Protecting Chatbots from Toxic Content

Guillaume Baudart Julian Dolby Evelyn Duesterwald
IBM Research IBM Research IBM Research
USA USA USA
Martin Hirzel Avraham Shinnar

IBM Research IBM Research
USA USA

Abstract

There is a paradigm shift in web-based services towards
conversational user interfaces. Companies increasingly offer
conversational interfaces, or chatbots, to let their customers
or employees interact with their services in a more flexible
and mobile manner. Unfortunately, this new paradigm faces
a major problem, namely toxic content in user inputs. Toxic
content in user inputs to chatbots may cause privacy con-
cerns, may be adversarial or malicious, and can cause the
chatbot provider substantial economic, reputational, or le-
gal harm. We address this problem with an interdisciplinary
approach, drawing upon programming languages, cloud com-
puting, and other disciplines to build protections for chatbots.
Our solution, called BotShield, is non-intrusive in that it does
not require changes to existing chatbots or underlying con-
versational platforms. This paper introduces novel security
mechanisms, articulates their security guarantees, and illus-
trates them via case studies.

CCS Concepts - Security and privacy — Privacy pro-
tections; - Software and its engineering — Domain spe-
cific languages;

Keywords Chatbot, Homomorphic Redaction, Context Di-
gression

ACM Reference Format:

Guillaume Baudart, Julian Dolby, Evelyn Duesterwald, Martin Hirzel,
and Avraham Shinnar. 2018. Protecting Chatbots from Toxic Con-
tent. In Proceedings of the 2018 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Onward! °18), November 7-8, 2018, Boston, MA, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3276954.
3276958

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Onward! ’18, November 7-8, 2018, Boston, MA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6031-9/18/11...$15.00
https://doi.org/10.1145/3276954.3276958

99

Client Application Conversation Service

—

Natural Language Understanding
Intent
Classifier

|

S
Dialog Interpreter

TN
CHIHH

External Services

Entity
Extractor

output

y

Figure 1. Architecture of a chatbot application. The chatbot
client passes user input utterances and the context contain-
ing the information required to resume the conversation
to the conversation service for processing. The natural lan-
guage understanding (NLU) component processes the input
utterance to extract user intent and entities. Those are used
by the dialog interpreter to orchestrate conversational flow
and application business logic. The business logic is served
by external services.

1 Introduction

Web-hosted services are experiencing a paradigm shift to-
wards conversational interfaces. Companies increasingly de-
ploy virtual conversational agents (i.e., chatbots) as the inter-
face between their services and their customers and employ-
ees [Vaziri et al. 2017]. Chatbots have the advantage of being
delivered not just through web browsers, but also through
text-based messaging software or even as skills on voice-
enabled devices. Chatbots are built as cloud-hosted artificial
intelligence (Al) applications. To make them easier to deploy,
scale, and update, chatbots usually use a micro-services ar-
chitecture, for instance, based on stateless cloud functions. A
primary Al component of chatbots is their natural-language
understanding (NLU) module, but additional Al components
may be included in the response generation. Figure 1 shows
the typical software architecture of a chatbot application
built using commercially available chatbot platforms [Face-
book 2011; IBM 2016b; Microsoft 2015]. AI components such
as NLU are best-effort and data-hungry: they face accuracy

https://doi.org/10.1145/3276954.3276958
https://doi.org/10.1145/3276954.3276958
https://doi.org/10.1145/3276954.3276958

Onward! ’18, November 7-8, 2018, Boston, MA, USA

limitations, which the provider continually addresses by col-
lecting and mining production logs.

Unfortunately, the new paradigm of conversational inter-
faces suffers from a major problem, namely foxic content in
user input. Toxic content includes personally identifiable in-
formation (PII) that should be kept out of logs and untrusted
services for privacy reasons [Krishnamurthy and Willis 2009;
McCallister et al. 2010]. Toxic content also includes malicious
user utterances aimed at exploiting the chatbot which can
cause data confidentiality breaches or theft of intellectual
property [Fredrikson et al. 2014; Tramer et al. 2016]. More
generally, toxic content includes anything that harms the
service provider, including abusive customers, legal and reg-
ulatory issues, or reputation damage [Wikipedia 2016]. Miti-
gating these risks is a broadly-recognized but as-yet unsolved
issue. For instance, the 2004 VoiceXML standard (a W3C stan-
dard chatbot programming model) declares “A future version
of VoiceXML may specify criteria by which a VoiceXML Pro-
cessor safeguards the privacy of personal data” [McGlashan
etal. 2004]. But a 2010 special report by the National Institute
of Standards and Technology [McCallister et al. 2010] still
lists “unwanted record of private information” as a threat
vector for personal assistants with chatbot interfaces. Indeed,
even in 2018, chatbot platforms lack reusable PII solutions;
instead, public chatbot deployments either ignore the issue
or, at best, address it one chatbot at a time.

This paper presents our interdisciplinary research into
solving the problem of toxic content for conversational inter-
faces to web-hosted services. Our research draws upon ideas
from programming languages, cloud computing, artificial
intelligence, and privacy and security research. In contrast
to traditional security risks, the toxic content problem arises
at the conversation level, that is, only when examining the
semantic contents of user utterances. Security solutions that
operate at lower levels, e.g., network-level denial-of-service
defenses [Zargar et al. 2013] or system-level buffer overflow
defenses [Cowan et al. 2000], offer little help. We designed a
solution called BotShield, representing a first step towards
conversation-level security. At this point, BotShield includes
the following defense mechanisms to protect chatbots from
toxic content:

e Homomorphic redaction to address private content, and
e Context digression to address adversarial and malicious
content.

Homomorphic redaction is a mechanism for safe handling
of PII in user utterances, such as the credit card number in
Line 12 of Figure 2. Conventional redaction replaces the pri-
vate content with a redacted string: XXXX-XXXX-XXXX-7807.
But that may prevent the chatbot itself from working cor-
rectly (understanding that a credit card number was entered)
and the external services from performing their function
(processing the credit card number). Therefore, we introduce
homomorphic redaction: privacy of the original utterances

G. Baudart, J. Dolby, E. Duesterwald, M. Hirzel, and A. Shinnar

O NN U R W N =

O S Y
0NV A WD RO

100

Hello!

I can help you with the Computer Store.
What would you like to do?

Order a personal apple laptop with a
13 inches screen.

I have a apple laptop with a 13 inch
screen for personal use.

Would you like me to place the order?
Yes

What credit card number should we use
to place this order?

Use my VISA 4556-6412-5875-7807

I placed your order using your VISA.
Your order number is 4556-011a9—-7807.
list my past orders.

