`f(x); ⇒ error: ‘x’ used in wrong language

More importantly, backticked expressions in Jeannie always
return an r-value. For example, the following code is mal-
formed:

`x[0] = y; ⇒ error: ‘x[0]’ not an l-value

Such cross-language assignments fundamentally have am-
biguous semantics. For instance, assume that the example’s
language is C and that x is a Java array. Should Jeannie
just execute the assignment, as pure C would? Or, should
Jeannie first perform Java’s checks against null references
and out-of-bounds indices? Additionally, cross-language as-
signments raise implementation issues. For instance, should
the above C assignment execute a write barrier for the Java
garbage collector? To avoid these issues, Jeannie requires
that operations on l-values occur in the language of the l-
value. For instance,

`(x[0] = `y);

correctly performs the assignment in nested Java code.

String and Array Access
Each of Jeannie’s _copyFromJava, _copyToJava, and
_with constructs for accessing strings and arrays requires
a C pointer ca and a reference to a Java string or array ja.
The reference ja has an opaque C type and is the result
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of a C expression. In practice, this C expression usually
is a backticked Java expression, such as `v.toArray()
or `o.toString(). If ja is a jstring, then ca must be
jbyte* for UTF-8 encoding or jchar* for UTF-16 encod-
ing. Otherwise, ja must be a Java array, such as jintArray,
and ca must be of the corresponding pointer type, such
as jint*. In contrast to the copy built-ins and the _with
statement, the _newJavaString built-in requires only a C
pointer ca, which must be jbyte* or jchar*.

For the two copy built-ins

_copyFromJava(ca, tgt, ja, src, len)
_copyToJava (ja, tgt, ca, src, len)

the tgt and src indices as well as the len element count must
be of type jint. The result of the copy built-ins is also of
type jint and indicates the number of elements actually
copied. We did consider a single _copy built-in that relies
on parameter ordering to determine whether to copy from or
to Java. But unfortunately, C’s memcpy and Java’s System.-
arrayCopy disagree on whether to put the source or tar-
get parameter first. As a result, Jeannie programmers might
become confused about a single _copy construct’s correct
usage. By providing two separate constructs, the Jeannie
compiler can statically determine parameter ordering errors
based on argument types. Either way, it rejects attempts to
copy into Java strings.

In a _with statement

_with (ca = ja) { . . . }

the C pointer ca either must be newly declared or must be
modifiable, i.e., not const. The identifier ca in _commit ca
and _abort ca statements must be the formal of a directly
enclosing _with statement. It is illegal to jump in to or out
of _with statements using a break, continue, or goto
statement. However, control may leave a _with statement
through a return, exception, or by completing the block.

Abrupt Control Flow
Besides preventing break, continue, or goto statements
from crossing a _with boundary, Jeannie also prevents them
from crossing a language boundary. In contrast, regular func-
tion or method returns and thrown exceptions may cross lan-
guage boundaries. When a C return statement returns from
a Java method, a Jeannie compiler converts the returned C
value to its equivalent Java type and then checks that it con-
forms to the method’s return type. Similarly, when a Java
return statement returns from a C function, a Jeannie com-
piler converts the returned Java value to its equivalent C type
and then checks that it conforms to the function’s return type.
A thrown exception must be either (1) unchecked, i.e., a sub-
class of Java’s RuntimeException or Error, (2) caught lo-
cally, or (3) declared as thrown by the enclosing function or
method.

5. Pragmatics
This section explores the pragmatics of the Jeannie compiler,
focusing on two main issues. The first issue is how to trans-
late Jeannie code to Java and C. The second issue is how
to achieve scalable composition [45]. Fundamentally, lan-
guage composition is only practical if the development effort
for realizing the composed language is commensurate with
the newly added features and not with the entire language.
The Jeannie compiler largely achieves this goal and directly
reuses grammars, semantic analyzers, and pretty printers for
Java 1.4 and C with most gcc extensions. In fact, many of
these components predate the Jeannie project and have been
developed by different programmers for the different lan-
guages.

5.1 Syntactic Analysis
Any real-world code written in C relies on the preproces-
sor to include header files, resolve conditionals, and expand
macros, notably for platform-specific declarations. For ex-
ample, Sun’s default jni.h header declares several types
such as jint and macros such as JNI_TRUE, with several
declarations conditional on the computer architecture (32-bit
or 64-bit) and language (C or C++). Furthermore, before pre-
processing, C code need not be well-formed, since the pre-
processor considers only tokens and not syntactic units. Con-
sequently, as shown in Figure 3, Jeannie invokes the C pre-
processor before parsing the resulting code, and Java code is
also subject to preprocessing. To some developers, this may
represent a welcome feature; for others, it may lead to unde-
sirable results due to inadvertent name capture. This issue is
not unique to Jeannie, as preprocessing poses a challenge for
any tool accepting C code. One solution would be to develop
a “Jeannie-aware” version of the preprocessor that ignores
Java code. A more general solution would be to integrate the
preprocessor’s features with the language [40].

The actual Jeannie grammar is written for the Rats! parser
generator [29], which is well-suited to this task for three
reasons. First, Rats! has a module system, and, as shown
in Figure 4, the Jeannie grammar reuses existing C and
Java grammars as modules, modifies several productions,
and adds a few new ones. Second, Rats! is scannerless, i.e.,
integrates lexical analysis with parsing. Consequently and
as illustrated in Figure 7 for new, Java tokens and C tokens
are only recognized in the respective language’s context. In
other words, the Jeannie parser can recognize code written
without regard for Jeannie’s union of Java and C, notably
code included from platform-specific header files. Third,
Rats! has built-in support for parser state, which lets the
Jeannie parser resolve ambiguities between typedef names
and other names in C code without complicating the Java
grammar.

