Effectiveness of Garbage Collection and Explicit

Deallocation
by

Martin Hirzel

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Master of Science

Department of Computer Science

2000

This thesis entitled:
Effectiveness of Garbage Collection and Explicit Deallocation
written by Martin Hirzel
has been approved for the Department of Computer Science

Amer Diwan

Dirk Grunwald

Alexander Wolf

Date

The final copy of this thesis has been examined by the signatories, and we find that
both the content and the form meet acceptable presentation standards of scholarly
work in the above mentioned discipline.

Hirzel, Martin (M.S., Computer Science)
Effectiveness of Garbage Collection and Explicit Deallocation

Thesis directed by Prof. Amer Diwan

This work compares the effectiveness of accurate garbage collection, conservative
garbage collection, and explicit allocation/deallocation for C programs. Traditionally,
garbage collectors for C are conservative, they can only recognize non-pointers if those
are not aligned or point into a memory range known not to contain live objects. This
means that they may fail to reclaim memory, even though it is only reachable through
non-pointers. We call exact pointer/non-pointer information accuracy. Adding accuracy
to a conservative garbage collector means enabling it to be less conservative for some
pointers.

We do a runtime analysis on C-programs that finds, for each global object, heap
object, and stack frame type, which offsets contain pointers for a particular run. In
a second run with the same inputs, we make this accuracy information available to
the Boehm-Demers-Weiser (BDW) garbage collector. This enables BDW to ignore non-
pointer values in the mark phase, even if they look like pointers to objects maintained by
BDW, and thus to potentially reclaim more objects in the sweep phase. This approach
gives us the effect of accurate garbage collection, it shows how much memory the original
BDW actually fails to reclaim due to its conservatism.

We measure the effectiveness of BDW for some realistic C benchmarks. It can
independently use or ignore the accuracy information for stack, heap, and globals, and it
can allow or disallow the explicit deallocation present in the benchmarks. Furthermore,
by logging statistics about malloc() and free(), we also measure how effective explicit
deallocation is in reclaiming memory if the garbage collector is not active. We compare

how much memory gets reclaimed at each garbage collection for the whole spectrum of

iv
accuracy and for explicit deallocation.

For eight of our twelve benchmarks, there were no differences in effectiveness for
explicit deallocation or any of the accurate garbage collector configurations. In those
benchmarks where there were differences, we could see almost no pattern. Often, it was
one single aspect that was responsible for a better effectiveness, but this aspect varied
widely from benchmark to benchmark and even from garbage collection to garbage
collection. Aside from the sed benchmark, where some schemes reclaimed 100% of the
storage, the most extreme differences in number of live bytes in objects was 25.53%.

This means that all techniques are in the same ball-park for effectiveness.

To my parents.

vi

Acknowledgements

I am grateful to Amer Diwan for all the good ideas, motivation, encouragement
and time he gave me. He is a great advisor, and has taught me a lot in these past
months. The initial idea for this research and the code for the runtime analysis which
I describe in chapter 2 come from him.

Thanks also to Hans Boehm, who confirmed my findings about his garbage col-
lector.

[am grateful to the German Academic Exchange Service, which enabled me to

come to Boulder, and to the German National Scholarship Foundation.

Contents

Chapter

1 Introduction 1
1.1 Definitions Lo 1
1.2 Garbage collection versus explicit deallocation 2
1.3 Conservative versus accurate garbage collection 3
1.4 Comparing the effectiveness L. 5
1.5 Overview of thiswork 6

2 Run-time Analysis 8
2.1 Two program runs o o it e e e 8
2.2 Instrumenting the first run o oo 8
2.3 Analyzing the firstrun Lo L 9
2.3.1 High-level view oL 9

232 Details. 10

2.3.3 Program startup Lo 10

2.3.4 CQallycallerside o L e 10

2.3.5 Call,calleeside 10

236 Return. 10

2.3.7 Malloc and friends oL 12

2.3.8 Assignment 12

2.4

2.3.9 Program termination oL
Discussion oL
2.4.1 Conservativism oL e
2.4.2 Precision
243 Conclusion

3 Boehm-Demers-Weiser Garbage Collector

3.1

3.2

3.3

Classification
Pointer /non-pointer distinction

Mark stack e

4 Using the Accuracy

4.1

4.2

4.3

4.4

4.5

High-level view
Using accuracy for the heap
Using accuracy for thestack
Using accuracy for globals
Other modifications L o
4.5.1 Excluding staticroots L.
4.5.2 Debugging output L L
4.5.3 Converting macros to functions

4.5.4 Collecting results o

5 Benchmarks for the Experiments

5.1

Description of the Benchmarks
9.1.1 getestd Lo
9.1.2 getest . ..o
5.1.3 anagram Lo

5.1.4 ks .. L e e e

viii

12

12

12

13

13

14

14

15

16

17

17

18

18

19

20

20

20

21

21

22

.15 ft. . e
9.1.6 yacr-2
5.1.7 bshift
5.1.8 be . ..
5.1.9 L. .o
5.1.10 gzip e
5.1.11 sed L
5.1.12 qjpeg e

5.2 Memory usage e

Experimental Results

6.1 Overview L
6.2 Measurement details o oo
6.3 Ftandbc L
6.4 yacr-2
6.0 gZID
6.6 sed

6.7 ijpeg e

Related Work

7.1 Barlett 1988
72 Zorn 1993o
7.3 Other garbage collector comparisons
7.4 Allocation and deallocation behavior

7.5 Adding accuracy

Conclusion

8.1 Summary e e e e

ix

24

24

24

24

25

25

25

25

26

27

27

28

29

32

32

35

37

39

39

40

40

41

41

43

8.2 Reflection .

8.3 Future work

Bibliography

46

Tables

Table

5.1 Benchmarks, static characteristics.

5.2 Benchmarks, dynamic characteristics.

8.1 Summary of Results. L o L

xi

3.1

6.1

6.2

6.3

6.4

6.5

6.6

Figures

Boehm-Demers-Weiser Pointer

Resultsfor ft.
Results for be.
Results for yacr-2 L
Results for gzip.
Results forsed.

Results for ijpeg. L

xii

Chapter 1

Introduction

1.1 Definitions

The traditional heap storage management for C is explicit deallocation, where the
programmer has to call free() to give memory back to the runtime system. An alterna-
tive to this, garbage collection (gc), automatically reclaims memory when it cannot be
reached anymore (we call unreachable objects dead). The research for this thesis was
conducted using the Boehm-Demers-Weiser (BDW) garbage collector [7, 8, 9], which is
essentially a mark-and-sweep garbage collector. First, the mark phase marks all live ob-
jects: it starts from a root set (stack, globals, and registers), and builds the transitive
closure of reachable objects by following pointers. Second, the sweep phase reclaims
everything that has not been marked.

In the mark phase, the garbage collector must make safe assumptions about which
memory locations contain pointers that must be followed to mark reachable objects as
live. In type-safe languages, it can reliably distinguish pointers from non-pointers, it
has accuracy. This information is not available in C, so the garbage collector must be
conservative: if a value can be interpreted as a pointer, it must be treated as a pointer,
even if it is declared to be something different.

The basic idea for garbage collection follows a stop-the-world model: the program
execution gets stopped until the garbage collection is over. Since this may cause prob-

lems for real-time applications and even inconvenience the user, incremental garbage

collectors have been invented. Those perform only a small amount of work when the
garbage collection gets triggered. Then they allow the program to run on, doing a little
work once in a while towards finishing the started garbage collection.

In many high-level programming languages, the language definition assumes the
presence of a garbage collector, and often the programmer cannot even choose to deal-
locate memory explicitly. This has gained acceptance with the wide-spread use of Java.
Explicit deallocation is not trivial, and errors in doing so may lead to bugs that are dif-
ficult to find or even to reproduce. Furthermore, if the programmer has to keep explicit
deallocation in mind, this may distract from the problem at hand and in the worst case
force an inferior programming style to avoid the complexities of inserting the calls to
free() in all the right places. As Wilson et al. [25] write: this can “incur major costs
in productivity and, to put it plainly, human costs in sheer frustration, anxiety, and

general suffering”.

