
Generating Chat Bots fromWeb API Specifications
Mandana Vaziri
IBM Research, USA
mvaziri@us.ibm.com

Louis Mandel
IBM Research, USA
lmandel@us.ibm.com

Avraham Shinnar
IBM Research, USA
shinnar@us.ibm.com

Jérôme Siméon
IBM Research, USA
simeon@us.ibm.com

Martin Hirzel
IBM Research, USA
hirzel@us.ibm.com

Abstract
Companies want to offer chat bots to their customers and
employees which can answer questions, enable self-service,
and showcase their products and services. Implementing
and maintaining chat bots by hand costs time and money.
Companies typically have web APIs for their services, which
are often documented with an API specification. This pa-
per presents a compiler that takes a web API specification
written in Swagger and automatically generates a chat bot
that helps the user make API calls. The generated bot is self-
documenting, using descriptions from the API specification
to answer help requests. Unfortunately, Swagger specifica-
tions are not always good enough to generate high-quality
chat bots. This paper addresses this problem via a novel in-
dialogue curation approach: the power user can improve the
generated chat bot by interacting with it. The result is then
saved back as an API specification. This paper reports on
the design and implementation of the chat bot compiler, the
in-dialogue curation, and working case studies.
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Figure 1. Calling an API with SwaggerBot.

1 Introduction
Companies increasingly rely on chat bots to offer support
and services to their customers and employees. Chat bots, or
conversational agents, communicate with users via natural-
language dialogue. Thanks to recent technological advances,
chat bots are starting to see wide-spread adoption [13]. They
can be accessed through a web page, a phone, or a messaging
system. They are programmed to answer commonly asked
questions, help navigate a web page more effectively, or fill
out online forms.
Like graphical applications, chat bots offered by com-

panies usually accomplish their work by calling web Ap-
plication Programming Interfaces (APIs). These APIs offer
customers and employees access to the resources stored in
the company’s databases and the actions implemented in
the company’s systems. Today, the dominant approach for
providing web APIs is REST (REpresentational State Trans-
fer) [21]. In REST, the service provider hosts resources, and
the provider and consumer interact by transferring repre-
sentations (typically JSON: JavaScript Object Notation) of
the state of the resources.
Unfortunately, chat bots are difficult to build. Like any

piece of software, it takes time to get them right. But unlike
other software, chat bots depend upon NLU (natural lan-
guage understanding), which is imperfect. Since it is hard to
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Figure 2. Curating an API with SwaggerBot.

anticipate what the common NLU mistakes will be, it pays to
deploy an initial bot quickly and gather experience with it in
the field to improve it [25]. Chat bot development is further
complicated by requiring both software development and
machine learning skills. And finally, since companies have
only recently started to broadly embrace chat bots, there is
a lack of programming models for non-experts to develop
chat bots [9].

This paper presents a compiler that takes a Swagger Open-
API specification [20] and automatically generates a chat bot
that helps the end user call the corresponding web API. Many
web APIs already have specifications written in the Swagger
format [20]. Swagger is popular as a source language for gen-
erating a variety of artifacts including API documentation,
client SDKs (software development kits), server stubs, and
tests, but has not been previously used for generating chat
bots. The first contribution of this paper is to use Swagger as
a source language for generating chat bots that enable end
users to call a web API via natural-language dialogue.
Figure 1 shows the overall approach presented in this

paper, including a simple but working example (more full-
fledged examples come later in the paper). The user (“H” for
human) converses with the chat bot (“C” for conversational
agent) by asking to translate some text. In this example, the
user is already aware of the necessary parameters and knows
to back-quote them. The chat bot fills in missing parameters
(source via call-chaining and accept via defaults, Section 3.3),
then makes a REST call via the HTTP GET method to the
translator service, and returns the result to the user. The
vision behind our approach is to enable end users to call
web APIs without learning them first. Later sections will
show dialogues that use reflection to let the end user discover
available actions and their parameters. Our chat bot compiler
enables developers to reuse existing API specifications to
quickly boot-strap a full working bot.

The quality of the dialogues between a generated bot and
the end user hinges on the quality of the Swagger it is gen-
erated from. Unfortunately, not all Swagger specifications
are high-quality, or specific to a user’s needs, making the
resulting chat bot harder to use than necessary. Swagger
specifications may be incomplete by omitting things like
descriptions or types for parameters. They may specify some
constraints informally in descriptions rather than formally
in types. And they may require more details than should be
exposed to end users. Swagger specifications may also be too
general for a user’s needs. For example, for a Translation API,
a user may only want to translate from French to English,
and not any other languages. In those cases, the Swagger
specification needs to be improved or specialized to obtain a
better chat bot.
To reduce the need for manually editing Swagger speci-

fications, our generated bots support in-dialogue curation.
In programming-languages terms, if the focus for the end
user was on calling existing functions, the power user can
also define new functions by aliasing and partial application.
Specifically, generated bots allow adding new actions that
represent useful shortcuts and usage scenarios for the end
user, while interacting with the bot in natural language, and
without specific knowledge of REST APIs or the format of
Swagger specifications.

Figure 2 illustrates this in-dialogue curation process. The
first step is to generate a conversational agent from an API
specification and to have the power user call and curate the
API via dialogue. Saving the results yields a curated API
specification. The second step is to generate another conver-
sational agent and have the end user call the API via dialogue,
as shown earlier in Figure 1. Besides requiring less coding
skills, in-dialogue curation offers fluidity, where the power
user can seamlessly move back and forth between calling
and curating the web API. This approach, supporting both
end users and power users within a single tool, has been
successful in other contexts, such as spreadsheet tools. Fur-
thermore, it helps us focus on improving the conversational
interface, since that yields the dual benefit of improving both
the calling experience and the curation experience.

This paper makes the following contributions.

• A chat bot compiler from web API specifications, gen-
erating self-documenting chat bots for calling APIs.
• In-dialogue curation of generated chat bots using nat-
ural language.
• A prototype implementation for the compiler and a
realization in the Slack messaging system.
• Case studies on a variety of API specifications.

