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ABSTRACT

While Python is increasingly popular, program analysis tooling for

Python is lagging. This is due, in part, to complex features of the

Python language—features with difficult to understand and model

semantics. Besides the “usual suspects”, reflection and dynamic

execution, complex Python features include context managers, dec-

orators, and generators, among others. This paper explores how

often and in what ways developers use certain complex features. We

analyze over 3 million Python files mined from GitHub to address

three research questions: (i) How often do developers use certain

complex Python features? (ii) In what ways do developers use these

features? (iii) Does use of complex features increase or decrease

over time? Our findings show that usage of dynamic features that

pose a threat to static analysis is infrequent. On the other hand, us-

age of context managers and decorators is surprisingly widespread.

Our actionable result is a list of Python features that any “minimal

syntax” ought to handle in order to capture developers’ use of the

Python language. We hope that understanding the usage of Python

features will help tool-builders improve Python tools, which can in

turn lead to more correct, secure, and performant Python code.
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1 INTRODUCTION

Dynamic languages such as Python are increasingly popular. Python

in particular is widely used in data science and machine learning1.

Unfortunately, static analysis tooling for Python is not widely devel-

oped or used, while such tooling could undoubtedly benefit Python

development. Most research prototypes (e.g., [10, 16, 22, 26, 28])

1see https://www.aitrends.com/data-science/here-are-the-top-5-languages-for-
machine-learning-data-science/
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as well as GitHub projects (e.g., [1, 2, 4, 5, 11]) we are aware of

that target static analysis for Python are ad-hoc explorations of

AST constructs; they redefine classical analyses and provide no

correctness guarantees as they are forced to ignore many Python

features.2

The principal problem, we conjecture, is that Python is rich in

what we dub complex features. These include classical dynamic

features such as reflection and dynamic code execution with eval,

as well as features such as context managers [3], decorators3, and

generator expressions4. The semantics of these features is either

inexpressible statically, or it is poorly understood, or it requires

careful consideration as it significantly complicates static analysis.

Typical flow-sensitive static analysis works on a 3-address-code

control-flow graph (CFG) intermediate representation (IR) of the

program source code. Most programming languages (e.g., C, C++

and Java) have an established translation from the higher-level AST

representation of the program to a 3-address-code CFG IR, carried

out by widely-used frameworks, most notably LLVM5, WALA6,

Soot7, and DOOP8. Following the translation, one can define a

wide variety of analyses, such as classical dataflow analysis, pointer

analysis, and call graph construction on this representation. As

another point, typical flow-insensitive analysis ignores control-flow

and translates the AST into a sequence of 3-address statements:

1 x = new A # object creation

2 x = y # assignment

3 x.f = y # update

4 x = y.f # field read

5 x = y(z) # y evaluates to a function value

Unfortunately, there are few tools that translate the Python

AST constructs into either the flow-sensitive CFG IR or the flow-

insensitive sequence of statement. WALA includes a Python front-

end [8], and Scalpel aims to provide a suite of Python analysis

facilities [14]. Aside from these, at this point, Python cannot take

advantage of analysis and algorithms that have been developed

throughout decades of research. Even something as basic as call

graph construction analysis for Python remains an open problem —

the first call graph analysis was published in 2021 [26] and although

it handles a larger subset of features compared to previous attempts,

it is still an ad-hoc analysis over the AST and leaves out soundness

reasoning and the handling of flow of values. Surprisingly, pointer

2Fromherz et al [10] define a subset of the Python syntax and carry out sound static
analysis over this subset; our results show the syntax misses a significant portion of
developer code.
3https://www.python.org/dev/peps/pep-0318/
4https://www.python.org/dev/peps/pep-0289/
5https://llvm.org/
6https://github.com/wala/WALA
7http://soot-oss.github.io/soot/
8https://bitbucket.org/yanniss/doop/src/master/
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analysis, which has been studied for decades in Java and C and can

benefit Python applications, is an open problem in Python.

To illustrate the daunting task a program analysis faces, consider

one complex feature, the with statement [3]:

1 with expr [as var]: stmt_seq

The idea of the with statement is that expression expr evaluates

to a context manager object and the context manager object is

responsible for the handling of exceptions and resources related to

the execution of stmt_seq. The typical example is the handling of

files and streams:

1 with open(...) as file:

2 for line in file ...

The open(...) expression opens the file but it also creates a context

manager object, whichwraps around the body of thewith statement,

handles exceptions, and releases resources (e.g., closes a file).