1.2 Garbage collection versus explicit deallocation

There are surprisingly few studies that compare garbage collection to explicit
deallocation. Zorn [27] compares the Boehm-Demers-Weiser conservative garbage col-
lector to explicit memory management for C. He finds that the CPU performance is
almost the same. From our experience, we can add that since BDW is incremental,
there are no stop times that can be observed by the user.

On the other hand, Zorn found the heap size of the program to be often twice as
big for garbage collection as for explicit deallocation. There are three reasons for this:
fragmentation, frequency of garbage collection, and effectiveness of garbage collection.
Zorn finds that the fragmentation is comparable to that of the explicit memory allocators
he studied. He states that increasing the frequency of garbage collection does reduce
the heap size, but not always significantly. The third question, how well BDW can find

dead objects and therefore how effective it is in reclaiming memory, is left open. This

thesis helps to answer it.

It is also possible to run BDW, but do explicit deallocation where this is easy for
the programmer. The programmer may be able to free objects that BDW did not find
to be dead, and BDW may be able to free objects where the programmer did not bother
to track liveness. On the other hand, the effectiveness of this combined effort might
be no significant improvement over either one of them. We will present experimental

results and discuss this approach.

1.3 Conservative versus accurate garbage collection

Conservative garbage collectors might fail to reclaim dead objects because there
are non-pointer values in live objects that can be interpreted as pointers to them. Con-
sider for example the C program in figure 1.1. The first for-loop fills the array a with
values that are of the same order of magnitude as heap addresses. The second for-loop
allocates heap objects which become dead immediately, since they are not reachable
by traversing pointers from local or global variables. Yet, some of the elements of a
happen to look like pointers to objects created by f, so the conservative collector does
not reclaim them.

If this happens too often, the effectiveness of the garbage collector will suffer
significantly and the heap size will be much larger than it needs to be. This may lead
to poor cache or even paging behavior. Also, the performance of the garbage collector
depends on how many objects it has to scan, and a more accurate collector has to
scan less objects. The paper describing Barlett’s mostly-copying garbage collector [4]
compares different accuracy levels for the stack, and finds little difference for the two
measured benchmarks. Boehm and Weiser [9] state that conservativism had little effect
on the effectiveness of an predecessor of BDW, but they do not compare it to an actual
accurate garbage collector. We will discuss these and more articles in chapter 7.

So far, there are no accurate garbage collectors for C. One can, however, imagine

#include (stdio.h)
#include (stdlib.h)
#include “gc.h”

void f(int){
charxp < malloc(sizeof (long)*250);
xp < 1

}

#define ASIZE 500

int main(int argc, charxargv[]){

unsigned long «[ASIZE];
unsigned long v;
int i;
init(&arge, argv);
v 14000000046;
for(i < 0;i <ASIZE; i++){
ali] < v;
v+ <+ 2000;
}
for(i < 054 < 2005 i++)
£ (@);
GC_gcollect();

return 0;

Figure 1.1: demo.c. For this C program, the conservative collector fails to reclaim some

objects.

techniques to obtain accuracy, if not for all (global, heap, stack) data, then at least for
some of it. For example, in figure 1.1, the values in the stack-allocated array a never
get used as pointers, even though the weak typing of C would permit it. Providing
accuracy information would make BDW strictly more effective, but would also come
at some cost. Techniques that can be used as a starting point here are described in
[1, 22, 12]. On the other hand, it is not clear how much room for improvement BDW
leaves for such efforts. We independently simulate accuracy for heap, stack, and globals,
and can thus compare BDW to hypothetical accurate garbage collectors for C in terms

of effectiveness.

1.4 Comparing the effectiveness

Figure 1.2 shows the effectiveness of garbage collection for the example program
from figure 1.1. A total of 408 000 bytes get allocated over the run of the program (the
object size sizeof (long)+250 gets rounded up by malloc()). The solid/dashed line shows
the live size if we run an accurate/conservative garbage collector, respectively. Garbage
collections are triggered after every 100000 bytes of allocation. The accurate collector
is able to reclaim all heap objects every time. The conservative collector misses some,
causing the live size to be greater than that for the conservative collector. Therefore,
the total number of live bytes in objects never exceeds 100 000 for the accurate collector,
while it goes up to 108 120 bytes with the conservative collector, which is 8.12% worse.

We use the number of bytes in live objects as our basic metric for the effectiveness
of garbage collectors. We do measurements like the one shown in figure 1.2 for a variety
of C programs, for a variety of gc accuracy levels, and with or without allowing explicit
deallocation. From the results, we get a feeling for how often a situation like in figure
1.1 can be found in practice. We can also identify the culprit of the inaccuracy: for
which memory area would we need accurate information for the gc to be effective?

Furthermore, we see whether explicit deallocation is more effective, less effective, or a

demonstration
120000 T T T
accurate —
conservative ----

100000 1

80000

60000 |-)

live bytes

40000 | b

20000 | 1

0 L L
0 50000 100000 150000 200000 250000 300000 350000 400000 450000
bytes allocated

Figure 1.2: Results for demo.c. The z axis shows the total number of bytes allocated,
the y axis shows how many of them are still live.

reasonable addition to garbage collection. The effectiveness of all these variations are
compared on an equal footing, abstracting from those algorithmic details of the garbage
collector that do not affect its pointer/non-pointer distinction.

We obtain our accurate information from a dynamic pointer analysis. Chapter 2
describes the details of the analysis and also discusses how accurate it really is. One
fundamental point is that it happens at run-time. That means that it provides an upper
bound on the precision of static analyses of otherwise equal strength. If a location never
contains a pointer in one particular run, it may still end up as a pointer in a second run

with different inputs.

1.5 Overview of this work

We start by describing the runtime analysis that collects accurate information in
chapter 2. Since we want to supply this information to BDW, we describe the relevant
details of that garbage collector in chapter 3. Given this background knowledge, we

understand how BDW gets accurate in chapter 4.

Chapter 5 describes the benchmarks we used for our experiments. In chapter 6, we
have a close look at the measurements we took. It provides numbers and graphs gathered
on effectiveness for the different accuracy configurations and explicit deallocation.

We conclude by reviewing the related work in chapter 7, and by giving a summary,

reflection, and ideas for future work in chapter 8.

Chapter 2

Run-time Analysis

2.1 Two program runs

We want to provide the Boehm/Demers/Weiser garbage collector with accurate
information about which values are pointers and which are not. To do this, we run
the benchmark twice with the same input. On the first run, we keep track of which
locations hold pointers. When the first run terminates, we write this information out to
disk. On the second run, we read it in again. Using this, when BDW is about to mark

an object from a non-pointer, we can stop it from doing so.

2.2 Instrumenting the first run

On the first run, we keep track of which locations hold pointers. To do this, we
insert calls to book-keeping code whenever the original program does something that
affects this information. We use the term instrumentation both for this book-keeping
code, and for the process of inserting it. The latter is done using SUIF [23]. SUIF stands
for Stanford University Intermediate Format, it is a research compiler infrastructure.
It enables you to write a compiler pass that can manipulate the abstract syntax tree
representation of programs through a convenient C++ API.

The instrumentation proceeds as follows.

(1) The input is the set of C files of the benchmark.

(2) Compile this to an intermediate format, which can be read in by our pass.

(3) Insert calls to and prototypes for instrumentation functions.

(4) Compile back to C.

(5) Compile and link with the actual instrumentation functions’ implementations,

which is written in C++. For this step, we use gcc.

For each user object, we maintain information of which offsets inside the user
object contain pointers. This information is kept in a model for the user object, that
is, a C++ object that has a bit vector for recording where the pointers are. For this
purpose, we distinguish four different kinds of user objects. Heap objects are instances
of heap allocated data structures. Global objects are the contents of global variables.
Stack frame instances are basically the space on the call stack for the formal and local
variables of a procedure invocation. Finally, we also have models for stack frame types:
if any stack frame instance has a pointer at offset o, we set the corresponding bit for the
stack frame type. The instrumentation makes sure these models get correctly initialized

and maintained through the run of the program.