Overall, this paper presents contributions to programming
models for both web APIs and chat bots.
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1 {swagger: "2.0",
2 info: { version: "2.0.0", title: "Language Translator" },
3 basePath: "/language−translator/api",
4 paths: {
5 "/v2/identify": {
6 get: {
7 summary: "Identifies the language of the input text",
8 parameters: [
9 { name: "text", in: "query", required: true,
10 type: "string",
11 description: "Input text in UTF−8 format." },
12 { name: "accept", in: "header", required: false,
13 type: "string", default: "text/plain",
14 enum: ["application/json", "text/plain" ],
15 description: "Format of the return values."}],
16 responses: {
17 200: {
18 description: "Success",
19 schema: { $ref: "#/definitions/identifiedLanguages" }},
20 400: ..., 500: ... } },
21 post: ...},
22 "/v2/translate": ...,
23 "/v2/identifiable_languages": ...,
24 "/v2/models": ...,
25 "/v2/models/{model_id}": ... },
26 definitions: {
27 identifiedLanguages: {
28 required: [ "languages" ],
29 properties: {
30 languages: {
31 type: "array", description: ...,
32 items: { $ref: "#/definitions/identifiedLanguage" }}}},
33 identifiedLanguage: {
34 required: [ "language", "confidence" ],
35 properties: {
36 language: { type: "string", description: ... },
37 confidence: { type: "number", description: ... }}},
38 ... }}

Figure 3. Swagger for Translator web API [10].

2 Example
This section gives a concrete example, using transcripts of
dialogues with a bot generated by our compiler. The example
is based on a Language Translator web API, which can trans-
late between different natural languages, but also supports
additional features such as identifying a language [10].

The input to the bot compiler is a web API specification in
Swagger. Figure 3 shows the Swagger for the Translator ser-
vice. The generated bot (which we call SwaggerBot) uses the

1 C: Welcome to the `Language Translator`.
2 SwaggerBot is here to help you.
3 What would you like to do? To begin name an action or
4 resource.
5 H: help me please
6 C: You may work with the following resources and actions:
7 − identifiable_languages
8 − identify
9 − models
10 − models model_id
11 − translate
12 What would you like to do? To begin name an action or
13 resource.
14 H: identify please
15 C: You chose: identify.
16 What operation would you like to perform?
17 H: I have no idea, pleas help
18 C: Available operations are:
19 (GET) Identifies the language of the input text,
20 (POST) Identifies the language of the input text
21 H: get then
22 C: What is the value of the parameter text?
23 H: La vie est belle
24 C: identify text `La vie est belle`

25 OK, call now?
26 H: yes
27 C: OK, making call now.
28 identify text `La vie est belle` accept `text/plain`
29 "fr"

Figure 4. Example dialogue calling the Translator web API.

Swagger as guidance both for talking to the user (in natural
language) and for calling the web API (in HTTP). Lines 1–3
specify the Swagger version, API version and title, and base
path. Lines 4–25 specify paths relative to the base path for
resources (nouns, e.g., identifiable languages) and actions
(verbs, e.g., identify). For brevity, we show details for only
one of the actions, addressed by the path "/v2/identify". This
path supports two operations, get and post, corresponding
to the HTTP methods of the same names. Each operation
has a summary, parameters, and responses, which can have
both human-readable descriptions and schemas. In the exam-
ple, the schemas involve references ($ref) to type definitions
provided in Lines 26–38.

Figure 4 shows a transcript of a dialogue between the gen-
erated SwaggerBot conversational agent (“C”) and a human
end user (“H”) for calling the Translator web API. We gen-
erated the chat bot directly from the Swagger in Figure 3.
On Line 4, the end user asks for help; note that rather than
having to learn a computer language to know how to ask
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1 H: identify the text `La vie est belle`

2 C: Calling now.
3 identify text `La vie est belle` accept `text/plain`
4 "fr"
5 H: translate the text `La vie est belle` from source `fr`

6 to target `en`
7 C: Calling now.
8 translate text `La vie est belle` source `fr` target `en`
9 accept `text/plain`
10 "Life is Beautiful"
11 H: name this action
12 C: What would you like to name this action?
13 H: anglicize
14 C: Thanks, action anglicize created.
15 H: anglicize
16 C: Calling now.
17 translate text `La vie est belle` source `fr` target `en`
18 "Life is Beautiful"
19 H: anglicize with something else for text such as `Le chat dort`

20 C: Calling now.
21 translate text `Le chat dort` source `fr` target `en`
22 "The cat sleeps"
23 H: I would like to add a synonym for an action.
24 C: On which action or resource would you like to add a
25 synonym?
26 H: On the action translate.
27 C: What synonym would you like to add for translate?
28 H: convert
29 C: Ok, adding convert as a synonym for translate.

Figure 5. Example dialogue curating the Translator API.

for help, they can just use natural language. SwaggerBot
is configured to understand the help intent via a machine
learning classifier trained from examples; Line 14 shows a
different utterance that also gets classified into the help in-
tent. Lines 5–11 show help text generated from the Swagger
paths. On Line 12, the end user picks the action identify.
Subsequently, the chat bot collects additional information
it needs to call identify. After the human has provided the
operation (get) and the text parameter (La vie est belle), the
chat bot calls the web API and displays the result ("fr" for
French). Along the way, the bot also displays the action and
its parameters concisely using back-quotes. This has two
effects. First, confirmation to establish common ground with
the user [5]; and second, educating the user how to make
this call more easily.