You previously ordered:

— personal hp 15in

— apple 13in for work

Please

Figure 2. Example dialog between a human customer (H)
and a computer store chatbot (C). In this example, the credit
card information is processed without special handling, and
may thus end up plainly visible in logs or leak to untrusted
external services.

is preserved while still enabling limited computation over
the redacted version. While there is previous work using a
lattice of homomorphic encryption schemes for web-based
services [Dong et al. 2016; Tetali et al. 2013], this paper is
the first to offer homomorphic redaction for chatbots, en-
abling NLU over redacted data. Previous work on redaction
for chatbots was not homomorphic, e.g. [Salesforce 2016].
Context digression is an intervention mechanism for tem-
porarily diverting the conversational flow to a subdialog
in response to a trigger. The trigger consists of detected
toxic content or other security needs, and the subdialog im-
plements proper handling of these security needs. When
the digression completes, the original conversation resumes
where it was interrupted. Context digression serves as a mod-
ular conversational escalation mechanism. We show how
context digressions can be used to implement two different
security applications, namely on-the-fly authentication and
conversation escalation, for instance, when the user becomes
frustrated. While there exist earlier chatbot programming
models offering subdialogs [Lucas 2000], this paper is the
first to make them non-intrusive and to isolate their envi-
ronments. Previous work on context isolation did not focus
on chatbots, e.g. [Berger et al. 2009; Siefers et al. 2010].
One option for implementing defense mechanisms would
have been to modify the client-side code and the chatbot
script by hand, perhaps augmenting the programming model
to facilitate that. However, the by-hand approach would com-
plicate the chatbot logic and burden its designer with con-
sidering all corner-cases. To avoid these issues, BotShield’s
security mechanisms are designed to be non-intrusive. The
chatbot designer does not need to manually change the chat-
bot script to use BotShield. Instead, the chatbot designer

Protecting Chatbots from Toxic Content

@brand

@size #no

o 1

/ ask for true

parameters

#order

#list

+ start

$auth

/ check auth

—

$auth

/ confirm
order

/ list past
orders

Onward! ’18, November 7-8, 2018, Boston, MA, USA

/ ask for
payment

@payment

Figure 3. State machine of an example chatbot program with user intents indicated with a # prefix, entities with a @ prefix,

and context variable with a $ prefix.

provides a few lines of configuration code to configure their
homomorphic redaction and/or context digression defenses.
Based on these configurations, BotShield instantiates a set
of pre- and post-processors that implement the configured
defense. In the case of homomorphic redaction, BotShield
also transparently inserts secured entities into the chatbot
script to enable the chatbot’s NLU component to operate on
redacted private information. In both cases (homomorphic
redaction and context digression), BotShield offers separa-
tion of concerns [Kiczales et al. 2001; Tarr et al. 1999]: the
chatbot designer can focus on the core chatbot logic, and the
security concern is kept in separate configuration files. AI
specialists should not have to become security experts, and
conversely, security experts should not have to understand
the logic of a particular chatbot to protect it.

We have developed a BotShield prototype for chatbots
built using the IBM Watson Assistant [IBM 2016b], but the
same concepts could be applied to other commercial chatbot
technology offerings [Facebook 2011; Microsoft 2015; Patil
et al. 2017].

In summary, this paper contributes the following:

e A homomorphic redaction scheme that protects PII while
enabling interaction with a chatbot.

e A generic non-invasive context digression implementation
for chatbots.

o Application of context digressions to implement security
mechanisms.

e A novel architecture based on serverless computing.

e An instantiation of this architecture to protect a retail
chatbot.

BotShield follows two overall design principles. First, on
the security side, BotShield follows the principle of minimiz-
ing trust. Rather than trying to anticipate all possible attack
vectors, BotShield reveals information to system components
only on a need-to-know basis. Second, on the implementa-
tion side, BotShield follows the principle of separation of
concerns. It handles chatbot security as a separate concern
that it transparently embeds into conversations. With this
separation, we can free chatbot designers from worrying

101

about security risks and allow them to focus their efforts
on the target conversational application aspects. We hope
this paper will inspire more wide-spread adoption of these
design principles in chatbots.

2 Chatbot Programming Model

A chatbot interacts with a user via a conversation, that is,
in a series of text messages (utterances) between the two.
Such systems are typically structured as a client-server ap-
plication as illustrated in Figure 1. The application takes
the user input and sends it to the server-side chatbot. The
chatbot first processes the utterance with the natural lan-
guage understanding (NLU) module, which derives intents
(i.e. desired user actions) and entities (i.e. to what the user is
referring). The chatbot then feeds these intents and entities
into the dialog interpreter, which executes the dialog script
authored by the chatbot designer. The dialog interpreter may
call external services and generates the output, which is sent
back to the user via the client.

To make this a dialog rather than a disconnected series of
utterances, state can be kept in the conversation context; the
dialog interpreter can read values from and write values to
this state to keep track of information to be carried through
the dialog. This context implements what linguists call com-
mon ground [Clark and Brennan 1991]. Cloud-hosted applica-
tions use stateless micro-services for scaling, fault tolerance,
and security [Newman 2015], which is why Figure 1 keeps
the state in the client.

The dialog interpreter from Figure 1 is typically scripted
in some programming model [McTear 2002]. While there are
high-level dialog programming models, e.g., frames [Bobrow
et al. 1977], most of them can use finite state machines as
a low-level intermediate representation. Figure 3 gives an
example finite state machine for a simple shopping chatbot.
Boxes are states, and transitions are predicated upon intents
(indicated with a # prefix) or entities (indicated with a @
prefix) or context variable (indicated with a $ prefix). Exe-
cution initially starts in the start node. If the initial intent
is #order, then the system goes to the next state, ask for

Onward! ’18, November 7-8, 2018, Boston, MA, USA

request = {
"utterance": "Use my VISA 4556-6412-5875-7807",
"context": {
"bot_id": "computer store",
"node": "ask for payment",
"auth": false ,
"brand": "apple",
"size": 13,
"use": "personal" } }
Figure 4. Payment request.
response = {

"utterance": Use my VISA 4556-6412-5875-7807",

"output”: "I placed your order using your VISA. Your
order number is 4556-011a9 —-7807.",
"context": {
"bot_id": "computer store",
"node": "place order",
"auth": false ,
"brand": "apple",
"size": 13,
"use": "personal",
"payment": "VISA 4556-6412-5875-7807",

"order_number": 4556-011a9—-7807 } }

Figure 5. Payment response.

parameters. This state looks for @brand, @size, and @use
entities to specify what to order. After getting those entities,
the system moves to the next state to confirm the order, and
then finally place it.

More concretely, at each turn the client application sends
a request to the conversational service comprising two com-
ponents: the user utterance and the context. The context
contains all the information required to resume the conver-
sation, such as the current node in the state machine or all the
information gathered so far. For instance, consider the pay-
ment request and response in Figure 2 Lines 12-14. Figure 4
shows the request sent to realize a payment in our computer
store. The conversational agent then executes one step of the
dialog logic. In our example, the NLU identifies the entity
@payment in the utterance and proceeds to the place order
node. The dialog interpreter then calls an external service to
place the order which returns an order number. Finally, the
response contains the output text and an updated context.
For instance, Figure 5 shows the response of the computer
store to the previous request.