Rats! grammars specify not only a language’s syntax but
also the structure of its abstract syntax tree (AST) through
productions marked as generic. The corresponding AST
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public Node getThisDotField(String name) {

Node v$1 = GNode.create("ThisExpression", null);

Node v$2 = GNode.

create("SelectionExpression", v$1, name);

return v$2;

}

Figure 8. Example method created by xtc’s concrete syntax
tool.

nodes are instances of a generic node class GNode. The
generic node’s name is the unqualified nonterminal on the
left-hand of a production, though individual alternatives can
override this default. The generic node’s children are the
values of non-void expressions on the right-hand side. Since
the Jeannie grammar reuses existing Java and C grammars,
it also reuses their AST declarations. However, since several
productions in the Java and C grammars have the same
names, the Jeannie AST may also contain generic nodes with
the same name but different semantics. As a result, semantic
analysis needs to track the current backtick nesting depth
during AST traversal.

Discussion
Thanks to Rats!, the development of Jeannie’s syntactic
analysis phase was largely straightforward. However, we
did encounter two issues when trying to write code process-
ing the resulting ASTs; the solutions to both problems, in
turn, depend on Rats! and are useful beyond Jeannie. First, a
grammar is a rather circuitous starting point for understand-
ing a language’s AST, since the grammar contains many ex-
pressions that do not contribute to the AST such as punctua-
tion and layout. To address this issue, we modified Rats! to
automatically generate the necessary documentation: given
the corresponding command line flag, it loads a grammar,
removes any expression that does not contribute to the AST,
and then pretty prints the reduced grammar, optionally as
hyperlinked HTML.

Second, Jeannie’s translation phase needs to create new
AST fragments for Java and C from scratch, but doing so
programmatically in handwritten code is tedious and error-
prone. To address this issue, we added support for concrete
syntax [14] to xtc. Our concrete syntax tool builds on vari-
ants of the C and Java grammars created with Rats!’ module
system; both grammars recognize individual declarations,
statements, or expressions with embedded pattern variables.
The tool converts the corresponding AST into Java code that
recreates the AST, while also replacing the AST nodes of
pattern variables with Java variables. For example, our tool
translates the Java code template

getThisDotField { this.#name }

into the method shown in Figure 8, which takes a parameter
name representing the template’s only pattern variable and

returns a generic node representing the field access expres-
sion.

5.2 Semantic Analysis
Comparable to the syntactic analysis phase, the Jeannie com-
piler’s semantic analysis phase builds on separate semantic
analysis phases for Java and C. Each author separately de-
veloped one of the semantic analyzers, with little coordina-
tion on their internals. At the same time, both semantic ana-
lyzers share facilities for (1) traversing abstract syntax trees
through visitors, (2) tracking identifiers through a symbol
table, and (3) representing types and their annotations. Be-
fore discussing the composition of the two semantic analysis
phases, we explore the common facilities. They are provided
by the xtc (eXTensible C) toolkit [28] and also used by other
source-to-source transformation tools including Rats! [29]
and C4 [22, 61].

Visitors
The visitor design pattern enables type-safe tree traversal
through double dispatch [24]. Visitors implement a common
interface V that has a visit(N) method for every distinctly
typed node N, and nodes implement an accept(V) method
that invokes the visitor on the node. While effective, we
have also found the visitor design pattern to be limiting.
Notably, it does not support visit methods that accept a
superclass of several nodes, thus leading to code duplication
when processing several types of nodes in the same way.
Furthermore, it cannot dispatch on properties of a node, in
particular, the names of generic nodes created by inline AST
declarations for Rats!. Finally, changes to an AST’s structure
tend to ripple through the entire code base, since the visitor
design pattern requires changing the common interface V and
thus all classes that implement V.

xtc addresses these concerns by providing a more expres-
sive alternative through dynamic visitor dispatch [9]. Under
this model, the appropriate visit method is dynamically se-
lected and invoked through Java reflection; method resolu-
tions are cached to reduce the overhead of future dispatches.
Intuitively, for a given node N, xtc’s visitor dispatch selects
the visit method with the closest supertype N’ as its only
argument (which includes N itself). In practice, xtc’s visi-
tor dispatch also considers interfaces, starting with the inter-
faces implemented by the node’s class. For generic nodes,
it precedes type-based resolution with a name-based resolu-
tion step, seeking a method visitName(GNode) for generic
nodes with name Name. While xtc’s visitor dispatch pro-
vides a simple solution that meets our needs, it does eschew
type safety for expressivity; other efforts have explored dif-
ferent trade-offs between expressivity, safety, and complex-
ity [30, 42, 58].

Symbol Table
xtc’s symbol table maps identifiers to types, organizes the
mapping into hierarchically nested scopes, partitions each
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public void visit(Node n) {

table.enter(n);

for (Object o : n)

if (o instanceof Node)

dispatch((Node)o);

table.exit(n);

}

Figure 9. Example code for synchronizing generic AST
traversal with the current symbol table scope.

scope amongst different namespaces, and supports the ob-
vious define, isDefined, and lookup operations. It also
tracks the current scope and supports both absolute and rel-
ative name resolution. Probably its most interesting feature
is support for synchronizing AST traversal with the current
scope. When creating a new scope, a visitor invokes the sym-
bol table’s mark method on each node corresponding to the
new scope. That method uses Node’s support for arbitrary
properties to annotate the node with the scope’s identity. Be-
fore and after processing a node, other visitors then call the
symbol table’s enter and exit methods, which rely on the
node’s annotations to update the current scope. When com-
bined with xtc’s dynamic visitor dispatch, this feature sup-
ports generic AST traversal that is also synchronized with
the symbol table.