Figure 5 shows a transcript of a dialogue with a power user
for calling and curating the Translator web API. On Line 1,
the power user directly calls the identify action, compressing
the “H” utterances from Figure 4 into a single utterance. On

Line 5, the power user directly calls the translate action, again
providing all necessary information in a single utterance. On
Lines 11–14, the power user curates the API by creating a
new action, anglicize, that encapsulates the preceding call.
On Lines 15–18, the power user tests anglicize, fluidly

moving back from curating to calling the web API. With this
gesture, the power user has created a new action in the API
called anglicize, which is serviced by the translate action
with specific parameters. It is a shortcut for translating a
specific text from French to English. On Lines 19–22, the
power user calls anglicize but provides a different text pa-
rameter, leading to a different result. This showcases that the
additional action can now be used with variations in param-
eters, and simplifies the task of making API calls. Finally, on
Lines 23–28, the power user adds a synonym for translate,
enriching the natural language understander involved in
recognizing this action.
Now that we have seen a SwaggerBot in action, we will

look at how it is generated and how it works.

3 End-User Dialogue for API Calls
As mentioned before, a generated SwaggerBot conversa-
tional agent serves two personas: it enables the end user
to call a web API, and it enables the power user to call and
curate a web API. This section focuses on API calls by the
end user, leaving API curation to the next section. Figure 6
shows the runtime architecture. The centerpiece is the dia-
logue controller, which guides the conversation for calling
web APIs. Like in most chat bots [19], the controller receives
inputs from the user via an NLU (natural language under-
stander) component, and sends outputs to the user via an
NLG (natural language generator) component. SwaggerBot
agents are built on the WCS (Watson Conversation Service)
platform for conversational agents [11].

In WCS, NLU consists of an entity extractor and an intent
classifier, which a SwaggerBot customizes for the Swagger
at hand. In addition, a SwaggerBot adds a direct call parser
as another NLU component not usually found in WCS or
other platforms. Section 3.1 elaborates further on the NLU
component. In WCS, the controller can be driven from an
FSM (finite-state machine) dialogue specification. Section 3.2
elaborates on the mapping from Swagger to the controller
FSM, and on additional state that the controller maintains.
The output of the controller consists of natural-language
prompts for the human and HTTP calls to service endpoints.
Section 3.3 describes the NLG and actuator components that
implement these outputs.
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Figure 6. SwaggerBot runtime architecture.

3.1 Input: NLU
The NLU component in Figure 6 turns natural-language ut-
terances from the user into symbols for the dialogue con-
troller. Most modern chat bot platforms recognize two kinds
of symbols: entities and intents.
An entity represents a term or object in a user utterance,

and WCS marks entities with the@-sigil [11]. For example,
in Figure 4 Line 18, the word get belongs to the @get entity.
The entity extractor in the NLU is implemented by a pattern
and may return multiple entities for a single user utterance,
one for each matching term. Some entities are common to
all SwaggerBot agents independently of the concrete Swag-
ger specification at hand, for instance,@get and@post. In
addition, some entities are generated from parameters found
in the Swagger specification, for instance,@text,@source,
and@target.

An intent represents a purpose or goal, something a user
wants to do, and WCS marks intents with the #-sigil [11].
For example, in Figure 4 Line 4, ‘help me please’ belongs
to the #help intent. The intent classifier in the NLU returns
the intent with the highest confidence for a given utter-
ance, or a special #irrelevant intent if nothing has high con-
fidence. The intent classifier is implemented with super-
vised machine learning, where the training data consists
of ⟨example, intent⟩ pairs. The intent classifier works best
when there are many examples for each intent, examples for
different intents are not similar, and the examples are rep-
resentative of actual user utterances. For instance, training
examples for the #help intent might include ‘help’, ‘What are
the options?’, ‘What can I do?’, and ‘what is possible’. There
are some intents common to all SwaggerBot agents inde-
pendently of the concrete Swagger specification at hand, for
instance, #help, #yes, and #no. In addition, there are intents
generated from paths found in the Swagger specification, for
instance, #identify and #translate.

While the basic NLU functionality of entities and intents
suffices for many chat bots, it turns out to be too limiting
for obtaining good conversations for calling a web API. One
problem is that some parameters have free-flow values that
cannot be easily matched or classified against a pre-defined
entity or intent. Furthermore, some inputs should be hidden

from the entity extractor and the intent classifier altogether.
For example, the text parameter to the identify action can
contain arbitrary words that should not trigger their own
entities or intent. Therefore, when SwaggerBot prompts for
such a parameter, it treats the entire next human utterance
as one value, as shown in Figure 4 Line 20.
While this solves the problem, it unfortunately requires

a separate turn for each piece of information, leading to
a prolonged dialogue. Therefore, we introduced a quoting
feature. We settled on backquotes (`...`), because they are
familiar to users of the Slack messaging platform for render-
ing verbatim text. SwaggerBots can be deployed on Slack,
and also need quotes to signal verbatim text. In addition, we
introduced a convention by which a parameter name entity
in the utterance followed by quoted text sets the parameter
to the quoted value. This convention makes it possible to
render an API call in a single utterance, and is implemented
by the direct call parser. For example, in Figure 5 Line 1,
‘identify the text `La vie est belle`’ calls the identify action,
setting the text to ‘La vie est belle’, and defaults to using the
HTTP GET method.

3.2 Controller and State
The controller component in Figure 6 maintains state and
turns symbols from the NLU into instructions to the NLG
and the actuator. The most common low-level formalism
for specifying dialogue flow in chat bots is FSMs [19]. The
WCS programming model supports FSMs, among other fea-
tures [11]. The current implementation of the SwaggerBot
compiler uses FSMs as its code-generation target (the source
being Swagger, of course). Figure 7 depicts an excerpt of
the FSM that the SwaggerBot compiler generates from the
Translator Swagger in Figure 3. The following text explains
the notation and discusses the dialogue flow it specifies.
Each rounded rectangle in Figure 7 represents a state.

There is one special start state marked with an incoming
arrow that does not originate from any other state. There are
several final states, marked with double borders. There is an
implicit top-level loop from final states back to the start state.
Directed edges between states are transitions and their labels
are predicates. State labels have the form stateName / action,
but most state names are omitted for brevity. Since actions
reside on states, not on transitions, the FSM is a Moore ma-
chine, not aMealymachine.We choseMooremachines as the
formalism because the WCS programming model supports
Moore machines.