3 Homomorphic Redaction

This section deals with the need for redaction: some parts
of the user utterance may contain private information that
the conversation service and unauthorized external services
should not be able to access. Additionally, we would like
to return a suitably redacted string to the application user
interface to display to the user, giving them an easy way to
understand what private information was redacted. We will

G. Baudart, J. Dolby, E. Duesterwald, M. Hirzel, and A. Shinnar

102

Plain text
4556-6412-5875-7807

Homomorphic redacted
(XXXX=XXXX-XXXX-7807, @CreditCard, 99de647d64e5)

N

Human readable Encrypted
XXXX=XXXX-XXXX~7807 99de647d64e5

~ |

Classifiable
@CreditCard

Redacted
[redacted]

Elided

u

Figure 6. Redaction lattice.

arrange for the response from the conversation service to
contain an optionally redacted version of the given input
that can be used for this purpose.

This section explores various design possibilities, leading
up to the final design, a non-intrusive redaction solution
that still enables the NLU and authorized external services
to function as intended.

3.1 Simple Redaction

To redact an utterance, we must first intercept it. This is
done by interposing an appropriate redaction processor in
between the application and the conversation service. This
is mostly transparent, as the interposed processor can mimic
the conversation service and pass on the redacted message
as needed.

Such a redaction processor first locates potentially pri-
vate information (e.g. credit cards numbers) in the utter-
ance. At that point, there are many options to take. As a
running example, we will use the utterance “Use my VISA
4556-6412-5875-7807” from Figure 2, which contains a
credit card number. The lattice in Figure 6 depicts the in-
formation revealed by the various design choices and their
relationship.

The most radical choice is to completely elide the private
information from the utterance that it passes on to the con-
versation service. This would result in the string “Use my
VISA”. It does not give the conversation service a way to
know for sure if and where private information was present.
However, depending on the surrounding context, one may
still be able guess with high confidence. Furthermore, if the
application user interface displays the string with the pri-
vate information elided, that may also confuse the human.
Instead, we could redact the private information, replacing it
with a standard string such as “Use my VISA [redacted]”.

Protecting Chatbots from Toxic Content

foe

"human": "XXXX=XXXX-XXXX-7807",
"class": "CreditCard",
"encrypt": "99de647d64e5" } }

Figure 7. JSON representation of combined homomorphic
redaction in the conversation context object.

3.2 Homomorphic Redaction

The simple redaction schemes protect the private data, but
do not allow it to be used for further processing. This section
introduces more nuanced schemes that preserve the ability
to process the private data. These schemes are not fully
homomorphic but perform redaction in a way that preserves
specific operations.

One form of redaction, which we call human readable
redaction, preserves the ability of the user to reason about
what was redacted. This is done by replacing the private
data with a human readable representation of the type of
the private data. For instance, our running example would
be redacted to “Use my VISA XXXX-XXXX-XXXX-7807”, re-
placing the credit card with a standard representation of the
redacted data.

Instead of improving the human readability of the redac-
tion, we can instead improve how the conversation service
perceives it. Classifiable redaction preserves the ability of the
conversation service to extract and classify redacted entities.
For instance, it could redact the running example to “Use my
VISA @CreditCard”. The NLU unit can classify the secured
entity “@CreditCard” correctly without seeing the private
information.

All these examples irretrievably redact the private infor-
mation. Instead, encrypted redaction encrypts the private
information, enabling authorized external services to later
decrypt and act on it, while not allowing the conversation
service access to it. In our running example, this would look
like “Use my VISA ENC:99de647d64e5”.

3.3 Combining Homomorphic Redactions

Rather than choosing among these homomorphic redaction
schemes, we can combine them, giving us a redaction scheme
with all their benefits. This can be done by redacting the pri-
vate information with an identifier (enabling multiple redac-
tions), such as “Use my VISA $1”. The three above forms of
redactions can then be sent alongside, in the conversation
service context. Figure 7 shows a possible representation in
JSON format.

This representation is also extensible, allowing further
information to be included. For example, if we wanted to
enable external services to compare (but not decrypt) the
private data, we could extend the JSON object to include an
order-preserving version of the encrypted data as another

field.

[T e
0NV A W RO

103

Onward! ’18, November 7-8, 2018, Boston, MA, USA

1 C: Hello!
2 I can help you with the Computer Store.
3 What would you like to do?
4 H: Order a personal apple laptop with a
5 13 inches screen.
6 C: | have a apple laptop with a 13 inch
7 screen for personal use.
8 Would you like me to place the order?
9 H: Yes
C: What credit card number should we use
to place this order?
H: Use my VISA XXXX—-XXXX-XXXX-7807
C: | placed your order using your VISA.
Your order number is 4556-011a9-7807.
H: Please list my past orders.
C: You previously ordered:

— a personal hp 15in
— a apple 13in for work

Figure 8. Redacted dialog example.

3.4 Non-Intrusive Combinations

The previously-mentioned combined scheme allows all the
required information to be sent, but requires the conversa-
tion service, the user interface, and the authorized external
services to be changed. We can instead modify the scheme
to make it non-intrusive, in the sense that no manual mod-
ifications of either conversation service, user interface, or
client application are required.

Going back to our example of classifiable redaction, “Use
my VISA @CreditCard”, we extend it slightly to encode the
unique identifier, as “Use my VISA @CreditCard[1]”, which
can be ignored by the conversation service.

As in the combined scheme, we can pass the other redac-
tion forms in the context, associated with the unique iden-
tifier. We then add additional processors in between the
conversation service and the original application response,
as well as the authorized external service. These each use
the associated data to replace the redacted “Use my VISA
@CreditCard[1]” with the appropriate redaction for that tar-
get: “Use my VISA XXXX-XXXX-XXXX-7807” for the applica-
tion user interface, and “Use my VISA 4556-6412-5875-7807",
the decrypted version of the utterance, for properly autho-
rized external application services. Unauthorized external
services will not have this replacement performed, so they
will not be able to see the unencrypted private data. Section 5
presents an implementation of this final scheme.

This solution protects the private data from the conversa-
tion service and unauthorized external services and requires
no manual changes to the conversation service. The appli-
cation user interface receives a human-friendly redacted
version of the utterance, suitable for display. Finally, autho-
rized external services receive the unencrypted utterance,
necessitating no modification.