2.3 Analyzing the first run

2.3.1 High-level view

Pointer /non-pointer information is propagated for assignments, argument passing
and return values. Consider an assignment r < s, where r is the recipient and s is the
source. If r has so far been considered a non-pointer, but s is a pointer, then we record
that the location of r can hold a pointer as well. We distinguish between two cases for
the source s. If s is an allocation or address-taking statement, then we statically know
that r will become a pointer. Otherwise, we look up the pointer /non-pointer information

gathered for the operands of the source s. If any of them can hold pointers, we record

10

that the recipient r can hold a pointer, otherwise, we leave the pointer/non-pointer
information for r untouched. In other words, pointerness gets inserted at malloc()s and
&-statements, and gets propagated as values get written to locations in the dynamic

execution of the program.

2.3.2 Details

Figure 2.1 shows a tiny C program before and after instrumentation. The rest of
this section describes the implementation of the instrumentation functions. This level
of detail is not crucial for understanding the thesis; the reader may want to skip the
remaining subsections and continue with the discussion in section 2.4.

2.3.3 Program startup

Call process_global() to create models for global objects.

2.3.4 Call, caller side

Remember the address where the return value will get stored with start_call().
Record which actuals contain pointers with process_ptr_arg_source() and pro-

cess_arg_source().

2.3.5 Call, callee side

Create a model for the stack frame instance with enter_proc(). If actual was a
pointer, let formal be a pointer with process_formal(). Figure out the size of the frame

with note_stack_alloc() and end_stack_alloc().

2.3.6 Return

Before the call, we remembered the address of where the return value will get

stored. Now, with note_return_ptr_source() or note_return_source(), possibly note that

11

Before instrumentation. After instrumentation.

long g+ 42; long g « 42];
longxf (long*xz){ extern long *f (long *xz){
xr — &g¢; void xsuif_tmp;

return malloc(sizeof (long));

}

int main(){
longsxp, x¢;
p < f(&q);

return 0;

}

Figure 2.1: Instrumented code.
prototypes.

enter_proc(Ou);
process_formal(Ou, &x);
note_stack_alloc(8u, &z);
note_stack_alloc(8u, &suif-tmp);
end_stack_alloc();
note_assignment_target(z);
note_assignment_ptr_source();
xz +— &g;
note_assignment_target (& suif-tmp);
note_assignment_ptr_source();
suif-tmp + my-malloc(8ul);
note_return_source(& suif_tmp);
end_return();

return (long *)suif_tmp;

extern int main(){

long xp;
long xg¢;

enter_proc(1lu);
note_global (8u, &¢);
note_stack_alloc(8u, &p);
note_stack_alloc(8u, &q);
end_stack_alloc();
start_call(1lu, &p);
process_ptr_arg-source(0u);
p « f(&q);
end_program();

return 0;

For simplicity, we omitted #includes and function

12

that location becomes a pointer. Get rid of the stack frame instance model with
end_return(); we stored the accuracy information in the stack frame type model. A
special case is a “return” via longjmp(), in which case we must tidy up the stack model

by a note_after_setimp() in the caller.

2.3.7 Malloc and friends

This instrumentation does not get inserted immediately into the user code.
Instead, we have wrappers for malloc(), calloc(), realloc(), and free() that call
the respective instrumentation functions note_allocation(), note_reallocation(), and

note_deallocation(). Those create and update the models for heap objects.

2.3.8 Assignment

First, we remember the address of the location where the assigned value will be
stored with note_assignment_target(). Then, we propagate the pointerness to that with

note_assignment_source() or note_assignment_ptr_source()

2.3.9 Program termination

At return from main() or ezit() from other procedures, end_program() makes sure

that all the gathered information is written to file.

2.4 Discussion

2.4.1 Conservativism

One can say that this analysis corresponds to a flow-insensitive static analysis.
If a location holds a pointer at any time during program execution, we say it can
hold a pointer at all times. This corresponds to type analyses, which are usually flow-

insensitive. One can also say that this analysis corresponds to a context-insensitive

13

static analysis. If a stack-allocated variable holds a pointer in any invocation of its
procedure, we say it can hold a pointer at every invocation of the procedure.

One more source of inaccuracy is the treatment of arithmetic. If any operand
of an arithmetic expression is a pointer, we say that the result of the expression is a
pointer. This is usually true for expressions like p < ¢ + 1, but not for expressions like

n+<p—qorb+ (p<gq).

2.4.2 Precision

This analysis is more precise than static pointer analyses in that it keeps all heap
objects separate. A static pointer analysis computes a points-to graph where vertices
model memory locations and edges model possible points-to relationships. Since the
number of heap objects a program can allocate is theoretically infinite, a static analysis
must bound the number of corresponding vertices in some way. Techniques for this
range from one vertex for all heap objects [13] over one vertex per allocation site [17]
to shape-oriented techniques [16], but our analysis is strictly more precise than any of
these in this respect.

Since this analysis only considers a location to hold a pointer if it seemed so in
one particular run, it is more precise for this run than a static analysis could be. It may

be even more powerful than flow- and context-sensitive analyses.

2.4.3 Conclusion

We believe that even given the conservative aspects of our analysis, it does in
practice give us an upper bound on how accurate you can make a garbage collector for
C. This is based on the intuition that for real C programs, the imprecisions we described
above will either not appear in the first place, or be caught by the pointer/non-pointer
distinction techniques of BDW on top of which we build our accuracy. But this remains,

of course, material for further research.

Chapter 3

Boehm-Demers-Weiser Garbage Collector

3.1 Classification

The Boehm-Demers-Weiser garbage collector (BDW for short) is a conservative
garbage collector for C and C++. Boehm and Weiser describe a predecessor of BDW in
[9]. In [8], Boehm, Demers and Shenker describe how you can make a mark-and-sweep
garbage collector mostly incremental and parallel. Their technique is implemented in
the BDW garbage collector, which is apparent in several design decisions throughout
the source code.

BDW has been carefully tuned. Already in 1993, Zorn [27] finds that it is about
as fast as explicit memory managers. This is achieved mainly by carefully keeping in
mind which parts of the memory hierarchy are touched throughout the algorithm. Also,
there are macros, unrolled loops, alternative code paths and other hand-optimizations.

The Boehm-Demers-Weiser garbage collector supports a lot of platforms. Guided
by #ifdefs, it can be compiled for a number of different machines, operating systems,
and thread packages. We use it only on the Alpha running Digital Unix and in a single-
threaded environment. We allow interior pointers, that is, pointers do not have to point
to the head of heap objects only. We enable BDW’s debugging book-keeping, since we

use some of it for our statistics. We allow BDW to round object sizes (see below).

15

3.2 Pointer /non-pointer distinction

The memory managed by BDW is partitioned into heap blocks, which for our
purpose are 213 = 8192 Bytes large. Objects are considered large when they do not fit
into one heap block, and are treated specially. A small object heap block contains only
objects of one size, so objects are segregated by size classes. Not every real small object

size has its own size class; instead, sizes are rounded up to predetermined size classes.

64 13 0 heap block — oo

p heap block id d)
object - _

. sy

Figure 3.1: Boehm-Demers-Weiser Pointer

Figure 3.1 shows a 64-bit Alpha-pointer p, and how it is used to access various
BDW data structures. Its 51 higher order bits are used as a heap block id. The heap
block header, which is stored separately from the heap block itself, is looked up in an
index structure (not shown). The header contains a map that, given the displacement
d of p in its heap block, returns the displacement s of p in its object. This way, we get
the pointer to the head of an object from an interior pointer.

BDW distinguishes pointers from non-pointers before and in the macro

PUSH_CONTENTS() in the file gc_mark.h. The paper [9] by Boehm and Weiser de-

16

scribes this logic, the only difference is that in our case, interior pointers are allowed.