Transition predicates are based on symbols from the NLU,
i.e., entities and intents, marked with @ and #, respectively.
Some transitions are marked with the empty-word symbol
ε , indicating that the chat bot does not wait for user input
before taking the transition. Finally, some transitions are
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Figure 7. Excerpt of SwaggerBot state machine for Translator web API.

marked with the true predicate, indicating that the chat bot
collects a user input, treating the entire utterance as one
valuewithout the transition depending on that value. Actions
in FSM states are instructions to the NLG and the actuator.
For instance, the print help text action is an instruction to
the NLG, and the call API action is an instruction to the
actuator. For brevity, Figure 7 does not spell out the details
of the actions, but they are context specific. The context for
help text is the current FSM state, and context for an API
call consists of the current FSM state as well as the operation
and parameters collected in states leading up to it.

The dialogue flow in Figure 7 shows five transitions from
the start state.

• From start, if #help, the bot prints the list of known
resources and actions, generated from the paths in
Swagger. SwaggerBot implements a heuristic to elide
common path prefixes such as "/v2/" in the Translator
Swagger because they provide no useful information
and cause unnecessary confusion to end users. After
displaying the help text, the chat bot returns to the
start state without collecting a user input, indicated
by the ε-transition.
• From start, if #identify ∧@text, the direct call parser
has provided all the necessary information to call the
"/v2/identify" path with the required text parameter. If
no HTTP method is specified, the method defaults to
GET if the path supports that. SwaggerBot implements
a heuristic to not ask for optional parameters that have
a default value, such as the accept parameter in this
case. Furthermore, the accept parameter implements
content negotiation, a feature general to REST and not
specific to the Translator API. Content negotiation is

an implementation technicality better hidden from the
non-technical end user.
• From start, if #identify but the previous transition
did not fire, the chat bot has a chain of nodes collect-
ing the operation and the parameters for calling the
"/v2/identify" path. In this context, the help text lists
operations for the given path. The figure only shows
the FSM states for@get, eliding those for@post. This
part of the FSM also contains an example of a true con-
dition, because the text parameter can be any string
and should thus not be subjected to NLU.
• From start, if #translate∧@source∧@target∧@text,
the direct call parser has provided all the necessary
information to call the "/v2/translate" path.
• From start, if #translate but the previous transition
did not fire, the chat bot has a chain of nodes collect-
ing the operation and the parameters for calling the
"/v2/translate" path.

The state in Figure 6 thus consists of the FSM state plus
partial information collected by the current part of the dia-
logue flow towards the goal of making an API call.

3.3 Output: NLG and Actuator
The NLG components in Figure 6 turn instructions from
the dialogue controller into natural-language responses to
the user and HTTP calls to the REST service endpoint. To
encapsulate the controller with a clean interface, our imple-
mentation reifies these instruction as JSON objects.

Most chat bots use a very simple NLG [19], and Swagger-
Bot is no exception. For the most part, the SwaggerBot NLG
consists of literal hard-coded strings, some of which are gen-
erated from the Swagger at compile time, for example, the
list of paths in Figure 4 Lines 6–10. In some cases, the NLG
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1 "/v2/translate": {
2 get: {
3 summary: "Translates the input text from the source ...",
4 parameters: [ ...,
5 { name: "source", in: "query", required: false,
6 type: "string",
7 description: "Used in combination with target as an ...",
8 "x−sb−callchaining": {
9 base: "/language−translator/api"
10 path: "/v2/identify",
11 method: "GET",
12 params: [
13 { name: "text", in: "query", value: "$.text" } ] } },
14 ... ], ... }, ... }

Figure 8. Annotation on the source parameter of a translate
call to chain it to an identify call in the same web API.

also uses string interpolation at runtime, for example, for the
confirmation ‘Thanks, action anglicize created’ in Figure 5
Line 14, where the action name, anglicize, is interpolated
into a string template.
The actuator is in charge of making the HTTP calls to

the web API. Our prototype implementation of SwaggerBot
is written in Java and uses a simple HTTP client to exe-
cute a synchronous call to the service endpoint. Currently,
the actuator is deployed as a local application on the end
user’s device. The NLU and most of the controller, on the
other hand, are deployed as a cloud-hosted application in
the Watson Conversation Service.

Finally, the actuator is in charge of filling in default values
for missing parameters, when possible. This comes in two
flavors. First, Swagger files sometimes contain a constant
default value, such as default: "text/plain" in Figure 3 Line 13.
Second, we invented a Swagger extension to indicate a non-
constant default value, which calls other web API paths to
fill in a parameter value. In Figure 1, the accept parameter is
set by a constant default, whereas the source parameter is
set by using our extension, explained below.
Figure 8 shows the corresponding annotations for the

source language parameter of the translate call in the Trans-
lator web API. It indicates that if the source parameter is not
provided by the user, a default can be obtained by calling
identify with the input text. The value of the appropriate
parameter is obtained from the current context if it is present.
The call chaining annotation is read as part of the Swagger
file and passed to the actuator. It contains all the information
necessary to make a sub-call to another part of the API.

This section described the facet of a generated SwaggerBot
that is concerned with enabling end users to call web APIs.

Since this facet does not use self-modifying curation, for the
most part, it is about compilation from an API specification
to a dialogue specification. Before generated SwaggerBots,
this translation had to be done by hand, involving devel-
opers and subject matter experts. The contribution of this
section is to recognize that it can be automated; show what
the automation looks like; and describe heuristics leading to
a more usable chat bot.