Figure 8 displays what the final conversation from Fig-
ure 2 might look like, assuming that the application user

Onward! ’18, November 7-8, 2018, Boston, MA, USA

Table 1. Who sees what, focusing on the “4556-6412-5875-7807” part of our running example, “Use

G. Baudart, J. Dolby, E. Duesterwald, M. Hirzel, and A. Shinnar

my VISA

4556-6412-5875-7807”. For the combined and non-intrusive schemes, the conversation service receives the additional
context shown in Figure 7. This does not give it a way to view the credit card number.

External Services

Conversation Service Trusted Untrusted Output
Elided)) } }
Redacted [redacted] [redacted] [redacted] [redacted]
Human readable xxxx-xxxx-xxxx-7807 XXXX=XXXX=XXXX=7807 XXXX=XXXX~XXXX-7807 XXXX=XXXX=XXXX~7807
Classifiable @CreditCard @CreditCard @CreditCard @CreditCard
Encrypted 99de647d64e5 99de647d64e5 99de647d64e5 99de647d64e5
Combined $1 + [Fig 7] $1 + [Fig 7] $1 + [Fig 7] $1 + [Fig 7]

Non-intrusive @CreditCard[1] + [Fig 7]

4556-6412-5875-7807 @CreditCard[1] + [Fig 7]

XXXX=XXXX—XXXX~7807

interface supports modifying the displayed conversation us-
ing the returned redaction string. While the credit card itself
is redacted to be human readable, the conversation is able to
proceed, indicating that the conversation service is able to
classify the utterance correctly. Additionally, the displayed
order number (for pedagogical purposes) leaks the first digits
of the credit card number, demonstrating that the external
service that places the order has access to the full credit card
number. The conversation service, on the other hand, is not
able to obtain the full credit card number.

Table 1 articulates the security guarantees by providing
an overview of what happens to the credit card number in
the example under the different schemes presented, as seen
by the different parts of the architecture. For the combined
and the final, non-intrusive combined scheme, it includes
information about what is sent in the context to each part.

4 Context Digression

Context digressions trigger a new conversation in the mid-
dle of a dialog. This mechanism makes chatbots modular
and reusable. This section presents a lightweight solution
to implement context digressions on top of an off-the-shelf
conversational service. We illustrate the expressiveness of
this mechanism with two security examples: on-the-fly au-
thentication and sentiment-based escalation.

4.1 Context and Continuation

As discussed in Section 2 the requests sent to the conversa-
tional service contain two pieces of information: the user
utterance and the context that contains the identity of the
chatbot including all the information required to resume the
conversation between two turns.

To trigger a digression, we only need to substitute the con-
text with a fresh one containing the identity of the chatbot
that is responsible for the digression dialog. The only diffi-
culty is to save the current context before the substitution
to be able to resume the conversation when the digression
ends. This could simply be done by the client application but

104

would require the designer to adapt the application. Instead,
we propose to store the current context as a special element
of the fresh context: the continuation. Since the client applica-
tion already manages the context between two conversation
turns, it will transparently handle the continuation as part
of the context. Then, when the digression ends, the only step
required to resume the parent conversation is to substitute
the current context with the continuation.

To implement a digression, we need to wrap the call to
the conversational service with two processors. Preceding
the call, a first processor digress monitors the digression
condition and substitutes the context with a fresh one (with
the current context as a continuation) when the condition is
satisfied. Subsequent to the call, another processor resume
substitutes the context of the response with the continuation
when the digression ends. Assuming that the end of a dialog
is signaled by the presence of a special element resume in
the context, in JavaScript we write:

function digress(request) {
if (condition(request)) {
-

digression_bot ,

request.context
bot_id:
continuation:
}
}

return request

request.context

}

function resume(response) {
if (response.context.resume) {
response.context
response.context.continuation

}

return response

}

The only change required in the client application is to
substitute the call to the conversational agent with a call
to a wrapper function that mimics the conversation service
and executes digress and resume before and after the con-
versational agent. Both processors are lightweight and only

Protecting Chatbots from Toxic Content

C: Hello!

I can help you with the Computer Store.

What would you like to do?

H: Please list my past orders.

: You must sign in to see your past orders.
Do you want to sign in?

H: Yes

C: Please enter your name and client id.

: My name is Alice and my key is
[client id]

“: Thanks. You are now authenticated.

You previously ordered:

— a personal hp 15in

— a apple 13in for work

0 N U R W N
(@]

R el
B W N R O 0
(@] T

Figure 9. On-the-fly authentication example.

reorganize the context of the request when a simple condi-
tion is satisfied. They impose negligible overhead and require
no additional resources to store the continuation.

The resume processor is generic and does not depend on
the digression (as long as all dialogs end with a context ele-
ment resume). However, the programmer still needs to add
one pre-processor for each digression. Section 5 presents
an implementation that allows doing that in a modular way
without modifying the client application or the conversa-
tional service.

We now show how the context digression mechanism
can be used to implement two security features: on-the-fly
authentication and sentiment-based escalation.

4.2 On-the-fly Authentication

Consider the dialog example of Figure 9 based on our com-
puter store chatbot. The user wants to access the history of
her past orders, which requires her to authenticate (Lines 5—-
11). The authentication is implemented as a digression and
thus seamlessly integrated into the conversation without
modifying the original computer store chatbot. This digres-
sion is an example of a subdialog that should be triggered
whenever the conversation reaches a particular node of the
dialog state machine (see Figure 3). The JavaScript code is
the following:

function auth(request) {

let node = request.context.node
if (node == 'check auth' && not request.context.auth){
request.context = {

bot_id: authenticate_bot ,

continuation: request.context

}
}

return request

}

When the conversation reaches the node ‘check auth’,
if the user is not yet authenticated (that is, if the context
variable context.auth is false) we launch the chatbot
authenticate_bot. When the digression returns, the con-
versation either follows the $auth transition or the $auth

Onward! ’18, November 7-8, 2018, Boston, MA, USA

1 C: Hello!

2 I can help you with the Computer Store.
3 What would you like to do?

4 H: Order a 13—inch personal mac

5 C: What brand would you like?

6 H: Mac

7 C: What brand would you like?

8 H: Macintosh

9 C: What brand would you like?

10 H: | hate these stupid useless chatbots!
11 C: You sound upset, would you like to

12 continue this conversation?

13 H: Yes

14 C: Ok, glad to hear it.

—
=

Please restate your request calmly.

Figure 10. Sentiment-based escalation example.

transition in Figure 3 depending on whether or not the user
successfully authenticated.

4.3 Sentiment-based Escalation

Sentiment-based escalation monitors the tone of the user
utterances and escalates the conversation whenever the tone
gets too angry or disgusted. Figure 10 shows an example
where the chatbot does not understand the user answer and
keeps asking the same question. The upset user finally gives
up and starts complaining (Line 10), which triggers a digres-
sion to avoid further derailment of the chatbot (Lines 11-14).