For example, the C analyzer verifies labels, which may be
used before they are defined, in two passes. During the first
pass, it collects all label definitions in the symbol table. Dur-
ing the second pass, it checks that each label appearing in a
goto statement or label address expression has been defined.
(The latter construct is a gcc extension to access a label’s ad-
dress as a value.) The second pass is implemented as a visitor
with only three methods. The first two methods visit goto
statements and label address expressions, checking that each
label is defined. Figure 9 shows the third method, which vis-
its all other AST nodes. It simply enters the node’s scope,
iterates over its children, dispatching the visitor on children
that are also nodes, and finally exits the node’s scope again.

Type Representation
xtc represents typing information for Java and C in a single,
unified class hierarchy, whose common interface is defined
by the base class Type. Leafs of the hierarchy correspond
to distinct kinds of types, and intermediate classes capture
major categories of types. For example, both IntegerT and
FloatT are subclasses of NumberT, while both ArrayT and
PointerT are subclasses of DerivedT. In addition to cap-
turing each type’s inherent properties, such as the integral
kind for IntegerT or the pointed-to type for PointerT, ev-
ery type instance can have several annotations. They capture
a type’s source language and location, scope, compile-time
constant value, memory shape, and other attributes includ-
ing C qualifiers such as const and Java modifiers such as

CAnalyzer

Jeannie
CAnalyzer

JavaAnalyzer

Jeannie
JavaAnalyzer

SymbolTable

has-ahas-a

is-a is-a

has-a

Figure 10. Class diagram for Jeannie’s semantic analyzer.

public. The common interface defined by Type provides
methods to

• determine a type’s kind such as isClass,
• convert to a particular kind such as toFunction,
• read annotations such as hasScope and getConstant,
• add annotations such as attribute.

The base class Type also defines a Java enum over all type
kinds; it is accessible through tag to facilitate efficient case
analysis with Java switch statements.

The overall hierarchy of types comprises one base class,
six intermediate classes, and 21 leaf classes, representing the
relative richness of the combined type systems of Java and C.
To make this information manageable, the hierarchy of types
is supplemented by language-specific classes whose meth-
ods directly capture the corresponding language standard’s
instructions such as “The type of each of the operands of
a multiplicative operator must be a primitive numeric type,
or a compile-time error occurs” [27, §15.17] or “If both the
operands have arithmetic type, the usual arithmetic conver-
sions are performed” [34, §6.5.8]. The hierarchy of types is
also supplemented by a hierarchy of references, which rep-
resent the shapes of l-values’ memory regions, are used by
the C analyzer to track compile-time constants even across
(de)reference operations, and are based on the corresponding
feature of CIL [43].

Combined Semantic Analyzer
With the semantic analyzers for Java and C relying on the
same visitor framework, symbol table, and type represen-
tation hierarchy (but otherwise having independent internal
structures), the composition of the two analyzers is relatively
straightforward. As illustrated in Figure 10, the Jeannie com-
piler’s semantic analysis phase builds on subclasses of the
two analyzers, with each subclass implementing additional
visit methods for that particular language’s extensions. Both
visitors reference each other and, on encountering a backtick
operator, dispatch the other visitor on the backticked con-
struct. Both visitors also reference the same symbol table,
thus ensuring that mappings between identifiers and types
are shared and that either visitor correctly enters and exits
scopes while traversing the AST. Finally, both visitors di-
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rectly reference types for the other language, since all types
are represented as subclasses of the same base class Type.

For example, when processing Jeannie’s opaque refer-
ence types, that is, Java types appearing in C’s type speci-
fiers, the extended analyzer for C defers to the extended an-
alyzer for Java to determine the appropriate Java type rep-
resentation. It then continues processing the variable decla-
ration with the original, non-extended code. Associating a
variable with a Java type in the C analyzer does not result in
a typing error—as long as the variable is only referenced in
constructs that support Java types and that have been appro-
priately extended in the Jeannie analyzer, notably initializers
and assignments.

To process C’s function declarators, the extended an-
alyzer for C overrides the visitFunctionDeclarator
method. The extended version first delegates to the origi-
nal method, which ignores the generic node’s extra child,
and then processes the throws clause if present. The type
representation for C functions FunctionT can seamlessly
store the extra information, since its superclass Function-
OrMethodT already captures the union of Java methods and
C functions, i.e., a return type, name, list of parameter types,
and list of exception types.

Discussion
We did encounter one obstacle while combining the two se-
mantic analyzers. The C analyzer relies on a nested class
to factor out the state machine necessary for processing C’s
declaration specifiers such as const or int. The Jeannie
compiler extends this nested visitor with support for Java
types. But, as originally written, the C analyzer created in-
stances of this class through a new expression—thus prevent-
ing substitution with the extended version. We addressed this
issue by introducing an explicit (and overridable) factory
method. Our fix certainly illustrates the utility of the factory
design pattern; though the issue itself could be avoided with
dedicated language support for composition [45].

While the composition itself raised only one, relatively
minor, concern, developing the shared facilities and seman-
tic analyzers themselves has proven to be a little more chal-
lenging. In particular, we encountered three significant is-
sues. First, while Java’s and C’s primitive types are seem-
ingly similar, they have subtle differences. Notably, C treats
the boolean type _Bool introduced in C99 as an integer,
while Java does not treat its boolean type boolean as an
integer. As a result, xtc’s type framework must distinguish
between the two languages when testing for integral or arith-
metic types and when performing integral promotion. We
originally tried including these operations in the common in-
terface for Type, but then factored them into separate classes
that provide language-specific operations without clutter-
ing Type’s interface. Following the lesson from the previ-
ous paragraph, the language-specific operations are imple-
mented by instance methods and the corresponding classes

are accessed through factory methods, with the result that
operations can be easily overridden.

Second, C’s integers have only relative rank restrictions,
while Java’s integers have fixed in-memory representations.
At the same time, either analyzer must contain an interpreter
for a substantial subset of the language’s expression syntax
to track compile-time constant values. Moreover, the Jeannie
analyzer must be able to map between Java and C integers.
xtc’s type framework addresses these concerns by includ-
ing (1) a class capturing the local platform’s type limits and
(2) support for performing arithmetic operations on compile-
time constants independent of the underlying representation.
The class representing local type limits can easily be regen-
erated by compiling and running a simple C program. In our
tests of 32-bit Mac OS X, Linux, and Windows systems, the
limits are the same.