4 Power-User Dialogue for API Curation
Generating useful chat bots for web APIs hinges on the qual-
ity of the Swagger specifications. These could be incomplete
in many ways. First, there may be missing or insufficient
summaries and descriptions, which we use to generate help
sentences. There could be missing default values, which
could have been used by generated bots to streamline calling.
The Swagger specification may also simply be out-of-date
with respect to the actual service it represents. For some
of these issues, such as adding a description, editing the
Swagger specification is simple enough. Others, such as cre-
ating shortcuts, require deeper knowledge of REST APIs and
the Swagger format. We help with this task by providing
in-dialogue curation of chat bots. Currently, our generated
chat bots offer two features for curation: creating new ac-
tions (Section 4.1) and creating synonyms for existing actions
(Section 4.2).

4.1 Creating New Actions
Creating a new action helps the end user quickly access an
API and make calls without the full knowledge of all the
parameters that must be provided. Part of the difficulty in
making API calls is knowing exactly what values to supply
for each parameter. By creating shortcuts in the form of new
actions, the power user simplifies this task for the end user
and specializes the API.

To create a new action, the power user makes an utterance
that matches the intent to ‘name this action’, which refers
to the very last executed API call. The bot prompts the user
for a name, then updates its internal representation of the
Swagger specification with a new path having this name,
with the corresponding HTTP method, and with parame-
ters having the default values of the last executed call. It
then regenerates the low-level dialogue specification from
the modified Swagger. Specifically, the name of the action
becomes a new NLU intent for WCS, and in addition, the
FSM for WCS is extended with new states corresponding to
the new action. Therefore, the creation of an action causes
two events:

• The Swagger specification gets updated in-memory
with a new path (which could be saved to disk).
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1 {swagger: "2.0",
2 basePath: "/tone−analyzer/api",
3 info: {
4 version: "3.0.0", title: "Tone Analyzer API",
5 description: "Detect three types of tones from written text:
6 emotions, social tendencies, and style. ..." },
7 paths: {
8 "/v3/tone": {
9 get: {
10 summary: "GET Analyze tone",
11 description: "Analyzes the tone of a piece of text.",
12 parameters: [
13 { name: "version", in: "query", required: true,
14 type: "string", default: "2016−05−19",
15 description: "a date that identifies the API version" },
16 { name: "text", in: "query", required: true,
17 type: "string",
18 description: "Content to be analyzed." },
19 { name: "tones", in: "query", required: false,
20 type: "string",
21 description: "Filter the results by a specific tone." },
22 { name: "sentences", in: "query", required: false,
23 type: "boolean",
24 description: "Filter your response to remove the
25 sentence level analysis." }],
26 responses: {
27 200: {
28 description: "successful operation",
29 schema: { "$ref": "#/definitions/ToneAnalysis" }},
30 400: ... }},
31 post: ... }},
32 definitions: {
33 ToneAnalysis: {
34 description: "The results of performing tone analysis.",
35 required: [ "document_tone" ],
36 properties: {
37 document_tone: {
38 type: "array", description: ...,
39 items: { "$ref": "#/definitions/ElementTone" }},
40 sentences_tone: {
41 type: "array", description: ...,
42 items: { "$ref": "#/definitions/SentenceAnalysis" }}}},
43 ElementTone: ...,
44 ... }}

Figure 9. Swagger for Tone Analyzer web API.

1 C: What would you like to do? To begin name an action or
2 resource.
3 H: What's the tone of the text `I am very happy`?
4 C: Calling now.
5 tone text `I am very happy` version `2016-05-19`

6 { "document_tone": {
7 "tone_categories": [
8 {
9 "tones": [
10 { "score": 0.0, "tone_id": "anger",
11 "tone_name": "Anger" },
12 { "score": 0.0, "tone_id": "disgust",
13 "tone_name": "Disgust" },
14 { "score": 0.0, "tone_id": "fear",
15 "tone_name": "Fear" },
16 { "score": 0.9, "tone_id": "joy",
17 "tone_name": "Joy" },
18 { "score": 0.0, "tone_id": "sadness",
19 "tone_name": "Sadness" } ],
20 "category_id": "emotion_tone",
21 "category_name": "Emotion Tone"
22 }, {
23 "tones": [
24 { "score": 0.0, "tone_id": "analytical",
25 "tone_name": "Analytical" },
26 { "score": 0.97759, "tone_id": "confident",
27 "tone_name": "Confident" },
28 { "score": 0.0, "tone_id": "tentative",
29 "tone_name": "Tentative" } ],
30 "category_id": "language_tone",
31 "category_name": "Language Tone"
32 }, {
33 "tones": [
34 { "score": 0.096859, "tone_id": "openness",
35 "tone_name": "Openness" },
36 { "score": 0.264058, "tone_id": "conscientiousness",
37 "tone_name": "Conscientiousness" },
38 { "score": 0.472657, "tone_id": "extraversion",
39 "tone_name": "Extraversion" },
40 { "score": 0.61522, "tone_id": "agreeableness",
41 "tone_name": "Agreeableness" },
42 { "score": 0.104851, "tone_id": "emotional_range",
43 "tone_name": "Emotional Range" } ],
44 "category_id": "social_tone",
45 "category_name": "Social Tone"
46 } ] } }

Figure 10. Example dialogue with Tone Analyzer web API.
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• The chat bot self-modifies and changes itself by mak-
ing a REST call to the WCS service to upload the new
NLU intent and controller FSM.

Future mentions of the newly created action cause it to ex-
ecute and perform a call with all the supplied default values.
The end user also has the possibility of supplying variations
for the stored parameter values by simply mentioning them
when uttering the name of the new action.

4.2 Creating Synonyms for Existing Actions
When the compiler generates a bot from an API specification,
all paths become intents with a single example, consisting
of the name of the path. This provides little flexibility for
the end user who must employ something very close to that
name in order to invoke the corresponding action. Like most
machine-learning algorithms, the intent classifier that de-
tects classes for human utterances works best if it is trained
from many examples. To improve the quality of the bot, one
curation activity consists of adding synonyms for existing
actions, which serve as additional training data for the clas-
sifier. This improves the accuracy of the NLU and thus helps
the user employ a larger vocabulary when referring to an
action.
Since the NLU is hosted in WCS, adding synonyms is

implemented by using the WCS REST API. WCS supports
dynamically adding examples for intents. Therefore the chat
bot self-modifies again. Both in the case of adding new ac-
tions and synonyms, WCS has to retrain its classifiers, which
may take a minute or two. Therefore, the effects of these
gestures may not be immediately visible in the bot.