To monitor the tone of user utterances we use a tone-
analyzer service [IBM 2016c]. For each utterance, the tone
analyzer returns a score, between 0 and 1, for five possible
emotions: anger, disgust, fear, joy, and sadness.

If we detect that the level of anger or disgust exceeds a
certain threshold (“a score greater than 0.75 indicates a high
likelihood that the tone is perceived in the content” [IBM
2016¢]), we trigger the escalation subdialog to ask if the user
really wants to continue the conversation. The JavaScript
code of the monitor function is the following:

function escalate(request) {

let emotions = tone_analyzer(request.utterance)
if (emotions.anger > 0.75 || emotions.disgust > 0.75) {
request.context = {

bot_id: escalate_bot ,
continuation: request.context
}
}

return request

}

Compared to on-the-fly authentication, sentiment-based
escalation is an example of digression triggered by a condi-
tion external to the dialog logic. In other words, this digres-
sion can be triggered at any point during the conversation
and in any node of the state machine of Figure 3. It gets
triggered like an exception, but when the digression returns,
the conversation resumes where it left off.

Onward! ’18, November 7-8, 2018, Boston, MA, USA

Client Application Botshield

G. Baudart, J. Dolby, E. Duesterwald, M. Hirzel, and A. Shinnar

Load

a1 H

Filter |—>| Load H Auth |—>| Escalatel—'

S —

t t
output <—| Store |<—:—| Redact |<—| Store |‘—

External Services

Conversational
Service
NLU
Dialog Interpreter —>

Redirect

Untrusted @,D

Trusted

Figure 11. BotShield deployment of the protected computer store.

5 Non-Intrusive Implementation

This section presents the BotShield framework that can be
used to deploy homomorphic redaction (Section 3) and con-
text digressions (Section 4) to protect an existing chatbot.
BotShield is designed to be non-intrusive in the sense that
no manual changes to the original chatbot are necessary;
instead, required modifications are transparently inserted
based on a configuration.

We focus on chatbots built with a conversational ser-
vice [Facebook 2011; IBM 2016b; Microsoft 2015; Patil et al.
2017] that is accessed, for instance, via a REST web APIL Bot-
Shield provides an alternative web end-point to access the
chatbot that channels all requests through a pipeline of pre-
and post-processors to intercept requests and responses and
secure their contents.

BotShield is implemented as a serverless application [Bal-
dini et al. 2017]. Serverless computing, or function-as-a-
service, allows programmers to run short-term stateless func-
tions in the cloud triggered by events (in our case, new mes-
sages from the chatbot user). Major cloud providers now offer
serverless platforms [Amazon 2014; IBM 2016a; Microsoft
2016]. The platform ensures timely, secure, fault-tolerant,
and scalable execution of functions, leaving only the applica-
tion design to the programmer. By implementing BotShield
as a set of stateless functions in continuation passing style,
we get these benefits of cloud functions for free.

Modifying the chatbot by hand to incorporate our pro-
tections would be tedious with the current commercially
available chatbot programming models. At the same time,
compared to a classic approach where the security mecha-
nism would be directly implemented in the client application,
BotShield is more modular, more scalable, and more secure.
The presented mechanisms are generic solutions that can
be used and combined for any chatbot. We can rely on the
serverless platform to scale the resources required by Bot-
Shield with respect to the traffic going through the chatbot.

106

The cloud implementation adds an extra level of security:
BotShield processors remain active even if the client applica-
tion is compromised.

5.1 Deployment and Configuration

Given a working chatbot, BotShield proceeds in two steps
to deploy a protection: 1) Upload a set of processors on the
serverless platform and define a pipeline, that is, one ad-
ditional function that triggers in sequence the BotShield
processors and the call to the chatbot. 2) If necessary, auto-
matically update the chatbot based on simple configuration
files. We then create a new web end-point that can be used
to execute the pipeline. To switch to the protected version of
the chatbot, the client application can use the newly-created
pipeline end-point instead of the unprotected chatbot end-
point provided by the conversational service.

We designed BotShield to be as modular as possible. The
basic BotShield pipeline, shown in Figure 11, contains pre-
defined protections (e.g., PII protection), but can be extended
with ad-hoc processors (e.g., on-the-fly authentication, or
sentiment-based escalation). The deployment is incremental.
Given a working BotShield pipeline, it is possible to upload
a new processor in the serverless platform and add it to the
pipeline without redeploying the other processors.

Figure 11 presents the architecture of the BotShield frame-
work deployed for the computer store with PII protection
(Section 3), context digressions for on-the-fly authentication,
and sentiment-based escalation (Section 4). Grey boxes cor-
respond to serverless functions. Compared to Figure 1 we
substituted the direct call to the conversational service with
a call to the BotShield pipeline. At each new user utterance,
an execution step proceeds as follows:

1. filter the text to redact private information,

2. check if authentication is required,

3. analyze the tone of the utterance and decide whether
or not to escalate,

. call the conversation service (and other services),

Protecting Chatbots from Toxic Content

5. possibly resume from a completed digression,
6. replace redacted private information with a human
readable text.

PII protection. The PII protection based on homomorphic
redaction (Section 3) relies on the four processors Filter,
Redirect, Decrypt, and Redact (see Figure 11). Filter, the
first processor of the BotShield pipeline, scans the user ut-
terance and replaces private information with secured en-
tities that can be understood by the chatbot and attaches
encrypted versions of the private information to the request.
This ensures that private information is protected as soon
as possible. Redact, on the other end of the pipeline, re-
places the secured entities with human readable text (e.g.,
XXXX=XXXX-XXXX-7807 for a credit card).

External services called by the chatbot sometimes require
access to the private information (e.g., an online payment
service that needs access to credit card numbers). Redirect
intercepts requests to external services and, based on a pre-
configured whitelist of authorized services, instead of di-
rectly calling the service, triggers a pipeline that starts with
Decrypt to decode the encrypted information. Furthermore,
Redirect filters encrypted information such that even a
trusted service can only see information it is allowed to see.

To deploy the PII protection, BotShield uploads the proces-
sors Filter, Redirect, Decrypt, and Redact. In addition,
for each service S in the whitelist, BotShield automatically
defines a new pipeline P(S) = Decrypt — Call(S). During
execution, Redirect substitutes the call to S with calls to
P(S). During the deployment we also automatically update
the chatbot to add the secured entities to the set of entities of
the chatbot NLU. This is the only modification to the original
chatbot and is required to be able to recognize and exploit
the secured entities.

Context digression. As discussed in Section 4, a digression
is implemented with an ad-hoc processor that monitors an
arbitrary condition and substitutes the context when the
condition is satisfied. When the digression ends, a generic
processor Resume substitutes the context with the content
of the continuation to resume the conversation (Section 4).