The one-line with construct is syntactic sugar for the following

non-trivial sequence (see the Python documentation):

1 manager = (expr) # evaluation of expr returns context manager

2 enter = type(manager).__enter__

3 exit = type(manager).__exit__

4 value = enter(manager) # evaluates to an object, e.g., the file object

5 hit_except = False

6 try:

7 var = value

8 stmt_seq

9 except:

10 hit_except = True

11 if not exit(manager, ∗sys.exc_info()):

12 raise

13 finally:

14 if not hit_except:

15 exit(manager, None, None, None)

Evaluation of expr returns a context manager object whose class

implements the special __enter__ and __exit__ methods. Clearly, it

is non-trivial to translate this code into a 3-address code CFG IR

(we are not aware of an analysis that does); translation requires

handling of try-except-finally semantics, as well as context manager

semantics. A context manager can be built-in (e.g., open), defined in

a standard library such as contextlib, defined in a third-party library,

or user-defined. This complicates even the more straightforward

flow-insensitive analysis.

The complexity of Python motivates the study in this paper. We

explore Python code in the wild to find out whether, and in what

ways, developers actually use complex features. This empirical

exploration helps determine whether one could define a “Feath-

erweight Python” syntax, a subset of AST constructs that covers

a reasonably large portion of developer code, while at the same

mapping into known CFG IR (or flow-insensitive IR) and allowing

for reuse of existing sound static analysis technology.

Concretely, we mine feature usage over two datasets of public

Python repositories collected from GitHub. One dataset reflects a

snapshot from March 2019 and the other dataset reflects a snapshot

from November 2021. Each dataset includes millions of files and

hundreds of thousands of GitHub repositories.

We define the following categories of complex features and mine

the two datasets for occurrence of these features.

(1) dynamic features (e.g., getattr, eval);

(2) functional features (e.g., list comprehensions, yield statements);

(3) decorators (e.g.,@property);

(4) context managers (i.e., the with statement); and

(5) asynchronous execution (e.g., AsyncFunctionDef).

The dynamic features require minor analysis of the Call AST

construct; the rest of the features correspond to syntactic AST

constructs. For example, list comprehensions are parsed into the

ListComp AST construct. Sect. 2 details the exact sets of features

we mine and the mining methodology. We present aggregate usage

numbers, histograms that break down usage within each category,

results on how these categories overlap, as well as qualitative anal-

ysis of code. We address the following research questions.

• RQ1. How often do developers use complex features?

• RQ2. In what ways do developers use complex features?

• RQ3. Does use of complex features increase or decrease over

time?

Our findings can be viewed as both positive and negative. For

example, usage of dynamic features that pose a threat to static

analysis is infrequent (e.g., eval and setattr are rarely used, and

getattr is most commonly used with a constant string argument).

On the other hand, usage of context managers and decorators is

surprisingly widespread. Our actionable result is a list of Python

features that any "Featherweight Python" ought to handle in order

to capture developers’ use of the Python language. Subsequently,

static analysis ought to define a translation semantics for them

and handle them in an efficient and (desirably) sound way. Our

final observation is that usage of complex feature has not changed

significantly over time.

In addition to the implications for static analysis, we hope this

paper will also be interesting for the broader Python community.

Understanding feature usage can help with documentation and edu-

cation. It can inspire new features and tooling beyond static analysis.

And, even more broadly, understanding adoption of Python features

could inform design decisions for other programming languages.

2 METHODOLOGY

Sect. 2.1 describes our datasets, Sect. 2.2 presents the mining anal-

ysis and details the features that we mine, and Sect. 2.3 briefly

discusses manual code examination.

2.1 Datasets

Our goal is to study Python features as they occur in Python projects

in the wild. This requires us to obtain as many Python projects

as possible and the projects should not be restricted or filtered,

eliminating bias towards projects of scale or of any particular pur-

pose. The projects that we obtain are open-source repositories from

GitHub. Some of them implement stand-alone programs, others

reusable libraries. We used a query to mine GitHub public reposito-

ries9. We ran this query twice, obtaining two datasets of Python

projects: one dataset reflects a capture from March 20, 2019, and

the other dataset reflects a capture from November 11, 2021.

9https://github.com/wala/graph4code/blob/master/extraction_queries/bigquery.sql
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Due to the tools we use, the Python AST library specifically10,

projects with syntax errors are not included in the final counts. As a

reference point, out of 3,844,561 files in the 2021 dataset, 750,392 files

are excluded due to the Python AST library issuing syntax errors.

The 2019 dataset contains 70,826 GitHub repositories from 49,456

organizations; we analyzed 1,207,916 files. The 2021 dataset contains

51,493 GitHub repositories from 30,182 GitHub organizations; we

analyzed 3,094,169 files.

2.2 Mining Complex Features

Upon acquiring the data, all files are put through a mining tool we

developed11. The Python AST library parses the source code and

creates the standard syntax tree structure. Syntactic constructs have

their nodes in the syntax tree; for instance, a function definition is

parsed into the FunctionDef AST construct/syntax tree node. We

analyze the syntax tree and record occurrences of AST constructs.

All records of occurrences include the name of the file, type of

the construct, line number, and origin. For functional features, it is

sufficient to record the type of the AST construct (e.g., a list compre-

hension corresponds to the ListComp AST construct); for dynamic

features we analyze function calls and record when the function

name matches the target function names (e.g., a call getattr(...) is

parsed into the Call AST construct; with its func component being

the Name ‘gettattr’).