These curation features are an example of how to do live-
programming for chat bots using conversational gestures.

5 Case Studies
This section presents case studies for two more web APIs be-
yond the Translator API examples in Section 2. This demon-
strates that the initial implementation of SwaggerBot works
for more than just one Swagger. This section also showcases
integration with the Slack messaging platform [23], which
inspired the backquote syntax.
The Tone Analyzer analyzes text documents to detect

three things: emotions (e.g. anger, joy, sadness), style (e.g.
confidence, tentativeness), and social tendencies (e.g., ex-
traversion, agreeableness). Figure 9 shows an excerpt of the
web API specification. It offers only a single path, "/v3/tone",
with four parameters version, text, tones, and sentences.
Three of the four parameters are either optional or have a
default value, leaving only the text parameter as mandatory
information to be specified for each call. Figure 10 shows
the transcript of a SwaggerBot dialogue for calling the Tone

8 "/v3/tone": {
9 get: {
10 "x−sb−datashaping": "$..tones[?(@.score > 0.6)]",
11 ... } }

Figure 11. Enhanced fragment of Tone Analyzer web API.

2 H: What's the tone of the text `I am very happy`?
3 C: Calling now.
4 tone text `I am very happy` version `2016-05-19`

5 [ { "score": 0.9, "tone_id": "joy",
6 "tone_name": "Joy" },
7 { "score": 0.97759, "tone_id": "confident",
8 "tone_name": "Confident" },
9 { "score": 0.61522, "tone_id": "agreeableness",
10 "tone_name": "Agreeableness" } ]

Figure 12. Dialogue with enhanced Tone Analyzer web API

Analyzer. The human simply makes a direct call, setting the
text to `I am very happy`.

The result of the call is what one would expect given the
input text, but is a large JSON structure that is better suited
for processing by a computer than for a conversation. To
address this issue, SwaggerBot allows the API designer to an-
notate calls in the Swagger file with JsonPath [6] expressions
for formatting the JSON response. Figure 11 presents a frag-
ment that can be added to the Swagger from Figure 9. The
x-sb-datashaping JsonPath annotation on Line 10 returns
only tone elements whose score exceeds a 0.6 threshold.
This results in the conversation presented in Figure 12,

a marked improvement from Figure 10. It makes it easier
for the user to see that the analyzer has determined that
the dominant emotion is joy, the style is confident, and the
strongest social tendency found in this text is agreeableness.

TheVisual RecognitionAPI analyzes image files to iden-
tify three things: scenes, objects, and faces. Figure 13 shows
an excerpt of the web API specification. The figure hones in
on only one of the paths, "/v3/detect_faces". Unlike in the
other two Swaggers earlier in the paper, the parameters are
declared by reference instead of inline, because other paths
share some of the same parameters. There are three parame-
ters: api_key (a hard-to-guess string of digits and numbers
used to authenticate); url (an address of an image file); and
version (an API version given as a string). The version has a
default value.
Figure 14 shows the transcript of a SwaggerBot dialogue

for calling the Visual Recognition API. It is a screenshot of
SwaggerBot running integrated into the Slack messaging
platform [23]. Slack is often used for persistent multi-party
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1 {swagger: "2.0",
2 info: {
3 title: "Visual Recognition", version: "3.0",
4 description: "Uses deep learning algorithms to identify scenes,
5 objects, and faces." },
6 basePath: "/visual−recognition/api",
7 paths: {
8 "/v3/detect_faces": {
9 get: {
10 summary: "Detect faces in an image",
11 parameters: [
12 { "$ref": "#/parameters/ApiKeyParam" },
13 { "$ref": "#/parameters/SingleURLParam" },
14 { "$ref": "#/parameters/DateVersionParam" }],
15 responses: {
16 200: {
17 description: "success",
18 schema: { "$ref": "#/definitions/Faces" }},
19 400: {
20 description: "Invalid request",
21 schema: { "$ref": "#/definitions/ErrorTopLevel" }}}},
22 post: ... },
23 ... },
24 parameters: {
25 ApiKeyParam: {
26 name: "api_key", in: "query", required: false, type: "string",
27 description: "API Key used to authenticate." },
28 SingleURLParam: {
29 name: "url", in: "query", required: true, type: "string",
30 description: "URL of an image (.jpg, .png). Redirects are followed, so you
31 can use shortened URLs. The resolved URL is returned ..." },
32 DateVersionParam: {
33 name: "version", in: "query", required: false, type: "string",
34 default: "2016−05−20", pattern: "^\\d{4}−\\d{2}−\\d{2}$",
35 description: "The release date of the version of the API you want to use.
36 Specify dates in YYYY−MM−DD format." },
37 ... },
38 definitions: {
39 Faces: {
40 type: "object",
41 required: [ "images_processed", "images", "warnings" ],
42 properties: {
43 images_processed: { "$ref": "#/definitions/ImagesProcessedOutParam" },
44 images: {
45 type: "array",
46 items: { "$ref": "#/definitions/FacesTopLevelSingle" } },
47 warnings: {
48 type: "array",
49 description: "Omitted if there are no warnings.",
50 items: { "$ref": "#/definitions/WarningInfo" }}}},
51 ... }}

Figure 13. Swagger for Visual Recognition web API.
Figure 14. Example dialogue with Visual
Recognition web API.
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chat by collaborating teams. In this case, there are two partic-
ipants, SwaggerBot and a human end user called louis. The
dialogue showcases a step-by-step call, where the end user
asks for help and the chat bot prompts for parameters one by
one. The end user copy-and-pastes the API key, which they
obtained separately; we redacted ours from the figure. One
Slack feature is that when a user pastes a URL, it displays a
preview of its destination. In this case, the URL is a picture
of a historical personality, and Slack shows an excerpt of the
surrounding Wikipedia article. SwaggerBot does not prompt
for the version parameter, because the Swagger specifies a
default for it. If a user wanted to set it explicitly, they would
need to do so via a direct call.
Before making the call, as usual, SwaggerBot echoes the

concise version for grounding and teaching. This show-
cases how backquotes are rendered in Slack markdown. The
quoted text shows up in a typewriter font with a different
color scheme than normal text. In the end, SwaggerBotmakes
the call, and the Visual Recognition API reports back its guess
for the age, gender, and identity of the historical personality.
These guesses turn out to be accurate.