To complete our computer store example, we only need
to upload three processors: Auth that triggers the authenti-
cation (Section 4.2), Escalate that triggers the sentiment-
based escalation (Section 4.3), and Resume. To add another
digression, the chatbot designer only needs to upload the cor-
responding processor and add it to the main pipeline. Adding
context digressions does not require modifying the original
chatbot application code. Instead, the additional chatbot logic
is implemented via separate modular chatbot scripts.

5.2 Context Protection

The handling of input/output is left to the client application.
The client application typically also manages the conver-
sation context (as in Figure 1), but BotShield provides an

107

Onward! ’18, November 7-8, 2018, Boston, MA, USA

Table 2. Access right to the different context parts for the
main components of chatbot.

Context
public private continuation
Communications wires X X X
Database service v v v
Conversational service v v X
External services v X X
Client application v X X
User X X X

extra layer of security by maintaining its own version of the
context (the additional load and store processors in Fig-
ure 11). Unfortunately, serverless functions are required to
be stateless and cannot be used to store the context between
conversation turns. We thus rely on an external database
service. Two additional functions are added to the pipeline
to store and load the context from the database before and
after the call to the conversation service.

The context can be split into three parts: 1) the public con-
text contains variables set by the client application that can
be used to communicate information to the chatbot outside
user utterances; 2) the private context contains all the infor-
mation required to resume the conversation between two
turns (e.g., the current node in the state machine of Figure 3);
and 3) the possible continuation spawned when a digression
is triggered.

The copy of the context maintained by BotShield allows
the protection of the private context even if the application
client is compromised. The private part of the context can
thus be separately managed by BotShield and omitted from
the response returned to the client application. In addition,
the processor that calls the conversational service can omit
the continuation from the context before making the call,
and restore it immediately after. The conversational service
thus only sees the context of the ongoing conversation and
cannot corrupt the continuation. Table 2 articulates the se-
curity guarantees by summarizing access rights for the main
components of a chatbot deployed with BotShield.

5.3 Experiments

In our experiments, we used the serverless platform IBM
Cloud Functions [IBM 2016a] and designed the computer
store chatbot with Watson Assistant [IBM 2016b]. The data-
base service used to store the context is Cloudant [IBM 2008].
All the BotShield processors are written in TypeScript [Bier-
man et al. 2014] and compiled to JavaScript before the deploy-
ment. We used this application for all the chat transcripts
presented in the previous sections.

Table 3 analyzes the latency of the computer store chatbot,
as well as overhead introduced by BotShield. All server-side

Onward! ’18, November 7-8, 2018, Boston, MA, USA

Table 3. Latency in milliseconds (average execution time
based on 200 activations).

Computer Store

App Load Store ~ WAssistant ~ Order
54 448 331 276 93
BotShield Overhead
Filter Redirect Decrypt Subdialog Escalate
55 13 26 3 238

components ran in the same cloud region. Store and load
latencies are high, because we have not spent much effort
on decreasing them, and we expect them to come down,
for instance, via caching. The added overhead of BotShield
is small (except for escalate due to the call to the tone-
analyzer service).

6 Related Work

Related to our homomorphic redaction, Salesforce has an
offering called Live Agent with a PII protection feature [Sales-
force 2016]. Live Agent is a platform for online human-to-
human chats between consumers and customer service rep-
resentatives (in contrast to chatbots, which offer human-
to-computer chats). Like BotShield, it lets users configure
sensitive data rules for blocking PII from entering the chat.
But unlike BotShield, it is not homomorphic, in that the data
is completely blocked and cannot be classified by the natural-
language understander or used by authorized actions.

The MrCrypt [Tetali et al. 2013] and JCrypt [Dong et al.
2016] projects use partially homomorphic encryption for
cloud services. Like BotShield, they employ multiple homo-
morphic schemes to enable multiple kinds of computation,
and these schemes sit in a lattice between clear and opaque.
But unlike BotShield, MrCrypt and JCrypt are not designed
for chatbots and depend on computationally expensive ho-
momorphic schemes, whereas BotShield uses inexpensive
schemes tailored for chatbots.

At a high level, homomorphic redaction is about protect-
ing the chatbot from unwanted inputs. Besides PII, another
form of unwanted inputs consists of poisoning a chatbot
with bad training data, which unfortunately happened to the
Tay chatbot [Wikipedia 2016]. Outside of chatbots, a com-
mon protection against unwanted inputs is taint analysis,
which can be dynamic [Wall et al. 2000] or static [Guarnieri
et al. 2011]. BotShield differs by focusing on PII in chatbots.

While BotShield is about protecting chatbots from PII,
there are also projects where chatbots are part of the solution
for PII protection [Dutta et al. 2017; Harkous et al. 2016].

Related to our environment digression, VoiceXML of-
fers subdialogs [Lucas 2000; McGlashan et al. 2004]. Voice-
XML is a W3C standard dialog markup language, i.e., a pro-
gramming language for specifying chatbots. Going beyond

G. Baudart, J. Dolby, E. Duesterwald, M. Hirzel, and A. Shinnar

108

VoiceXML, a recent catalog of chatbot patterns includes not
just subdialogs but also digression [Hirzel et al. 2017]. Bot-
Shield differs from these standard chatbot features and pat-
terns by making digressions non-intrusive and by isolating
the environments.

Aspect-oriented languages like Aspect] offer non-intrusive
digression [Kiczales et al. 2001]. One could characterize Bot-
Shield as aspects for chatbots, plus environment isolation.

BotShield uses continuations not only to implement envi-
ronment digression but also to get the advantages of server-
less computing including scaling and fault tolerance [Baldini
et al. 2017]. This continuation-based style has been used to
good effect in web programming even before the advent of
serverless computing [Graunke et al. 2001], and the synergy
between functional and distributed programming remains
an active area of exploration [Haller et al. 2018].

Outside of chatbots, the need to protect the environment
during subroutines is particularly acute when those subrou-
tines operate at a different level of security, such as when
Java calls C code [Lee et al. 2009; Li and Srisa-an 2011; Siefers
et al. 2010]. Another case where isolating environments is
beneficial is in multi-threaded programs [Berger et al. 2009]
and in unsafe languages [Necula et al. 2002; Nethercote and
Seward 2007]. BotShield also isolates environments, but un-
like these projects, BotShield focuses on chatbots.

Differential privacy is about preventing private infor-
mation from leaking out of a system, which is dual to homo-
morphic redaction in BotShield preventing private informa-
tion from leaking in fo a system. We are not aware of any
work applying differential privacy directly to chatbots. There
is work on stealing artificial-intelligence models [Tramer
et al. 2016] or data [Fredrikson et al. 2014; Krishnamurthy
and Willis 2009]. In the programming language literature,
one can use type systems for differential privacy [Reed and
Pierce 2010], which can help prevent PII from leaking out of
a database via aggregate information.