A value p is considered a pointer if and only if

e it is aligned to an 8 Byte word boundary

e [east_ha < p < greatest_ha, where least_ha and greatest_ha are rough estimates

of the least and greatest plausible heap address, respectively

e there is a heap block header for that heap block

e the heap block contained at least one live object after the last garbage collection

3.3 Mark stack

As mentioned above, BDW is incremental: it does not have to do a whole collec-
tion all at once, but can do one small amount of work at a time. For the mark phase,
this is achieved by having a mark stack of memory areas to scan for pointers. For our
purpose, a mark stack entry consists of a pointer to the start of a memory area, and
of the length of that area. To initiate a garbage collection, BDW pushes mark stack
entries for the roots, that is, the current stack and globals, on the mark stack. Later,
it repeatedly pops a mark stack entry and looks at each aligned value v in the memory
described by it. If it determines that v is a pointer, it looks whether the object o pointed
to by v is already marked. If not so, it marks it and creates a new mark stack entry for
the memory area o.

The mark phase is complete when the mark stack is empty. Now, the sweep phase
starts, where everything not marked during the mark phase gets reclaimed. The details

of the sweep phase are not relevant for this thesis.

Chapter 4

Using the Accuracy

4.1 High-level view

Chapter 2 describes how we collect accurate pointer /non-pointer information dur-
ing a first run of the program. In the second run, we want to provide this information to
BDW to simulate an accurate garbage collector. How this is done differs slightly depend-
ing on the kind of location (stack, heap, or pointer) we provide accurate pointer/non-
pointer information for.

The second run of a benchmark understands the command-line argument -a
which specifies what kind of accuracy to use and what kind to ignore. For example,
-astack,glob means that the collector has accurate information about which stack
and global locations contain pointers, but it must be conservative for locations in heap
objects. Let p be a value encountered during the mark phase. To decide whether to
mark the object it points to and scan it for more pointers, we evaluate the predicate

is-pointer(p).

is-pointer(p) = (—ruse—accumcy(k) v is—pointeranalysi&k(p)) A is-pointer gy (p)

We first have to figure out which kind k € {Stack,Heap,Global} of location p
resides in. If we do not use the accuracy for that kind of location, we just move
on to BDW’s own logic for is-pointergpw(p). Otherwise we look up the information

i8-pointer ,paivsis x(P) gathered by the analysis in the first run, and intercept BDW from

18

even considering the candidate pointer if that yields false. In the case where we fall
through to BDW’s pointer/non-pointer distinction mechanism, is-pointergpw(p) gets
evaluated as described in section 3.2. Once p has passed all checks, if the target object
o is not yet marked, BDW marks o and and pushes a mark stack entry describing o on

the mark stack, so its area will eventually be scanned for pointers.

4.2 Using accuracy for the heap

Our wrapper my_malloc allocates one word more than requested by the client,
and uses this to store an id number. Since our benchmarks are deterministic and use the
same inputs on both runs, corresponding heap objects get the same id number. When
BDW works off the mark stack, it looks at the memory area described by a mark stack
entry word for word. Let p be a pointer and s be its source, that is, the heap memory
location containing p. We find the start of the heap object from the interior pointer s
using BDW’s data structures (see figure 3.1). This gives us the heap object id and the

offset, which is all we need to access the information from the run-time analysis.

4.3 Using accuracy for the stack

The user stack of procedure activation records is just one large entry of the mark
stack of memory areas to scan for pointers. This entry is processed in exactly the same
manner as entries corresponding to other kinds of memory. In and of itself, it gives
no clues as to where individual stack frame instances start or end. To avoid changing
the incremental design of BDW too much, we had to device a way of finding out what
stack frame type a given stack location belonged to, and what its offset from the frame
pointer was.

For this purpose, like for the first run, we also instrument the benchmark for the
second run, only that we bind it to a different set of instrumentation functions. With

other words, the C code for the second run looks exactly like the right side of figure 2.1,

19

but the implementation of enter_proc, process_formal, note_stack_alloc etc. is different.

Most of the instrumentation functions for the second run just have empty bodies.
With enter_proc, end_return, and note_after_setjmp, however, we maintain a model of
the call stack. This model keeps track of the frame pointer and procedure id of each
stack frame instance. Let p be a pointer and s be its source, that is, the stack memory
location containing p. We find the model for the stack frame instance containing p by
searching between which two frame pointers s falls. This gives us the procedure id and
the offset, which is all we need to access the information in the stack frame type model

from the run-time analysis.

4.4 Using accuracy for globals

Like for the stack accuracy, we make use of the instrumentation that gets inserted
anyway. At program startup (see figure 2.1), we call note_global to record the mapping
from id numbers to global object addresses. From the information of the first run, we
also have a mapping from id numbers to models for global objects. Normally, when
BDW starts a garbage collection, it pushes (among others) the global data areas on the
mark stack. If we use the accuracy for globals, we intercept this and instead push all
targets of global pointers on the mark stack.

Pushing targets of global pointers works as follows. We iterate over all models
for global variables. These have an id number and a bit vector of offsets containing
pointers. From the id number, we get the pointer to the global object (instead of just
its model), and can access the memory location holding a candidate pointer p. If we got
so far, then we already know that ~use-accuracy(k)V is-pointer »,, 1 (p) is true. Now we
trigger BDW’s own pointer/non-pointer distinction logic is-pointergpw(p) which will
eventually lead to the pointed-to heap object being marked and pushed on the mark

stack for further scanning.

20

4.5 Other modifications

Using accuracy accounts for a number of changes we made in the Boehm-Demers-
Weiser garbage collector, as described above. However, there were some more things we

modified.

4.5.1 Excluding static roots

As mentioned above, BDW starts off a garbage collection by pushing the roots
(registers, stack of activation records, and global data areas) on the mark stack. The
global data areas, or static roots, presented a difficulty. The instrumentation for either
run introduces a number of globals which BDW should not consider as static roots.
The garbage collector solves this for its own globals by putting them in one struct
GC_arrays, so that they come consecutively in memory, and then explicitly excluding
that area from the static roots. We copied this technique, and have a struct gcin-
foGlobals of our own, likewise excluding it from static roots.

Surprisingly, BDW does not consistently put all its globals into GC_arrays. This
seems inconsistent, and actually turned out to be a bug. In one of our test runs, we
observed an otherwise dead heap object being incorrectly marked from a global variable
of BDW intended for a different use. We reported this to Hans Boehm, who has since

fixed it, and also fixed it in our own modified version of BDW.

4.5.2 Debugging output

The original garbage collector has a lot of places where it can print debugging
information. Whether or not to generate this verbose output is steered by compiler flags
and #ifdefs. This was inconvenient for actually debugging, so we converted the static

#ifdefs to dynamic ifs that check the debugging level requested at the command line.

21

4.5.3 Converting macros to functions

Some of the core functionality of BDW resides in function macros. Unfortunately,
that is the very code we needed to step through with the gdb debugger. So we converted
a number of function macros to normal C functions. In some cases, this involved adding
a level of indirection for parameters where BDW relied on the call by name parameter

passing semantics.

4.5.4 Collecting results

To collect the results presented in this thesis, we had to adapt some of BDW’s
own bookkeeping to our needs, and add some of our own. We will see details of this in

section 6.2.

Chapter 5

Benchmarks for the Experiments

Table 5.1 lists the benchmarks used for the experiments. The two smallest pro-
grams, gctest and gctest3, are distributed along with Barlett’s mostly copying garbage
collector [4, 5]. Anagram, ks, ft, yacr-2, and bc are taken from Austin’s pointer-intensive
benchmark suite. Bshift is an Eiffel program compiled to C with SmallEiffel. Gzip and
sed are common GNU utilities (bc is also a common GNU utility, but we took the source
code from Austin’s benchmark suite). Two of the largest programs, li and ijpeg, are

integer benchmarks from the SPEC95 suite.