Third, while C translation units must be self-contained,
i.e., must incorporate declarations for all referenced types
and variables after preprocessing, Java compilation units
may reference types and variables in other source and bi-
nary files. While resolution to external classes is lazy, i.e.,
performed only when encountering an appropriate name, it
still requires that the Java analyzer be able to locate source as
well as binary files and determine their type signatures. For
source files, the Java analyzer parses each file and then per-
forms a lightweight analysis to determine only the signature.
For binary files, our implementation can fortunately avoid
most of the complexity of resolving and inspecting class files
because it is also written in Java and can use reflection. Jean-
nie’s analyzer leverages these facilities to resolve three code
formats: Jeannie source, Java source, and Java binary.

5.3 Translation
As described in Section 4, the Jeannie language has been
carefully designed to allow for different implementations.
For this paper, we built a compiler that translates Jean-
nie code into fairly straightforward JNI code. Consequently,
code generated by our Jeannie compiler has the same porta-
bility properties as handwritten JNI code: it makes no as-
sumptions about the implementation of the Java virtual ma-
chine.

The translator converts a Jeannie AST into two separate
ASTs, one for Java and one for C. As illustrated in Figure 3,
the input Jeannie AST combined with a symbol table holds
the results of semantic analysis. The output Java and C ASTs
are converted to source code using xtc pretty printers, which
are implemented as visitors. The code generator itself also
is a visitor. In the spirit of scalable composition, it only
has explicit visit methods for a small subset of AST nodes,
using a catch-all visit method similar to the one shown in
Figure 9 for processing intermediate AST nodes unaffected
by Jeannie semantics.
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static void f(int x) {
  new JavaEnvFor_f(x);
}

static final class JavaEnvFor_f {
  int _x, _z;

  JavaEnvFor_f(int x) {
    this._x = x;
    this.m1();
  }

  private native void m1();

  private native int m3(int cEnv);

}

private void m2(int cEnv) {
  this._z = 1 + this.m3(cEnv);
  System.out.println(this._x);
  System.out.println(this._z);
}

private int m4(int cEnv) {
  return this._x = 1;
}

2

4

struct CEnvFor_f {
  jint _y;
};

void Java_Main_00024JavaEnvFor_1f_m1(JNIEnv *env, jobject jEnv) {
  struct CEnvFor_f cEnv;
  struct CEnvFor_f *pcEnv = &cEnv;
  pcEnv->_y = 0;
  {
    jclass cls = (*env)->GetObjectClass(env, jEnv);
    jmethodID mid = (*env)->GetMethodID(env, cls, "m2", "(I)V");
    (*env)->CallNonvirtualVoidMethod(env, jEnv, cls, mid, (jint)pcEnv);
    (*env)->DeleteLocalRef(env, cls);
  }
  printf("%d\n", pcEnv->_y);
}

jint Java_Main_00024JavaEnvFor_1f_m3(JNIEnv *env, jobject jEnv, jint cEnv) {
  struct CEnvFor_f *pcEnv = (struct CEnvFor_f*)cEnv;
  return pcEnv->_y = 1 + ({
    jclass cls = (*env)->GetObjectClass(env, jEnv);
    jmethodID mid = (*env)->GetMethodID(env, cls, "m4", "(I)I");
    (*env)->CallNonvirtualIntMethod(env, jEnv, cls, mid, (jint)pcEnv);
    (*env)->DeleteLocalRef(env, cls);
  });
}

1

3

Figure 11. Jeannie-generated Java code (left) and C code (right) for the example in Figure 5, omitting abrupt control flow.

Environments
Consider the Jeannie code example from Figure 5. Snip-
pets 1 and 3 are C code, whereas Snippets 2 and 4 are Java
code. The translator turns each snippet into a method as
shown in Figure 11: native methods m1 and m3 for the C snip-
pets and Java methods m2 and m4 for the Java snippets. Snip-
pets 1 and 2 are blocks, so the corresponding methods m1
and m2 return void. Snippets 3 and 4 are expressions, so the
corresponding methods m3 and m4 return non-void values.
The formal JNIEnv* env for the C functions implementing
native methods is the JNI interface pointer.

In our translation scheme, nested snippets are executed
through method calls. For example, Java Snippet 2 in Fig-
ure 5 contains C Snippet 3, and, consequently, Java method
m2 in Figure 11 calls native method m3. Likewise, C Snip-
pet 3 contains Java Snippet 4, and the C function imple-
menting native method m3 calls Java method m4 through JNI.
Since JNI’s method invocation API requires a class pointer
and method ID, the translator isolates the corresponding dec-
larations and actual method invocation in a statement expres-
sion. A statement expression ({ . . . }) is a gcc extension to
C that introduces a new scope within an expression; its value
is the result of executing the last statement.

Consistent with Jeannie’s semantics, C Snippets 1 and 3
need to share the same dynamic C state, and Snippets 2 and
4 need to share the same dynamic Java state. For example,
Snippet 4 modifies Java variable x, and Snippet 2 observes
that state in the System.out.println(x) statement. Our
translator addresses this issue by reifying each base lan-
guage’s dynamic state through explicit environments.

The Java environment is implemented as a member class
that is a sibling of the original method and allocated on the
heap on calls to that method. For example, in Figure 11, class
JavaEnvFor_f contains fields _x and _z. Field _x corre-
sponds to the formal parameter x of f and is initialized in the
constructor. Field _z corresponds to the local variable z and
is initialized in Snippet 2. The environment’s instance meth-
ods are the methods synthesized for nested snippets, which
ensures that all methods have access to the environment’s
state through the implicit this for Java code and an explicit
jobject jEnv for C code. The environment class itself is
static for static methods and non-static for instance meth-
ods, thus providing access to the enclosing instance only for
instance methods, which is the desired behavior.