The issue of preventing private information from leaking
out of a system is not new, as exemplified by two approaches
from the previous century. In medical databases, it is com-
mon practice to scrub the entire database to create a copy that
can then be shared for other analytics [Herting Jr and Barnes
1998]. Another commonly used approach is data masking,
which scrambles data for confidentiality [Johnson et al. 1994].
Homomorphic redaction in BotShield is complementary to
these approaches, since it prevents private information from
entering the system in the first place and preserves the ability
of the system to perform limited computation over it.

7 Conclusion

This paper introduces BotShield, a framework for protect-
ing chatbots. BotShield provides security mechanisms that
weave code addressing security concerns into the hand-
authored portion of the chatbot, while making sure not to

Protecting Chatbots from Toxic Content

impede the machine-learned portion. More specifically, Bot-
Shield comprises two security mechanisms (homomorphic
redaction and context digression), and implements them non-
intrusively (requiring no manual modification of the base
chatbot). As artificial intelligence becomes more pervasive,
we need clear security guarantees so we can trust it. Bot-
Shield takes a step in that direction via specific techniques to
secure chatbots. We believe that there is additional scope for
securing artificial-intelligence applications by drawing even
more deeply on established disciplines such as programming
languages.

Future work Of course, we do not claim that BotShield is
the last word on chatbot security. Rather, there are several
avenues of interesting future work.

e The current implementation of BotShield resides entirely
on the server, but it may be useful to shift some of it
onto the client. For example, if the client would avoid
sending private information to the server in the first place,
that would shrink the trusted computing base. One could
explore shipping part of BotShield to the client in the form
of JavaScript code generated for that purpose.

e The current implementation of BotShield requires no mod-
ifications to the conversational service, but it could also be
baked into the conversational service. Keeping it separate
kept it general and reduced the barrier to adoption. But
having it built-in may reduce latency and may make future
features easier to implement. We anticipate that security
features will become common-place in chatbot platforms.

e One protection BotShield does not yet afford but could in
the future is bot detection. Companies intend their chat-
bots to be used by humans (customers and employees).
But malicious entities might script bots to talk to them, for
denial-of-service attacks or worse. BotShield could moni-
tor incoming traffic to detect whether it is generated by a
bot, and mitigate it, for instance by deliberately slowing
down its responses.
Another protection BotShield does not yet afford but could
in the future is differential privacy. Section 6 compares
and contrasts the features currently implemented by Bot-
Shield with differential privacy. BotShield could monitor
outgoing traffic to detect whether it reveals much cumula-
tive information, and mitigate it, for instance by overt or
possibly covert redaction.
BotShield can already be used for on-the-fly authentica-
tion, but does not yet attempt to make guarantees about
authorization. In other words, it is currently up to the chat-
bot designer to guard portions of the scripted dialog to
ensure the user has signed in. Automating that process
would probably require information-flow analysis on the
chatbot code itself.

109

Onward! ’18, November 7-8, 2018, Boston, MA, USA

Acknowledgment

We thank Alan Braz and Stephen Fink for their help and
early feedback. We are also grateful to the shepherd and the
reviewers for their valuable remarks.

References

Amazon. 2014. Lambda. (2014). https://aws.amazon.com/lambda/ (Retrieved
June 2018).

Toana Baldini, Perry Cheng, Stephen J. Fink, Nick Mitchell, Vinod
Muthusamy, Rodric Rabbah, Philippe Suter, and Olivier Tardieu. 2017.
The Serverless Trilemma: Function Composition for Serverless Com-
puting. In Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward!). 89-103.

Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. 2009. Grace:
Safe Multithreaded Programming for C/C++. In Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA).
81-96.

Gavin Bierman, Martin Abadi, and Mads Torgersen. 2014. Understanding
TypeScript. In European Conference for Object-Oriented Programming
(ECOOP). 257-281.

Daniel G. Bobrow, Ronald M. Kaplan, Martin Kay, Donald A. Norman, Henry
Thompson, and Terry Winograd. 1977. GUS, a Frame-Driven Dialog
System. Artificial Intelligence 8, 2 (1977), 155-173.

Herbert H. Clark and Susan E. Brennan. 1991. Grounding in Communication.
Perspectives on Socially Shared Cognition 13 (1991), 127-149.

C. Cowan, F. Waggle, and Calton Pu. 2000. Buffer Overflows: Attacks and
Defenses for the Vulnerability of the Decade. In DARPA Information
Survivability Conference and Exposition (DISCEX). 119-129.

Yao Dong, Ana Milanova, and Julian Dolby. 2016. JCrypt: Towards Compu-
tation over Encrypted Data. In Conference on Principles and Practices of
Programming in Java (PPP). 8:1-8:12.

Saurabh Dutta, Ger Joyce, and Jay Brewer. 2017. Utilizing Chatbots to
Increase the Efficacy of Information Security Practitioners. In Conference
on Advances in Human Factors in Cybersecurity (AHFE). 237-243.

Facebook. 2011. Messenger Platform. (2011). https://developers.facebook.
com/docs/messenger-platform/ (Retrieved June 2018).

Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and
Thomas Ristenpart. 2014. Privacy in Pharmacogenetics: An End-to-
End Case Study of Personalized Warfarin Dosing. In USENIX Security
Symposium. 17-32.

Paul T. Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias
Felleisen. 2001. Automatically Restructuring Programs for the Web. In
Conference on Automated Software Engineering (ASE). 211-222.

Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teil-
het, and Ryan Berg. 2011. Saving the World Wide Web from Vulnerable
JavaScript. In International Symposium on Software Testing and Analysis
(ISSTA). 177-187.

Philipp Haller, Heather Miller, and Normen Miiller. 2018. A Programming
Model and Foundation for Lineage-Based Distributed Computation. Jour-
nal on Functional Programming (JFP) 28, €7 (2018).

Hamza Harkous, Kassem Fawaz, Kang G. Shin, and Karl Aberer. 2016. Pri-
Bots: Conversational Privacy with Chatbots. In Workshop on the Future
of Privacy Indicators (WSF@SOUPS,).

Robert L. Herting Jr and Michael R. Barnes. 1998. Large Scale Database
Scrubbing Using Object Oriented Software Components. In American
Medical Informatics Association Annual Symposium (AMIA). 508-512.

Martin Hirzel, Louis Mandel, Avraham Shinnar, Jérome Siméon, and Man-
dana Vaziri. 2017. I Can Parse You: Grammars for Dialogs. In Summit oN
Advances in Programming Languages (SNAPL). 6:1-6:15.

IBM. 2008. Cloudant NoSQL Database Service. (2008). https://www.ibm.
com/cloud/cloudant (Retrieved June 2018).