Table 5.1: Benchmarks, static characteristics.

Name Source Lines Kind of Program
gctest3 | Barlett [3] 85 synthetic test

getest Barlett [3] 196 synthetic test
anagram | Austin [2] 647 string processing

ks Austin [2] 782 graph algorithm

ft Austin [2] 2156 graph algorithm
yacr-2 Austin [2] 3979 logic design

bshift Hirzel 4398 object-oriented

be Austin [2] 7308 calculator/interpreter
li Spec95 [19] 7597 functional/interpreter
gzip GNU [14] 8163 compression

sed GNU [14] 8957 string processing

ijpeg Spec95 [19] 31211 image compression

23

5.1 Description of the Benchmarks

The description of the Austin benchmarks is based heavily on the README file

in their distribution [2].

5.1.1 gctest3

This constructs a large number of heap objects and tests that arrays of pointers,
interior pointers, and lists remain consistent. There is no explicit deallocation. For our
experiments, we adapted it to use the Boehm-Demers-Weiser garbage collector instead
of Barlett’s garbage collector. We also reduced the number of objects created to make

our runtime analysis feasible.

5.1.2 gctest

This constructs a lot of lists, trees, and 1000 Byte arrays on the heap and tests
their consistency after garbage collection. Like for gctest3, we changed the garbage

collector it uses and reduced the problem sizes.

5.1.3 anagram

An anagram is a word or phrase formed by reordering the letters of another word
or phrase. This benchmark generates anagrams. It does a lot of character pointer
arithmetic and is very recursive. It uses the library routine gsort(), which gets passed
a pointer to a non-library function. This confused the model of the call stack that we
maintain in the runtime analysis, so it had to be replaced by our own implementation

of quicksort.

5.1.4 ks

The Kernighan-Schweikert graph partitioning tool does a lot of pointer and array

dereferencing and arithmetic, some dynamic storage allocation, and no explicit dynamic

24

storage deallocation. The only changes to the source code were to let it use our garbage

collector.

5.1.5 ft

Ft finds minimum spanning trees. It does a lot of dynamic allocation and explicit
deallocation, but very little pointer arithmetic. The only changes to the source code

were to let it use our garbage collector. We are using a larger workload than Austin

5.1.6 yacr-2

This benchmark, yet another channel router, is used for integrated circuit layout.
It does a lot of pointer and array dereferencing and arithmetic, some dynamic storage
allocation, and no explicit dynamic storage deallocation. The only changes to the source

code were to let it use our garbage collector.

5.1.7 bshift

This Eiffel program computes characteristics of the barrel shifter regular network
topology. It makes use of inheritance and virtual functions. We compiled it to C using
SmallEiffel and replaced the garbage collector that usually comes with the runtime

system by our garbage collector.

5.1.8 bc

This is the GNU bc calculator. It implements a reference counting scheme inter-
nally for number and abstract syntax tree nodes. We did not remove this; however, we
can select to disable explicit deallocation in our framework. Bc has some functions with
variable argument lists, which we rewrote to take a fixed number of arguments. We are

using a larger workload for this than Austin.

25

5.1.9 li

This is an xlisp interpreter. It dispatches calls through a global array of function
pointers. Li has its own garbage collector, which we replaced by our modified Boehm-
Demers-Weiser collector. Also, we rewrote variable argument functions to take a fixed

number of arguments.

5.1.10 gzip

A commonly used compression program. It does not allocate much dynamic
memory, but it deals with all kinds of values that might look like pointers, which makes
it interesting in our context. We used it for decompression, since for compression it did

no calls to malloc() at all.

5.1.11 sed

The stream editor is a batch program that transforms texts via regular expres-
sions. To get it to work with our infrastructure, we had to rewrite variable argument
functions. Also, we compiled it with the option to not use alloca(), a simple garbage

collector scheme, but to call malloc() instead which gets handled by BDW.

5.1.12 ijpeg

This program does image compression/decompression on in-memory images based
on the JPEG facilities. Like bc, it has some functions with variable argument lists,
which we rewrote to take a fixed number of arguments. Ijpeg does explicit allocation
and deallocation; we hooked it up with our garbage collector and can, like for the other

programs, choose to ignore the explicit free().

26

5.2 Memory usage

Table 5.2 describes the benchmarks with their actual workloads. Allocation is the
number of bytes allocated over the whole run of the program (the total size of all objects
if we never deallocated anything). The heap size is the largest number of bytes we saw
at any point during program execution for the least effective deallocation scheme (out

of the different garbage collector configurations and the explicit deallocation).

Table 5.2: Benchmarks, dynamic characteristics.

Name Workload Allocation Heap size
gctestd loop to 20,000 3600008 2030024
gctest only repeat 5 in listtest2 1749416 360 800
anagram words < input.in 265984 265704
ks KL-2.in 15840 15840
ft 8000 16000 2391000 2382376
yacr-2 input2.in 267512 249688
bshift scales 2 through 12 1189976 117520
bc find primes smaller 1000 | 24260608 762984
li boyer.1lsp 7669920 292600
gzip -d texinfo.tex.gz 28376 15608
sed strip unistd.h 60 056 24592
ijpeg penguin.ppm 172448632 10159504

Chapter 6

Experimental Results

6.1 Overview

For each benchmark, we count how many bytes are live in objects at any point
in time. Time here is the total number of bytes allocated by the benchmark so far.
Therefore, the line graphs all have “saw-teeth”: as data gets allocated, live-size and
time increase at the same pace. As data gets deallocated, live-size drops without time
proceeding as you cannot allocate and deallocate at the same time. Note that we count
the number of bytes in live objects, which is different from (less than) the number of
bytes in live heap blocks or even the whole memory footprint. This must be kept in
mind when viewing the plots, since for example the BDW garbage collector with its
segregated storage manages a lot of “unused” heap space, but also the explicit allocator
will not be able to avoid fragmentation entirely. For a discussion of this point, see [27].

In the graphs in this chapter, we use the following abbreviations:

gc conservative Boehm-Demers-Weiser
s accuracy for pointers from the stack
h accuracy for pointers from the heap
g accuracy for pointers from global objects
free explicit deallocation
These are used in an additive notation. For example, gc+shg stands for the garbage

collector with all accuracy information, but with free() disabled; gc+free stands for the

28

conservative collector with free() enabled; and free stands for only explicit deallocation
without any garbage collector.

We present the results with two kinds of graphs. The ones showing live-size
which look like flatirons are explained above. The other kind of graphs are scatter
plots. They show the ratios of live sizes for different configurations as compared to the
conservative BDW directly after garbage collections. A ratio less than one means that
the configuration in question was more effective than BDW. For example, figure 6.3
(b) shows that both free and gc+g were about 7% more effective than gc at one of the
garbage collections.

Out of our twelve benchmarks, for eight of them there is no difference between
explicit deallocation, conservative garbage collection, and accurate garbage collection.
For gctest3 and gctest, the Barlett benchmarks, this is not surprising, since they contain
no explicit free() and use only pointers or small integers. Anagram and ks, the smallest
benchmark from Austin, just build up data structures that never become unreachable.
The benchmarks bshift and li are an Eiffel program compiled to C and a lisp interpreter,
respectively. They are designed for use with a garbage collector and thus have no calls

to free(). Still, it was not obvious that accuracy would make no difference.

6.2 Measurement details

Internally, at every call to malloc(), calloc(), realloc(), and free(), we keep track
of the total number of bytes allocated so far and the total number of bytes freed so far.
Since we are adding a header word to heap allocated objects, we subtract these 8 Bytes
out of the collected statistics to get the correct numbers. After each call to free(), we
write the time and the number of freed bytes out to disk.

After each garbage collection mark phase, we iterate over all heap blocks managed
by the Boehm-Demers-Weiser collector. For each block b, we look up the number of live

objects ny and the size of the objects in this block s;. Even though the sweep phase has

29

not yet taken place, n; already reflects the state after the complete collection. Then we

calculate

livesize = Z np - (s; — 8)
beheap-blocks

The —8 correctly accounts for the header word we add to each heap object. We write
the time, the garbage collection number, and the live-size out to disk.