The C environment is implemented as a global C struct
and allocated on the stack in the function implementing
the outermost C block. For example, struct CEnvFor_f
in Figure 11 contains field _y, which corresponds to the
local variable y of Snippet 1 in Figure 5. A pointer to the C
environment is passed to all methods implementing nested
code snippets. Since Java does not support pointer types, the
corresponding parameter is declared to be a Java integer and,
as illustrated for m3, cast back to an actual pointer in C code.
Note that the example code uses a 32-bit Java int because
the targeted architecture is 32-bit.

Of course, the translator avoids name clashes of synthe-
sized methods and fields with members of existing classes by
generating names distinct from any names free in the body
of the original Jeannie method.

31



String and Array Access
The translation of the _copyFromJava and _copyToJava
built-in functions is straightforward. It simply uses one of
JNI’s copy functions such as GetStringUTFRegion or
SetIntArrayRegion, which is selected based on the type
of the Java string or array and, in the case of strings, the
type of the C pointer to distinguish between UTF-8 and
UTF-16 encodings. Similarly, the _getUTF8Length and
_newJavaString built-ins are translated into the corre-
sponding JNI functions such as GetStringUTFLength and
NewStringUTF.

In contrast, the translation of a _with statement

_with (ca = ja) { . . . }

is more involved. To capture _with’s semantics, the Jeannie
translator introduces two additional bindings in a method’s
C environment:

• _caJavaObject, which caches a C reference to the Java
object resulting from expression ja and is used to release
the string or array;

• _caReleaseMode, which can be JNI_COMMIT or JNI_-
ABORT and is updated by translated _commit and _abort
statements.

Again, synthesized names avoid accidental name capture
and may thus differ from the names shown here. To actually
acquire and release arrays, the translation uses the same
JNI copy functions discussed above, allocating the C array
on the stack. To acquire and release strings, it uses JNI
functions such as GetStringChars and ReleaseString-
Chars, which, depending on the JVM, may provide direct
access to a string’s contents. This does not violate _with
statement semantics because Java strings are immutable and
thus should not be updated by native code.

Abrupt Control Flow
Consistent with Jeannie’s dynamic semantics as described
in Section 4.2, the return i statement in Figure 7 abruptly
transfers control to the method’s caller while also releasing
the array s. To implement these semantics, the translator in-
troduces two additional bindings in a method’s Java environ-
ment:

• _returnResult to hold the return value of non-void
methods;

• _returnAbrupt to indicate whether a method’s dynamic
execution has initiated a return.

Figure 12 shows the complete translation of Figure 7’s
return i statement. It first sets _returnResult and _re-
turnAbrupt in the Java environment. It then sets _sRe-
leaseMode in the C environment; as described in Sec-
tion 4.2 under “string and array access”, the return state-
ment is an implicit _commit. Finally, it jumps to label
release_s at the end of the translated _with statement.

After releasing the array s, the code at the end of the trans-
lated _with statement checks whether _returnAbrupt is
true and, if so, re-initiates the pending abrupt method termi-
nation.

Abrupt termination checks occur not only at the end of
_with statements, but also at the language boundary, since
the method returns generated for abrupt control flow do not
propagate beyond the method calls generated for nested code
snippets. Notably, abrupt termination checks are generated
for calls from Java to native methods implementing C snip-
pets, if the snippets contain return statements. They are
also generated for calls from C to Java methods implement-
ing Java snippets, if the snippets may throw exceptions or
contain return statements.

Figure 13 shows an abrupt termination check in C gen-
erated for a nested Java expression. The Java expression
itself is executed by method m1. The abrupt termination
check first caches the method’s result in variable tmp. It then
checks for a pending Java exception or a return flagged
by _returnAbrupt. If so, it propagates the abrupt control
flow through a return (or a jump to the end label of a sur-
rounding _with). Otherwise, the statement expression sim-
ply evaluates to the cached result tmp.

Discussion
Our translation of Jeannie focuses on completeness. It cor-
rectly implements the whole language, but the resulting code
may be inefficient, because it tends to be more general than
necessary. We are aware of several opportunities for opti-
mization. For instance, when a nested code snippet only
reads but never writes a variable, it suffices to pass that vari-
able’s value down through a parameter instead of placing it
in an environment class or struct. In many cases, the transla-
tor could thus avoid reifying environments altogether.

Furthermore, when a Java snippet nested in C code per-
forms only a single Java operation that has a corresponding
JNI function, the translator can directly use the JNI function
instead of synthesizing an entire method wrapping the oper-
ation. Typically, the JNI function will be more efficient than
an upcall from C to Java. After transforming a Java opera-
tion into a direct JNI function call, the translator may also be
able to skip a language transition. More specifically, when
the current language is C, code of the form

`( java-op ( `c-expr ) )

can be translated into code of the form

({ T tmp=c-expr; (*env)->jni-function(tmp); })

where the C expression is evaluated before the Java opera-
tion rather than in a callback from within the operation.

Finally, a _with statement can avoid copying an array
and instead provide direct access to its contents if the ob-
servable behavior is the same. Notably, this is the case if
the _with statement’s block cannot abort and other threads
cannot prematurely observe any modifications. JNI already
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{

jclass cls = (*env)->GetObjectClass(env, jEnv);

jfieldID fidResult = (*env)->GetFieldID(env, cls, "_returnResult", "I");

(*env)->SetIntField(env, jEnv, fidResult, pcEnv->_i);

jfieldID fidAbrupt = (*env)->GetFieldID(env, cls, "_returnAbrupt", "Z");

(*env)->SetBooleanField(env, jEnv, fidAbrupt, JNI_TRUE);

pcEnv->_sReleaseMode = JNI_COMMIT;

(*env)->DeleteLocalRef(env, cls);

goto release_s;

}

Figure 12. C code generated for the “return i” statement from Figure 7.