IBM. 2016a. Cloud Functions. (2016). https://www.ibm.com/cloud/functions
(Retrieved June 2013).

https://aws.amazon.com/lambda/
https://developers.facebook.com/docs/messenger-platform/
https://developers.facebook.com/docs/messenger-platform/
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/cloud/functions

Onward! ’18, November 7-8, 2018, Boston, MA, USA

IBM. 2016b. Watson Assistant. (2016).
services/conversation/ (Retrieved June 2018).

IBM. 2016¢. Watson Tone Analyzer Service. (2016). https://www.ibm.com/
watson/services/tone-analyzer/ (Retrieved June 2018).

Donald Byron Johnson, Stephen M. Matyas, An V. Le, and John D. Wilkins.
1994. The Commercial Data Masking Facility (CDMF) Data Privacy
Algorithm. IBM Journal of Research and Development 38, 2 (1994), 217-
226.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. 2001. An Overview of Aspect]. In European
Conference for Object-Oriented Programming (ECOOP). 327-354.

Balachander Krishnamurthy and Craig E. Willis. 2009. On the Leakage
of Personally Identifiable Information via Online Social Networks. In
Workshop on Online Social Networks (WOSN).

Byeongcheol Lee, Martin Hirzel, Robert Grimm, and Kathryn McKinley.
2009. Debug All Your Code: Portable Mixed-Environment Debugging.
In Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). 207-225.

Du Li and Witawas Srisa-an. 2011. Quarantine: A Framework to Mitigate
Memory Errors for JNI Applications. In Conference on Principles and
Practice of Programming in Java (PPPJ). 1-10.

Bruce Lucas. 2000. VoiceXML for Web-based Distributed Conversational
Applications. Communications of the ACM (CACM) 43, 9 (2000), 53-57.

Erika McCallister, Timothy Grance, and Karen A. Scarfone. 2010. Guide
to Protecting the Confidentiality of Personally Identifiable Information
(PII). National Institute of Standards and Technology Special Publication
(NIST-SP) 800-122 (2010).

Scott McGlashan, Daniel C. Burnett, Jerry Carter, Peter Danielsen, Jim Fer-
rans, Andrew Hunt, Bruce Lucas, Brad Porter, Ken Rehor, and Steph
Tryphonas. 2004. Voice Extensible Markup Language (VoiceXML) Ver-
sion 2.0. (2004). https://www.w3.org/TR/voicexml20/ (Retrieved June
2018).

Michael F. McTear. 2002. Spoken Dialogue Technology: Enabling the Conver-
sational Interface. ACM Computing Surveys (CSUR) 34, 1 (2002), 90-169.

Microsoft. 2015. Bot Framework Documentation. (2015). https://azure.
microsoft.com/en-us/services/bot-service/ (Retrieved June 2018).

Microsoft. 2016. Azure Functions. (2016). https://functions.azure.com/
(Retrieved June 2013).

George C. Necula, Scott McPeak, and Westley Weimer. 2002. CCured:
Type-Safe Retrofitting of Legacy Code. In Symposium on Principles of

https://www.ibm.com/watson/

G. Baudart, J. Dolby, E. Duesterwald, M. Hirzel, and A. Shinnar

110

Programming Languages (POPL). 128-139.

Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In Conference on
Programming Language Design and Implementation (PLDI). 89-100.

Sam Newman. 2015. Building Microservices: Designing Fine Grained Systems.
O’Reilly.

Amit Patil, K. Marimuthu, and R. Niranchana. 2017. Comparative Study of
Cloud Platforms to Develop a Chatbot. International Journal of Engineer-
ing & Technology 6, 3 (2017), 57-61.

Jason Reed and Benjamin C. Pierce. 2010. Distance Makes the Types Grow
Stronger: A Calculus for Differential Privacy. In International Conference
on Functional Programming (ICFP). 157-168.

Salesforce. 2016. Block Sensitive Data in Chats. (2016). https:
//releasenotes.docs.salesforce.com/en-us/winter16/release-notes/rn_
live_agent_block_sensitive_data.htm (Retrieved June 2018).

Joseph Siefers, Gang Tan, and Greg Morrisett. 2010. Robusta: Taming the
Native Beast of the JVM. In Conference on Computer and Communication
Security (CCS). 201-211.

Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. 1999.
N Degrees of Separation: Multi-dimensional Separation of Concerns. In
International Conference on Software Engineering (ICSE). 107-119.

Sai Deep Tetali, Mohsen Lesani, Rupak Majumdar, and Todd Millstein. 2013.
MrCrypt: Static Analysis for Secure Cloud Computations. In Conference

on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). 271-286

Florian Trameér, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ris-
tenpart. 2016. Stealing Machine Learning Models via Prediction APIs. In
USENIX Security Symposium. 601-618.

Mandana Vaziri, Louis Mandel, Avraham Shinnar, Jérome Siméon, and Mar-
tin Hirzel. 2017. Generating Chat Bots from Web API Specifications. In
Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Onward!). 44-57.

Larry Wall, Tom Christiansen, and Jon Orwant. 2000. Programming Perl
(third ed.). O’Reilly.

Wikipedia. 2016. Tay (bot). (2016). https://en.wikipedia.org/wiki/Tay_(bot)
(Retrieved June 2018).

Saman T. Zargar, James Joshi, and David Tipper. 2013. A Survey of Defense
Mechanisms Against Distributed Denial of Service (DDoS) Flooding
Attacks. IEEE Communications Surveys and Tutorials 15, 4 (2013), 2046—
2069.

https://www.ibm.com/watson/services/conversation/
https://www.ibm.com/watson/services/conversation/
https://www.ibm.com/watson/services/tone-analyzer/
https://www.ibm.com/watson/services/tone-analyzer/
https://www.w3.org/TR/voicexml20/
https://azure.microsoft.com/en-us/services/bot-service/
https://azure.microsoft.com/en-us/services/bot-service/
https://functions.azure.com/
https://releasenotes.docs.salesforce.com/en-us/winter16/release-notes/rn_live_agent_block_sensitive_data.htm
https://releasenotes.docs.salesforce.com/en-us/winter16/release-notes/rn_live_agent_block_sensitive_data.htm
https://releasenotes.docs.salesforce.com/en-us/winter16/release-notes/rn_live_agent_block_sensitive_data.htm
https://en.wikipedia.org/wiki/Tay_(bot)

	Abstract
	1 Introduction
	2 Chatbot Programming Model
	3 Homomorphic Redaction
	3.1 Simple Redaction
	3.2 Homomorphic Redaction
	3.3 Combining Homomorphic Redactions
	3.4 Non-Intrusive Combinations

	4 Context Digression
	4.1 Context and Continuation
	4.2 On-the-fly Authentication
	4.3 Sentiment-based Escalation

	5 Non-Intrusive Implementation
	5.1 Deployment and Configuration
	5.2 Context Protection
	5.3 Experiments

	6 Related Work
	7 Conclusion
	References