Note that we are using the size of the objects as seen by BDW, which might be
rounded up from the size of the objects as originally requested by the user program (see
page 3.2).

For ease of comparison, we disallow garbage collections to be triggered implicitly.
Instead, we garbage collect after fixed time intervals r. Let ¢ be the number of bytes
allocated so far. We trigger a garbage collection before doing malloc(s) if and only if
t Zt+ s modr. This enables us to draw fair conclusions on the ratio of live-sizes for
different configurations at the same point of time.

Since those configurations that disallow explicit deallocation have fewer data
points than those where statistics get written out after each free(), we reconstruct the
live-size for the missing points of time. This is trivial due to the linear increase given
time as number of bytes allocated. We also reconstruct the number of bytes live imme-
diately before a deallocation, since we only record the number after that deallocation.
Finally, to get the numbers for explicit deallocation without garbage collection, we do
a run with garbage collection and just subtract the total number of bytes freed so far

from the total number of bytes allocated so far.

6.3 Ft and bc

Although these benchmarks display an interesting heap allocation behavior, there
is no difference in the effectiveness of the various configurations at garbage collection

times. We let the garbage collections be triggered implicitly instead of forcing it at fixed

30

intervals, and use the results to shed some light on the unmodified behavior of BDW
and on our measurements.

Figure 6.1 shows the results for ft. We see that there is a garbage collection after
1691504 bytes of allocation which reclaims only a tiny amount of storage, and another
one at program exit. We explicitly inserted the garbage collection at program exit. It
shows that BDW is able to reclaim all the storage that the programmer returned with
free(), but it does not do so as timely as the programmer did. What we do not see
is that there were also garbage collections after 205776, 413 824, and 672976 Bytes of

allocation: those did not find any dead objects.

ft
2500000 T T T T

2000000

1500000

live bytes

1000000 —

500000

O 1 1 1 1
0 500000 1000000 1500000 2000000 2500000
bytes allocated

Figure 6.1: Results for ft.

Figure 6.2 shows the results for bc. Note that the slope of the individual lines
looks higher only because the z-axis has a much smaller scale than the y-axis; in reality,
all slopes in all our graphs are either +45% or —90%. Having this in mind, we can also
read the seemingly fat line for free for what it is: a lot of tiny saw teeth, one per call to

free(). This graph shows that BDW gets called quite frequently, since the heap keeps

31

growing to about double the live-size if you disable explicit deallocation. Periodically,
BDW increases the heap size, which allows it to collect less frequently for a while.
Note also that the garbage collection at the end of the program, which, again, would

not have happened without our explicitly inserting it, reclaims more memory than the

programmer explicitly frees.
bc

|

1000000 T . ; .
)
|
i j 1 |
b i
I | [EEEEERERE
T
)
T R R N
R I
I ININ ! | |)
| I fEn e e oo
600000 - " B i o
UL e e
A‘Jln JH'H',' R T
4 IRRRE EEERR NIRRT IR P
2 AN R R R I R
[RN RN I prn ! NI
> R T R A R R R R R
2 IR N A R R R R T [
2 I R A B
R R T I I A R I
g R R T A N R R
' . , I T R T T) o
= i | NN U R I R ! ! | hapabtlr
! Vit A A R A T I B A |
IEERREREN Dupbre T ! i
P ey e by e e e e o
400000 I S T M“"’"‘“"“ -
IR b win N »
R SRR R i
R SRR R R R AR Lekass
| R | W by
T A
T iy
TR R S R AR
R I '
I R bk
A e e o
A R R AR RN, e
n RN
AR AR
R R R R i
200000 G R
Dty e
Sy
TR
" !
y
1 | |)

0
5000000 10000000
bytes allocated

Figure 6.2: Results for bc.

These graphs demonstrate that even if you abstract from fragmentation issues
and even if accuracy makes no difference, the use of a garbage collector may lead to
a much larger memory footprint. That is caused by the fact that garbage collections
tend to reclaim memory later than explicit deallocation. In the rest of this chapter,

we ignore these timeliness issues and concentrate on the live-size directly after garbage

collections, instead.

32

6.4 yacr-2

For this benchmark, explicit deallocation is more effective than accurate gc, which
in turn is more effective than conservative gc. Figure 6.3 shows the results.

The first and only free()s happen after 228 544 Bytes of allocation and gain 38 632
Bytes. For the garbage collections, we disabled explicit deallocation. The collections
after 8648, 128 736, and 199 704 Bytes do not reclaim anything. After 249 688 Bytes,
the garbage collector with accurate information reclaims almost as much as the explicit
free() did, while the conservative collector does less well. At the very end of the program,
the garbage collector finds objects to reclaim which the programmer did not bother to
return.

We found that the only accurate information that mattered here was that for
global objects. That is, with accurate information about heap or stack only, the ef-
fectiveness of the conservative collector was not improved. Where the conservative
collector was least effective, 92.35% of the data was left alive by free(), and 93.40% was
left alive by the accurate collector. That means that for this benchmark, while there

were differences, they were not excessive.

6.5 gzip

This program exhibits the strongest differences in effectiveness for the various
configurations. While explicit deallocation repeatedly frees all live heap objects, accu-
rate collection never quite reaches that, and conservative collection performs even worse.
Figure 6.4 shows the results.

At all times, there is only a small number of live objects; even with the conser-
vative collector, there are never more than 46. Allocation happens at such a coarse
granularity that explicit deallocation falls neatly together with the garbage collections.

Since we explicitly collect garbage before allocations that increase the number of allo-

(a)

live bytes

live bytes/live bytes with conservative gc

300000

250000

200000

150000

100000

50000

1.2

0.8

0.6

0.4

0.2

33

yacr2
T T T T T
free —
gctg -
gc -
A 1
1 1 1 1 1
50000 100000 150000 200000 250000 300000
bytes allocated
yacr2: ratios
T T T T T
free ©
ge+g +
P nssssossosiooiesosoooooeos D R R R b LR R b R -
s +
1 1 1 1 1
50000 100000 150000 200000 250000 300000

bytes allocated

Figure 6.3: Results for yacr-2.

live bytes

live bytes/live bytes with conservative gc

18000

16000

14000

12000

10000

8000

6000

4000

2000

1.2

0.8

0.6

0.4

0.2

bytes allocated

Figure 6.4: Results for gzip.

gzip
T T T T T
conservative ——
accurate -----
free ----- B
1 1 1 1 1
5000 10000 15000 20000 25000 30000
bytes allocated
gzip: ratios
T T T T T
free ©
gcth +
rrrrrrrrr e |
N]
+
@ -
1 1 1 1 1
5000 10000 15000 20000 25000 30000

34

35

cated bytes over a threshold, we only get a regular gc “rhythm” if the size of individual
objects is small compared to the total allocation, which is not the case here. The ac-
curacy matters only one time, for the collection after 16 032 allocated Bytes. Here, the
conservative collector keeps 46 objects around, while the accurate collector only keeps
3 objects with 2928 Bytes total.

The scatter plot in figure 6.4 (b) shows how large a fraction of Bytes free() and
accurate collection keep alive as compared to the conservative collector. This time,
the only area for which accurate information mattered was the heap. We see that the
accurate collector retains 43.62% of the data the conservative collector does at the one

point where there is a difference.

6.6 sed

The original heap memory behavior of sed is that it builds up some data structures
until it reaches a plateau, and then calls malloc() and free() at about the same rate.
Figure 6.5 shows the results.

Again, accurate collection is more effective than conservative collection. What
is new is that most of the time, both garbage collection mechanisms are even more
effective than explicit deallocation. This means that there is a small memory leak in
the sed benchmark.