({

jclass cls = (*env)->GetObjectClass(env, jEnv);

jmethodID mid = (*env)->GetMethodID(env, cls, "m1", "(I)I");

jint tmp = (*env)->CallNonvirtualIntMethod(env, jEnv, cls, mid, (jint)pcEnv);

jfieldID fid = (*env)->GetFieldID(env, cls, "_returnAbrupt", "Z");

(*env)->DeleteLocalRef(env, cls);

if ((*env)->ExceptionCheck(env) || (*env)->GetBooleanField(env, jEnv, fid))

return;

tmp;

})

Figure 13. C code generated for a nested Java expression with abrupt termination check, simplified for readability.

Description Pseudo-code
Empty C block in Java `{}

Empty Java block in C `{}

Constant C expr. in Java `1

Constant Java expr. in C `1

Exception in C in Java try `{ `throw } catch {}

Direct array read s += `a[`i]

Direct array write `(a[`i] = `1)

With array read _with (a) { s += a[i]; }

With array write _with (a) { a[i] = 1; }

Table 1. Summary of micro-benchmarks.

allows for direct access to (some) arrays through the, for
example, GetPrimitiveArrayCritical and Release-
PrimitiveArrayCritical functions. But it relies on the
programmer to restrict the code bracketed by these func-
tions. In contrast, Jeannie’s _with statement is more general
and enables direct access as an optimization when the code,
in fact, observes the necessary restrictions. We will investi-
gate the relative priority of these and other optimizations in
future work.

6. Evaluation
We evaluated our Jeannie compiler by porting part of the
JavaBDD library [60] to Jeannie. JavaBDD defines an
object-oriented API for manipulating binary decision dia-

Program Jeannie Java C
BuDDy wrapper 1,433 660 1,340
Micro-benchmarks 110 102 74

Table 2. Lines of code for Jeannie and JNI versions.

grams and can interface with several implementations, in-
cluding the BuDDy library written in C [39]. Our port re-
places the JNI-based wrapper for BuDDy with the corre-
sponding Jeannie version; this entailed rewriting 92 native
methods across three classes. Additionally, we implemented
a set of micro-benchmarks, which, as shown in Table 1,
exercise all major language features new to Jeannie. Each
micro-benchmark is implemented in Jeannie as well as plain
Java and C using JNI. The JNI versions do not use explicit
environments, thus incorporating the optimization discussed
at the end of Section 5.3.

To demonstrate portability, all experiments run on two
platforms with different Java virtual machines and operat-
ing systems. The first platform (“HS/OS X”) is Apple’s port
of Sun’s HotSpot JVM running on a MacBook Pro laptop
with Mac OS X. The second platform (“J9/Linux”) is IBM’s
J9 JVM running on an off-the-shelf Intel PC with Linux. De-
spite the different Java virtual machines and operating sys-
tems, all benchmarks seamlessly run across the two plat-
forms. Portability is a strong point of JNI, and the Jeannie
compiler preserves it.
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Benchmark HS/OS X J9/Linux
11-Queens 1.04 1.04
Rubik’s Cube 1.15 1.14
Empty C block in Java 0.98 1.23
Empty Java block in C 1.86 1.41
Constant C expr. in Java 1.05 1.06
Constant Java expr. in C 1.45 1.36
Exception in C in Java 1.05 0.95
With array read 1.09 1.65
With array write 1.19 1.06

Table 3. Speedup of JNI over Jeannie code.

To provide an indication of productivity, Table 2 com-
pares the number of non-commenting, non-empty lines of
code (LoC) between the Jeannie and JNI versions of the
BuDDy wrapper and the micro-benchmarks. It does not
count the C header files automatically generated by javah
for the JNI versions. The LoC counts show that Jeannie is
more concise than JNI, with JNI requiring 40% more code
for the BuDDy wrapper and 60% more code for the micro-
benchmarks. Additionally, the JNI versions require picking
all the right API functions, with mistakes manifesting them-
selves as either linker or, worse, runtime errors. Jeannie not
only prevents these mistakes in the first place, but also per-
forms additional static checks across the language boundary.
Finally, the JNI versions incur a higher maintenance cost,
since they are spread over three separate files (.h, .c, and
.java) instead of just one for Jeannie.

To quantify the overhead of the Jeannie compiler’s trans-
lation scheme, Table 3 shows the speedup of the JNI ver-
sions over the Jeannie versions in a head-to-head perfor-
mance comparison. The first two benchmarks exercise the
BuDDy library through N-Queens and Rubik’s Cube solvers
distributed with JavaBDD. Speedup numbers are based on
three iterations for each of the BuDDy benchmarks and
one million iterations for each of the micro-benchmarks.
The results show that the translation scheme’s overhead is
reasonable, especially for the end-to-end benchmarks using
BuDDy, which see an overhead of at most 15%. By com-
parison, the micro-benchmarks show more variance, ranging
from no speedup to overheads of several tens of percent for
most micro-benchmarks to an outlier at 1.86. For compari-
son, the Jeannie versions of the 11-Queens and Rubik’s Cube
solvers have a speedup between 1.16 and 1.28 over a pure
Java implementation of JavaBDD. We expect this speedup
to increase, and JNI’s speedup over Jeannie to decrease, as
we implement the optimizations discussed in Section 5.3.

Initial testing exhibited a performance anomaly for one
micro-benchmark. Further testing showed that this anomaly
was caused by creating too many local references, which the
garbage collector uses to track pointers from C to Java ob-
jects. Consequently changing the Jeannie translator to ex-
plicitly and eagerly release local references eliminated the
anomaly. This experience demonstrates an additional advan-

Access HS/OS X J9/Linux
Read 74.2 69.6
Write 74.7 83.8

Table 4. Speedup of array accesses through _with.

tage of Jeannie over JNI. Once an optimization has been im-
plemented in the Jeannie compiler, all Jeannie code bene-
fits through a simple recompilation. In contrast, JNI requires
manually updating all C code—in this particular case, all
method and field accesses through JNI’s reflection-like API.