Besides the formatting niceties, there are other good rea-
sons for integrating bots that call web APIs into Slack. Since
employees at a company often chat with each other via Slack,
putting the chat bot there reduces the need to context-switch.
In the calling case, it provides a persistent record of what
happened for accountability. It is also an easy way to keep
each other informed, for instance, when the web API returns
some kind of status report. In the curation case, it fosters
collaboration between multiple power users improving the
same chat bot. And finally, it increases the learning opportu-
nities, where one user’s successful calls are there for other
users to emulate.
Between the Translator example from Section 2 and the

Tone Analyzer and Visual Recognition examples from this
section, this paper showcases three SwaggerBot chat bots
generated from three different API specifications.

6 Related Work
The two main ideas in this paper are (i) generating a chat
bot from a web API specification and (ii) improving a chat
bot with in-dialogue curation. To the best of our knowledge,
both of these ideas are novel. This section reviews previous
work related to either of these contributions.

6.1 Chat Bots and Web APIs
VoiceXML is a standard that was designed to play the same
role for conversations that HTML plays for textual con-
tent [16]. The vision was that of a conversational web, where
providers serve up VoiceXML; consumers interact via voice
browsers; and VoiceXML can be hyper-linked. Compared to

SwaggerBot, one draw-back of VoiceXML is that it requires
providers to write new chat bots in that language. In contrast,
SwaggerBot uses pre-written API specifications in Swagger
to boot-strap a chat bot.

The idea of generating artifacts from Swagger is of course
not new. To the contrary, Swagger is designed as a source lan-
guage fromwhich to generate assorted different artifacts [20].
What is new is generating a chat bot from it. SwaggerBot
thus fits right into the Swagger ecosystem as another com-
plementary code-generation target. The most closely related
among other targets is the Swagger UI, which not only visu-
ally renders documentation, but also lets developers interact
with a web API in a sandbox. However, that interaction does
not use natural-language conversation, does not target end
users, and is not intended for production use.

There is a substantial body of literature on NLIDB (natural
language interfaces to databases) [1]. Just like SwaggerBot is
generated from Swagger, NLIDB agents are generated from
database schemas. Both enable a conversation to drive an
action, consisting of a web API call for SwaggerBot or a
database query for NLIDB. NLIDB work that employs multi-
turn conversation has only emerged recently and is still an
active research area [17].
IFTTT (if this then that) enables end users to call web

APIs in a simple and convenient way [12]. Participants in
the IFTTT ecosystem must wrap their end-points into either
triggers or actions. Once those are created, the end user can
combine them using recipes. In contrast, SwaggerBot users
need notwrap their end-points in actions; instead, the actions
are compiled into the chat bot by using an API specification
as the source language. Also, unlike SwaggerBot, IFTTT does
not offer a natural-language chat interface.

6.2 Self-Documenting and Auto-Curating Systems
Many programming languages come with an interactive
REPL (read-eval-print loop). The first language with a REPL
was probably LISP, and LISP inventor McCarthy credits
Deutsch for implementing “the first interactive LISP on the
PDP-1 computer in 1963” [18]. Chat bots are similar to RE-
PLs in that both are a linear dialogue between human and
computer, but chat bots use human language whereas REPLs
use computer language. That said, both benefit greatly from
being interactive and self-documenting.

ASK is a system allowing users to interact with a database
via “ASK English” [24]. It is similar to a chat bot in that it
offers a conversational interface. Like SwaggerBot, ASK sup-
ports some forms of curation; for instance, it lets power users
introduce new synonyms. Unlike SwaggerBot, the curation
does not use natural language; for instance, the following
utterance introduces a synonym: ‘definition:tub:old ship’.
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Spreadsheets serve both end users and power users in the
same tool [22], offering a fluid back-and-forth between sim-
ple tasks like entering data in tables andmore advanced tasks
such as creating formulas. Only about half the spreadsheets
in the Enron corpus contain any formula and could have, at
least in principle, been created by non-technical users [8].
SwaggerBot takes inspiration from how spreadsheets serve
both end users and power users, but uses a natural-language
conversation about resources and actions instead of tables
of rows and columns.
Interactive learning is an approach for improving intent

classifiers [25]. Given logs of unlabeled example utterances,
it prompts the subject-matter expert to label the utterance
most likely to improve overall classifier accuracy. Like Swag-
gerBot, this improves the chat bot, but unlike SwaggerBot,
it does not do so from within the chat bot. Furthermore, in
interactive learning, the initiative for curation lies with the
computer, whereas in SwaggerBot, curation is driven by the
initiative of the power user.