At the second garbage collection after 9808 bytes of allocation, accurate garbage
collection is marginally better than conservative collection, with a ratio of 99.84%. At
the same time, explicit deallocation is visibly better than conservative garbage collection,
with a ratio of 92.56%. We also ran the program with accuracy and free() both enabled,
and found that they supplemented each other, yielding a ratio of 92.40%.

The results for the garbage collections 3-7 is quite similar. With only explicit
deallocation, the number of live bytes is consistently ca. 100.93% of that for conservative

garbage collection at gc points. With accurate garbage collection, the number of live

live bytes

live bytes/live bytes with conservative gc

30000

25000

20000

15000

10000

5000

1.2

0.8

0.6

0.4

0.2

36

Figure 6.5:

sed
T T T T T T
free —
gc+shg ———-—
gc -
L y]
/|
VR
-) // }/,/ .
///
L /]
///
/.
1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000
bytes allocated
sed: ratios
T T T T T T
free ©
gc+g +
o o G S G g g -
&
1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000

bytes allocated

Results for sed.

37

bytes is consistently ca. 98.02% of that for conservative collection. We see that the

differences are only marginal for this benchmark.

6.7 ijpeg

This benchmark allocates with 164 Megabyte the largest amount of heap storage,
which unfortunately makes our figure 6.6 hard to read. Surprisingly, the behavior of the
original program without garbage collector is very similar to that with garbage collector.

Here, it happens occasionally that free() perform worse than either accurate or
conservative garbage collection. Otherwise, accurate garbage collection and explicit
deallocation are identical.

Most of the time, accurate gc is either as bad as or only slightly better than
conservative gc in terms of effectiveness, meaning that it keeps 99-100% of the data
alive that conservative gc does. But there are exceptions where it keeps only 74.47%
as many bytes around, meaning that the conservative collector encountered values it
wrongly interpreted as pointers to a lot of live data. Those values all resided in global

objects.

38

ijpeg

free
gc+shg ———-—

go -

1.2e+07

(a)

le+07
8e+06 |-

6e+06 -

SalAq anl|

4e+06 -

2e+06

1.2e+08 1.4e+08 1.6e+08 1.8e+08

2e+07 4e+07 6e+07 8e+07 1le+08
bytes allocated

0

ijpeg: ratios

free ©
gc+g +

PS4

12

1§09 Bgbed S BB S BIHBBID S SIYP S S S b VpaIBD SB HB S $P HI> S S § A S P $B § O OP $59

I I I
@ © ~
o o o

26 aAIleAIaSUOD UM SB1AQ BAI|/SBIAQ BAl|

0.2 -

1.2e+08 1.4e+08 1.6e+08 1.8e+08

4e+07 6e+07 8e+07 le+08
bytes allocated

2e+07

0

Figure 6.6: Results for ijpeg.

Chapter 7

Related Work

7.1 Barlett 1988

The technical report that describes Barlett’s mostly copying garbage collector [4]
includes an interesting evaluation of its effectiveness. It compares four variants of the
garbage collector for Scheme that differ in their accuracy for stack roots. All variants
assume perfectly accurate information for the heap. Barlett’s GC-0 is stack accurate,
the only pointers it is not sure about reside in registers. Barlett’s GC-2 is about as
conservative for the stack as the Boehm-Demers-Weiser collector we use, it considers
each aligned stack word that seems to point into some object a pointer.

For both his benchmarks, Barlett finds that GC-0 is more effective than GC-2, but
only slightly so. He records the fractions of the heap retained at each garbage collection,
but they cannot be directly compared for the different garbage collector variants since
the garbage collections are not triggered at the same time. Another difficulty is that it
is not clear what exactly is the metric for heap size.

This paper complements our findings. In our experiments, we never saw an effect
of stack accuracy, and we never saw differences in gc effectiveness for programs compiled
from or interpreting other languages than C. GC-0 corresponds to our gc+shg and GC-
2 to our gc+hg configuration, and thus Barlett’s results give samples for a difference

between these.

40

7.2 Zorn 1993

Zorn’s technical report [27] compares BDW to four widely used explicit allocators.
Zorn measures the CPU time, memory usage, page fault rate and cache miss rate.
For the performance metrics, he finds that BDW performs about as well as the other
algorithms.

In principle, Zorn uses the configurations gc and free that we considered in our
experiments. He does not directly evaluate effectiveness, though. Instead of counting
bytes in live objects, he gives the whole memory usage of the allocator. This focuses on
exactly those fragmentation issues of the specific allocators which we abstracted from.
He finds that under this metric, BDW uses 30% to 150% more storage than explicit
deallocation. One curious note is that Zorn reports yacr to have a serious memory leak.
For our benchmark yacr-2, this has obviously been fixed, since we find that BDW does
not reclaim more storage than free().

This paper nicely complements our experiments. We did not consider the CPU
performance, since such measurements are meaningless on our instrumented programs.
Zorn did not consider effectiveness or accuracy, since he focuses on the total memory

footprint of his benchmarks.

7.3 Other garbage collector comparisons

Hicks, Moore and Nettles [15] compare different copying garbage collectors for
efficiency. They find that low-level optimizations can gain a remarkable speedup. The
scope of their paper includes garbage collection on heaps of Java and SML programs on
different architectures. On the other hand, they are not concerned with effectiveness:
the only accuracy configuration they use is total accuracy, abbreviated as gc+shg in our
results chapter.

Smith and Morrisett’s paper [18] introduces a mostly-copying garbage collector

41

MCC which reuses and adds to Barlett’s ideas. MCC and BDW are similar in their
conservativism, MCC even allows inaccurate information for the heap in some objects.
Smith and Morrisett report that their garbage collector’s overall performance is better

than that of BDW, but that it also results in a larger overall memory footprint.

7.4 Allocation and deallocation behavior

Zorn and Grunwald [28] study the malloc()s and free()s in six C programs, all but
one of which Zorn used one year later in the technical report [27] discussed above. They
find that there are usually many small and few large objects, many short-lived and few
long-lived objects, and many objects of only a few object sizes. Surprisingly, they even
find that there are significant clusters of inter-arrival times of allocations, where time is
measured in cycles.

Stefanovié¢ and Moss [21] investigate the object behavior for SML programs. Like
Zorn and Grunwald, they also find that there are many short-lived and few long-lived
objects, but they come to that conclusion with a very different methodology. Stefanovié
and Moss count the total volume of bytes that survive at least one garbage collection,
and vary the parameter that determines how frequently garbage collections need to
happen. That means that lifetime of objects is measured in bytes of allocation, not
cycles, and an object becomes dead as soon as it is unreachable. The lowest object
lifetime they can measure is 32000 Bytes, and more than 98% of all objects die before

they reach that age.

7.5 Adding accuracy

In [12], Diwan, Moss and Hudson describe the technique of stack maps. They
explain how even for type-safe languages like Modula-3, due to optimizations finding
the accurate root pointers may be difficult. As a solution, the compiler generates maps

that, for each point at which garbage collection is allowed to happen, help recover

42

accurate pointer/non-pointer for the stack.

The stack map technique has also been used by Agesen, Detlefs, and Moss [1],
and by Stichnoth, Lueh, and Cuerniak [22] for supporting garbage collection in Java
Virtual Machines. Both papers describe that one can easily incorporate a limited form
of liveness information into the stack map. Consider a local variable p that will never
be dereferenced in the future. Let o be the object pointed to by p. If no other pointers
point to o, then o can be safely reclaimed even though it is still reachable.

Furthermore, these last two papers also describe solutions to the jsr problem.
The problem is that for one special situation in Java byte-code, you cannot statically
determine which stack slots hold pointers and which don’t. In other words, you do not
have stack accuracy, which you need for copying garbage collection. They solve this by

splitting variables or by dynamically finding the missing information.

8.1

Summary

Chapter 8

Conclusion

Table 8.1 summarizes the results from our experiments. For each benchmark and

accuracy configuration, we look at the quotient of the live-size with that configuration

and the live-size with the conservative BDW. The table reports the minimum and maxi-

mum of this quotient across all garbage collections that happened during the benchmark

run. We sorted the benchmarks differently in this table than in tables 5.1 and 5.2 for

clarity of exposition.