To quantify the benefits of the _with statement, Table 4
shows the speedup of accessing an array through _with over
backticked subscript expressions. Each experiment either
reads or writes each element in a 1,000 element int array.
Overall, Jeannie obtains roughly a factor 75 speedup by
providing the _with construct, which clearly justifies this
non-orthogonal extension to the two base languages.

Finally, we consider the Jeannie compiler itself. The Jean-
nie grammar adds four modules with 250 LoC to the existing
grammars for Java and C. The Java grammar, in turn, com-
prises 8 modules with 800 LoC, and the C grammar com-
prises 10 modules with 1,200 LoC. The Jeannie compiler’s
Java code, excluding any machine-generated code, com-
prises 1,900 non-commenting source statements (NCSS),
which approximately corresponds to 1,900 semicolons and
open braces and is a more conservative measure than the
lines of code used above. By comparison, the C analyzer
alone comprises 4,200 NCSS, the Java analyzer alone also
comprises 4,200 NCSS, and the common type representation
comprises 2,600 NCSS. Based on these statistics, we con-
clude that our composition of existing compiler components
for Java and C was successful; the Jeannie compiler’s com-
plexity directly reflects the complexity of Jeannie’s added
features and not of the two embedded languages. Addition-
ally, the compiler’s performance was reasonable in our inter-
actions; it did not feel noticeably slower than other compilers
in the tool chain.

7. Related Work
Work related to Jeannie can be categorized into work on (1)
the Java native interface in particular and foreign function
interfaces in general, as well as on (2) combined languages
and support for implementing language extensions and com-
positions.

7.1 Bridging Java, Other Languages with C
Besides Jeannie, several other efforts have explored implica-
tions of the Java native interface. Out of these, Janet [15, 36]
comes closest to Jeannie by embedding C in Java as well; it
even relies on the backtick operator to switch between Java
and C. However, Janet performs only limited semantic anal-
ysis for Java and none for C. In fact, even its syntactic anal-
ysis for C is incomplete, tracking only curly braces and em-
bedded Java expressions. As a result, Janet can abstract away
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explicit JNI invocations, but also suffers from two signifi-
cant limitations. First, Janet supports only Java embedded
in C embedded in Java, with the embedded Java code lim-
ited to a few, simple expressions that have direct equivalents
in JNI. Second, while Janet verifies that methods and fields
referenced from embedded Java do, in fact, exist, it does not
determine their types nor does it determine the correctness
of the embedded C code. As a result, program bugs are de-
tected either when compiling the resulting C code or, worse,
at runtime. Unlike Janet, Jeannie fully composes the two lan-
guages and thus is more expressive, while also ensuring the
correctness of programs.

Other work on JNI has explored the safety, efficiency,
and portability implications of interfacing a safe, high-level
language with an unsafe, low-level language. In particular,
Furr and Foster [23] have developed a polymorphic type in-
ference system for JNI, which statically ensures that literal
names used in JNI invocations are consistent with the dy-
namic types of C pointers. Alternatively, Tan et al. [54] have
extended CCured [19] to ensure that C code cannot subvert
the safety of Java code. Their system relies on a combina-
tion of static analysis and runtime checks, thus guaranteeing
safety. In the opposite direction, Tan and Morrisett [55] show
how to improve the reach of Java analyses in the presence
of native code. To this end, they introduce three new JVM
bytecodes that model the behavior of C code and present
a tool that automatically extracts models from native code.
Next, Stepanian et al. [51] explore how to reduce the perfor-
mance overhead of JNI invocations for small native methods
such as Object.hashCode by inlining the code in the vir-
tual machine’s just-in-time (JIT) compiler. Finally, the Java
JNI bridge [18] supports interfacing with a dynamic binary
translator to run C code compiled for a different architec-
ture than the JVM’s. These efforts are largely orthogonal to
our own work, though Jeannie’s combined language is more
amenable to semantic analysis and code generation than JNI
with its reflection-like callbacks into the Java runtime.

Of course, JNI itself represents only one point in the
design space of foreign function interfaces (FFIs). As dis-
cussed in detail in [46], FFIs provide both mechanism and
policy for bridging between a higher-level language and
C. The mechanism typically entails glue code to convert
between the different data representations and calling con-
ventions. For example, like JNI, the FFIs for O’Caml [37]
and SML/NJ [33] as well as the Swig FFI generator for
scripting languages [7] rely on glue code written in C.
However, the FFI for the Scheme-based esh shell [47], the
Haskell FFI [17], NLFFI for SML/NJ [10], and Charon for
Moby [21] extend the higher-level language so that glue
code can be written in the higher-level language.

The policy determines how to abstract C’s low-level data
structures and functions in the higher-level language. For
most FFIs, this policy is fixed. For example, JNI enforces
an object-oriented view of C code and data. However, FIG

for Moby [46] allows for domain-specific policies by tailor-
ing the FFI based on developer annotations. Similarly, Exu
for Java [35] allows for customized policies through a meta-
object protocol. In contrast, PolySPIN [6] and Mocking-
bird [2] hide most of an FFI’s mechanism and policy by auto-
matically mapping between data structures and functions of
languages with recursive (but not polymorphic) types. Like-
wise, Jeannie hides most of JNI’s mechanism and policy, but
it eschews the type mapping machinery for a direct embed-
ding of languages within each other.