6.3 Programming with Natural Language
In a recent paper, we outlined a vision for using grammars
to specify chat bots [9]. Our paper surveyed common flow
patterns for chat bots and concluded that for many outcome-
driven patterns, the outcome consists of information gath-
ered from a user. This led to the idea that when a chat bot
needs to gather non-trivial structured information from a
user, they can elicit this information through a multi-turn
dialogue driven by a grammar. In contrast, SwaggerBot does
not propose a new programming language, but rather, retar-
gets an existing specification format, namely, Swagger.
NLyze is an Excel feature that, given a natural-language

sentence, synthesizes a formula for computing the value or
format of a cell or column [7]. The synthesis operates at the
granularity of one sentence, unlike the back-and-forth of
a multi-turn dialogue. A spreadsheet user can get around
that limitation by breaking down multi-step transforms into
separate formulas synthesized from a different sentence. Un-
like SwaggerBot, NLyze does not target web APIs and is not
generated from a web API specification.
Similarly to NLyze, Kate et al. transform natural to for-

mal languages [14]. They parse a natural-language sentence
with a natural-language grammar, and then transform the
resulting parse tree to the target formal language. As with
NLyze, the focus is on one sentence; the technique does not
target web APIs; and it does not use web API specifications.

A CNL (controlled natural language) is a constructed lan-
guage that is based on a natural language [15]. For example,
there are CNLs designed to specify data models or event-
processing rules [2]. In a way, the direct call syntax in Swag-
gerBot fits the definition of a CNL, albeit a particularly simple

one. In contrast to other CNLs, SwaggerBot aims at being
completely self-documenting. The user can learn everything
they need to know about SwaggerBot, including how to
make direct calls, by interacting with it.
Overall, we could not find any prior work on either chat

bots from web API specifications or chat bot curation using
natural-language dialogue.

7 Future Work
While the SwaggerBot compiler succeeds at its main objec-
tive to generate a chat bot for calling a web API, we would
like it to generate a better chat bot than it currently does.
This section outlines several directions for improvements.

One problem is that many web APIs are not designed for
end users but designed to be called from code written by
developers. Our generated chat bots still expose low-level
details such as HTTP methods, content negotiation, verbose
JSON outputs, or the need to make multiple calls to answer
one request. We have an expanding set of features to help
with this issue: curation to hide spurious low-level details;
data shaping to extract the most relevant information out of
JSON outputs; and call chaining to simplify multiple calls.
These features could ultimately add up to a marriage of
Prolog-style backward chaining with Swagger.
Our current implementation offers two disjoint ways to

call an API: step-by-step guidance vs. direct calls. This di-
chotomy reflects the coherence-flexibility dilemma [9] of
chat bots: step-by-step guidance ensures coherent informa-
tion but feels rigid and inflexible to the user, whereas a direct
call is more concise but gives little guidance to get coherent
parameters. We are currently working on unifying the two
based on frames, a well-known chat bot concept for slot-
filling dialogues [4] which is also supported by WCS [11].
While this changes our compiler substantially, the main idea,
of using Swagger as the source language, remains.
Another problem is the lack of NLU training examples

which are necessary for the intent classifier. In general, a
classifier trained from more examples has higher accuracy.
Since a Swagger file does not contain example utterances,
we currently use the name of the action as the single training
example of the intent. This is not enough to train a good
classifier. While SwaggerBot allows the power user to add
synonyms via in-bot curation, that does not help with the
out-of-the-box experience. We are actively exploring various
machine-learning techniques to obtain the best NLU using
only the information commonly available in a Swagger file.
Our current prototype requires manual deployment and

operations. While parts of SwaggerBot are hosted in WCS as
a cloud service, other parts are not. That means the provider
of a generated SwaggerBot must manually install it, manage
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its lifecycle, and tackle operational concerns such as avail-
ability and scaling. We are working on making SwaggerBot
fully cloud-hosted. Since the controller component can be
viewed as a simple transducer from symbols to instructions,
and since the actuator component amounts to calling cloud
functions, we chose OpenWhisk for the cloud-hosted imple-
mentation [3]. Ultimately, we want providers to get from a
Swagger file to a deployed chat bot in seconds.
At this point, SwaggerBot only supports scalar parame-

ters for calls to web APIs. In the examples in this paper, all
parameters are scalar values such as strings, dates, URLs, or
API keys. However, for other web APIs, the parameters may
also be composite objects and arrays. We are planning to
address this issue with nested frames, following ideas for
information-gathering dialogues that we outlined in another
paper [9]. This will enable SwaggerBot to conduct longer
and deeper dialogues before making a call.
Another problem is that many web APIs require authen-

tication. This may be simply because the web API charges
its users money for every call, or because calls to the web
API may return sensitive information or have irrevocable
effects. In the Visual Recognition case study in Figure 14, the
user had to copy-and-paste an API key. We are planning to
provide a more general sign-in solution that is secure but
also natural and convenient. Solving this at the SwaggerBot
level reduces the time-to-value for the chat bot provider.

Finally, SwaggerBot currently handles only one Swagger
file at a time. Extending the prototype to handle a set of
multiple web APIs, each with their own Swagger file, is
relatively straightforward through the use of sub-dialogues.
But it raises the issue of conflicts of action names between
different APIs. A more challenging extension is to be able to
search and load new Swagger files dynamically. In order to
help the user to find the right API, we are considering to use
API Harmony [26].

8 Conclusions
This paper describes a compiler from web API specifications
(written in Swagger) to chat bots for calling those web APIs.
That means that a company that has a Swagger specification
for the services it offers its customers or employees can imme-
diately obtain an initial natural-language chat bot for them.
Doing so enables the company to jump right into improving
the chat bot, which tends to be a continuous feedback-driven
process. The generated bot is self-documenting, so that users
who do not know how to use the bot or the web API can find
out how to do that by interacting with the bot. Besides the
compiler, this paper also presents in-dialogue curation for
improving the chat bot. The curation addresses the problem
that the API specification may not be high-quality, either
in general or when it comes to generating chat bots from it.

Currently, the curation features include adding new actions
with default parameter values, as well as adding synonyms
to make the natural-language understanding more robust.

This paper includes examples of generated bots for three
web APIs that offer language translation, tone analysis, and
visual recognition, respectively. The examples all work and
show-case both the self-documenting facilities and the in-
dialogue curation. Ultimately, our goal is to democratize the
creation of chat bots; to make sophisticated APIs easy to call
via chat bots; and to make chat bots delightful to use.
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