Table 8.1: Summary of Results.

gets geth getg free getshgtfree
gc gc gc gc gc
Benchmark | min max min max min max min max min max
gectest3 1 1 1 1 1 1 | designed for gc | designed for gc
getest 1 1 1 1 1 1 | designed for gc | designed for gc
bshift 1 1 1 1 1 1 | designed for gc | designed for gc
li 1 1 1 1 1 1 | designed for gc | designed for gc
anagram 1 1 1 1 1 1 1 1 1 1
ks 1 1 1 1 1 1 1 1 1 1
ft 1 1 1 1 1 1 1 1 1 1
bc 1 1 1 1 1 1 1 1 1 1
gzip 1 1] 0.4362 1 1 1 0 1/0 0 1
yacr-2 1 1 1 1] 0.9340 11 0.9235 11 0.9235 1
sed 1 1 1 11 0.9731 11 0.9256 1.0094 | 0.9240 1
ijpeg 1 1 1 1| 0.7447 1| 0.7447 1.0059 | 0.7447 1

We see that stack accuracy never mattered for our benchmarks

. Note, however,

44

that we did observe stack accuracy effects for the example program in figure 1.1).

The most extreme results are those for gzip, where heap accuracy yields a 56.38%
gain over the conservative collector. In that benchmark, we also see situations where
explicit deallocation frees everything (min 0). At the end of the program, conservative
collection frees everything (max 1/0); this last collection is an artifact of our experiments
and would not happen in reality, though.

Surprisingly, most often, accuracy for globals is what improves the garbage col-
lector, by up to 25.53% for ijpeg. So far, we do not have an explanation for this.

Doing both garbage collection and explicit deallocation has an effect. Sometimes,
at one garbage collection point, gc is better than free, and at the next point this relation
is reversed. Using the combined approach gives us the better behavior at all times.

The bug mentioned on page 4.5.1 was found by observing inconsistencies in re-
ported statistics. We found it because we were wondering how free could perform better

than gc+free.

8.2 Reflection

The numbers show that for the benchmarks we used, it does make a huge differ-
ence whether you have a conservative garbage collector, an accurate garbage collector,
or just do free() manually.

There still remain other considerations, though. When you compile or interpret
programs from languages where the garbage collector comes with the language defini-
tion, not collecting garbage is not an option. When you want to do copying collection
or support gc in the presence of orthogonal persistence, conservativism is not an op-
tion (you can still do mostly-copying collection, though). We conclude that gaining a
little more accuracy for BDW is not an important goal, but coming up with complete
accuracy, at least for some memory areas, would be worthwhile.

Let us review where our runtime analysis did not find the true “limit” (see section

45

2.4). Tt propagates pointerness through operands like —, <, < etc., but these result in
small numbers which get filtered by BDW’s pointer/non-pointer distinction. It is flow
insensitive, but that corresponds to a type analysis and is quite realistic. It is context-
insensitive, meaning that we expect stack frame instances of the same type to have
pointers at the same offsets. This last point might be important, especially since we did

not see stack accuracy effects on our benchmarks for our concept of accuracy.

8.3 Future work

There are a number of ideas that are logical continuation of this thesis.

Modify our runtime analysis so that it corresponds to a context-sensitive pointer

analysis. Then see whether this suggests stronger effectiveness variations.

e Modify our runtime analysis so that it also does a limit study for pointer liveness.
How much more effective could the garbage collector be if it knew exactly which

pointers will be dereferenced in the future?

e Do the same liveness-limit-study for Java.

e [nvestigate ways to provide accuracy for C. Starting points are the stack map,
splitting, and dynamic type recording and recovery techniques reported in the

literature for Modula-3 and Java [1, 12, 22].

[1]

Bibliography

Ole Agesen, David Detlefs, and Eliot Moss. Garbage collection and local variable
type-precision and liveness in java virtual machines. In PLDI’98, pages 269-279,
May 1998.

Todd Austin. Pointer-intensive benchmark suite. http://www.cs.wisc.edu/ austin/
ptr-dist.html.

Joel Barlett. Garbage collector sources. ftp://gatekeeper.dec.com/pub/
DEC/CCgc/.

Joel Barlett. Compacting garbage collection with ambiguous roots. Technical
report, Western Research Laboratory, Digital Equipment Corporation, February
1988.

Joel Barlett. Mostly-copying garbage collection picks up generations and C++,
technical note TN-12. Technical report, Western Research Laboratory, Digital
Equipment Corporation, October 1989.

Jeffrey Barth. Shifting garbage collection overhead to compile time. CACM, pages
513-518, July 1977.

Hans Boehm, Alan Demers, and Mark Weiser. A garbage collector for C and C++.
http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

Hans-J. Boehm, Alan Demers, and Scott Shenker. Mostly parallel garbage collec-
tion. In PLDTI’91, pages 157-164, November 1991.

Hans-J. Boehm and Mark Weiser. Garbage collection in an uncooperative environ-
ment. In PLDI’88, pages 807-820, September 1988.

David Chase, Mark Wegman, and Kenneth Zadeck. Analysis of pointers and struc-
tures. In PLDI’90, pages 296-310, June 1990.

Ramkrishna Chatterjee, Barbara Ryder, and William Landi. Relevant context
inference. In POPL’99, pages 133-146, January 1999.

Amer Diwan, Eliot Moss, and Richard Hudson. Compiler support for garbage
collection in a statically typed language. In PLDI'92, pages 273-283, July 1992.

[13]

[20]

[21]

22]

[24]

[25]

[26]

[27]

28]

47

Maryam Emami, Rakesh Ghiya, and Lauri Hendren. Context-sensitive interpro-
cedural points-to analysis in the presence of function pointers. In PLDI'94, pages
242-256, June 1994.

GNU. Gnu ftp list. http://www.gnu.org/order/ftp.html.

Michael Hicks, Jonathan Moore, and Scott Nettles. The measured cost of copying
garbage collection mechanisms. In Functional Programming, pages 292-305, June
1997.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via
3-valued logic. In PLDI’99, pages 105-118, January 1999.

Marc Shapiro and Susan Horwitz. Fast and accurate flow-insensitive points-to
analysis. In POPL’97, pages 1-14, January 1997.

Frederick Smith and Greg Morrisett. Comparing mostly-copying and mark-sweep
conservative collection. In International Symposium on Memory Management,
pages 68—78, October 1998.

Standard Performance Evaluation Corporation SPEC. Cint95 benchmarks.
http://www.spec.org/osg/cpu9db/CINTI5/.

Bjarne Steensgaard. Points-to analysis in almost linear time. In POPL’96, pages
32-41, 1996.

Darko Stefanovi¢ and Eliot Moss. Characterization of object behaviour in Standard
ML of New Jersey. In LISP and Functional Programming, pages 43-54, June 1994.

James Stichnoth, Guei-Yuan Lueh, and Michaet Cuerniak. Support for garbage
collection at every instruction in a java compiler. In PLDI’99, pages 118-127, May
1999.

Stanford University SUIF Research Group. Suif compiler system version 1.x.
http://suif.stanford.edu/suif/suifl /index.html.

Paul Wilson. Uniprocessor garbage collection techniques. In International
Workshop on Memory Management, pages 1-42, September 1992.

Paul Wilson, Mark Johnstone, Michael Neely, and David Boles. Dynamic storage
allocation: A survey and critical review. In International Workshop on Memory
Management, pages 1-78, September 1995.

Robert Wilson and Monica Lam. Efficient context-sensitive pointer analysis for C
programs. In PLDI’95, pages 1-12, June 1995.

Benjamin Zorn. The measured cost of conservative garbage collection. In
Software—Practice and Experience, pages 733-756, July 1993.

Benjamin Zorn and Dirk Grunwald. Empirical measurement of six allocation-
intensive C programs, CU-CS-604-92. Technical report, University of Colorado at
Boulder, July 1992.