7.2 Combined Languages and Their Pragmatics
Language composition has a long history back to literal C
code appearing in specifications for lex and yacc and shell
code appearing in specifications for sed and awk. However,
these systems largely treat snippets of the embedded lan-
guage as opaque strings. More recently, web scripting en-
vironments, such as PHP [5] or JSP [48], ensure that em-
bedded HTML markup is at least syntactically well-formed.
Next, XJ [31], XTATIC [26], Cω [8], and LINQ [41] take lan-
guage composition one step further, combining a program-
ming language with a data query language while also provid-
ing an integrated semantics. Jeannie shares the integration of
syntax and semantics with the latter efforts, but also differs
in scope: to our knowledge, we are the first to fully combine
two mature, real-world programming languages.

To effectively combine or even to “just” extend program-
ming languages, developers require tool and/or language
support. While Jeannie relies on Rats! and xtc to make the
composition of Java and C practical, a considerable body of
work explores support for modular syntax, frameworks for
language extension and composition, and in-language macro
or meta-programming systems.

A first attempt at providing modular syntax was moti-
vated by the embedding of a data language within a program-
ming language [16]; it is, however, limited by the use of LL
parsing, which is not closed under composition. In contrast,
SDF2 [14, 57] achieves full modularity for syntactic specifi-
cations and has several similarities with Rats!. Notably, both
systems support the organization of grammar fragments into
modules and the composition of modules through parameter-
ized definitions, called grammar mixins in SDF2 [12]. Both
systems also integrate lexical analysis with parsing and sup-
port the inline declaration of abstract syntax trees.

At the same time, SDF2 and Rats! differ in the under-
lying formalism and parsing technique, thus leading to dif-
ferent trade-offs. SDF2 builds on CFGs and GLR parsing,
which support arbitrary left-recursion but also lead to un-
necessary ambiguities, thus requiring explicit disambigua-
tion [56]. Rats! builds on PEGs and packrat parsing, which
avoid unnecessary ambiguities through ordered choices but
do not support left-recursion. It mitigates this limitation
somewhat by translating directly left-recursive productions
into equivalent right-iterations. Rats! also differs from SDF2
in its support for parser state: it enables parsers that pro-
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duce a single AST, even if the language is context-sensitive,
while SDF2’s C parser requires non-trivial post-processing
to disambiguate a forest of ASTs [1]. Finally, as shown
in [29], Rats!-generated parsers are notably faster than
SDF2-generated parsers.

While modular syntax helps with the composition of lan-
guages, developers still need support for realizing their lan-
guages’ semantics. Notable alternatives to xtc include Poly-
glot [44], JastAdd [20], CIL [43], and Stratego/XT [13].
Polyglot and JastAdd provide frameworks for extending
Java; they have been carefully designed to promote exten-
sibility and maximize code reuse. Similarly, CIL provides a
framework for extending C, but with less emphasis on exten-
sibility and more emphasis on the analysis of C programs.
All three frameworks have been used to realize major lan-
guage extensions, including J& with Polyglot [45], Java 1.5
on top of version 1.4 with JastAdd [32], and CCured with
CIL [19]. Stratego/XT is not targeted at extensions of a par-
ticular programming language. Rather, it provides a domain-
specific language for specifying program transformations in
general; it is also integrated with other language processing
tools such as SDF2. As a language extension/composition
framework, xtc is not yet as fully developed as these sys-
tems; however, as illustrated in this paper, it is sufficiently
expressive to carry the full composition of Java and C into
Jeannie.

Unlike the previous efforts, which distinguish between
the syntactic and semantic aspects of language extension
and composition, macro systems—such as MS2 for C [59],
Dylan [49], the Java Syntactic Extender [3], MacroML [25],
Maya for Java [4], Template Haskell [50], and the language-
independent metafront [11]—combine both aspects into a
single specification. For these systems, a macro defines, at
the same time, how to express a language extension, i.e.,
the syntax, and how to translate it to a more basic version
of the language, i.e., the semantics. Overall, macros tend to
hide many of the complexities of grammars, abstract syntax
trees, and semantic analysis from developers and thus are
more accessible and precise. However, as a result, they are
also less expressive and more suitable for relatively targeted
language modifications.

8. Conclusions
This paper presented Jeannie, a new language design for
integrating Java with C. Jeannie nests both Java and C
code within each other in the same file and supports a rela-
tively straightforward translation to JNI, the Java platform’s
foreign function interface. By fully combining the syntax
and semantics of both languages, Jeannie eliminates ver-
bose boiler-plate code, enables static error detection even
across the language boundary, and simplifies dynamic re-
source management. As a result, Jeannie provides improved
productivity and safety when compared to JNI, while also
retaining the latter’s portability. At the same time, the Jean-

nie language does not require an implementation with JNI,
and future work will explore how to optimize the translation
for specific Java virtual machines, thus improving efficiency
as well.

We implemented our Jeannie compiler based on Rats! [29],
a parser generator supporting modular syntax, and xtc [28],
a language composition framework. The compiler directly
reuses grammars, semantic analyzers, and pretty printers for
Java 1.4 and C with most gcc extensions. As a result, the
complexity of the Jeannie compiler is largely commensurate
with the newly added features and not the entire language.
However, our experiences also illustrate the need for paying
careful attention to shared infrastructure, notably the type
representation, and to provide software hooks for overrid-
ing default behaviors. The open source release of our Jean-
nie compiler is available at http://cs.nyu.edu/rgrimm/
xtc/.

Acknowledgments
This material is based upon work supported by the Na-
tional Science Foundation under Grants No. CNS-0448349
and CNS-0615129 and by the Defense Advanced Research
Projects Agency under Contract No. NBCH30390004. We
thank Joshua Auerbach, Rodric Rabbah, Gang Tan, David
Ungar, and the anonymous reviewers for their feedback on
earlier versions of this paper.

References
[1] R. Anisko, V. David, and C. Vasseur. Transformers: a C++

program transformation framework. Tech. Report 0310,
Laboratoire de Recherche et Développement de l’Epita, Le
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