We mine the following dynamic features: getattr (returns the

value of the attribute of an object), setattr (sets an attribute of

an object), delattr (deletes the attribution), hasattr (returns true

if the object has the attribute), and eval and exec (dynamic code

execution). A dynamic feature is recorded when the tool encounters

a Call construct whose function name matches one of those names.

We mine the following functional features: lambda (the stan-

dard anonymous function definition), set comprehension, dictionary

comprehension, and list comprehension (comprehensions take an

element expression that defines how the set, dictionary, or list is

filled in), and yield, yieldFrom, and generator expression (similarly

to comprehensions generators take an element expression, how-

ever, the expression is evaluated when retrieved from the generator

structure). They all correspond to AST constructs, i.e., nodes, and

they are recorded accordingly. For example, in the code snippet:

1 a = [1,2,3]

2 b = [x∗∗2 for x in a]

the right-hand-side of the second line is parsed as the ListComp

AST construct and it is recorded in the analysis as the functional

feature list comprehension.

Our motivation to classify and study comprehensions and gener-

ators as functional features stems from their importance in Haskell.

In Haskell list comprehensions are syntactic sugar for building

computations over the list monad12.

Decorators includes any decorators. We record all decorators

that are parsed into a FunctionDef AST construct, AsyncFunctionDef

AST construct, or ClassDef AST construct. Each decorator’s name

is recorded. For example:

10see https://docs.python.org/3/library/ast.html
11All scripts can be found here: https://github.com/2042Third/ast_analysis_python
12see https://wiki.haskell.org/List_comprehension and https://wiki.haskell.org/All_
About_Monads#Exercise_3:_Using_the_List_monad

1 @classmethod

2 def from_json(cls, json):

3 return _RANGE_ITERATORS[json["name"]].from_json(json)

The@classmethod decorator expression is parsed in the Function-

Def.decorator_list AST construct and recorded in our study as a

decorator of name “classmethod”.

Decorators are a complex feature because they alter control flow

of the program. In the above example classmethod is a built-in

function and the above syntax is roughly equivalent to from_json =

classmethod(from_json) which transforms the from_json instance

method into a class method; it is a burden on the programmer to

ensure that the classmethod is called on class objects and it accesses

only class fields and no instance fields. Furthermore, decorator code

can be built-in, part of a standard library, third-party library or user

code, which presents challenges for static analysis.

The With AST construct leads to the invocation of a context

manager, which facilitates exception handling and bookkeeping, as

discussed in the introduction. The canonical example is files:

1 with open("file.txt") as a:

2 print(a.content())

There is an AST construct with. Our analysis records the occur-

rences ofwith constructs as well as the expressions that are enclosed

in with. In the above example, we record a call to built-in function

open.

Async is a newer feature of Python, introduced in Python 3.7,

which was released in 2018. We record an async feature if there

is an AsyncFuncionDef, AsyncFor, or AsyncWith nodes in a given

Python program’s syntax tree.

2.3 Manual Source Code Examination

To better understand the usage of certain features by developers we

manually examine the source code. The source code for examination

is randomly selected (30 to 50 files for a target feature).

The manual examination classifies and estimates the general

purpose for a feature, which is then used to invalidate or support

an assumption made about it. We use these rules when carrying

out manual code examination:

(1) The classification or estimation of a feature should be deter-

mined from a single file’s context, otherwise it is not included

in the manual source code analysis.

(2) Non-Python text can be used as evidence to the high-level

purpose of a segment of code or a program, including documen-

tation, comments, and file names.

(3) Python’s variable, class, and statement names in the file can be

used for usage classification or estimation.

3 RESULTS

We address RQ1 (Sect. 3.1), RQ2 (Sect. 3.2), and RQ3 (Sect. 3.3).

3.1 RQ1: How Often Do Developers Use
Complex Features?

Tab. 1 and Tab. 2 show the frequency of occurrence of complex

features across our datasets. For all complex feature categories

except for Async, occurrences are found in a large percentage of
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Feature Frequency(files) %

FNL (functional) 817,345 26.416

DYN (dynamic) 401,395 12.973

DEC (decorators) 386,134 12.479

WTH (with) 385,613 12.463

ASC (async) 1,831 0.059

Table 1: Per file data from 2021 dataset. E.g., functional fea-

tures (FNL) are used in 26% of all Python files.

Feature Frequency(files) %

FNL (functional) 340,158 28.161

DYN (dynamic) 196,472 16.265

DEC (decorators) 175,828 14.556

WTH (with) 112,481 9.312

ASC (async) 2,353 0.195

Table 2: Per file data from 2019 dataset.

files in both datasets. To shed additional light on prevalence, we

took a snapshot of the usage of dynamic, functional, and decorator

features per GitHub repository and per GitHub organization. The

Venn diagram in Fig. 1 shows the occurrence of these features per

repository and the one in Fig. 2 the occurrence per organization.

About 50% of repositories use one of these features; interestingly,

there is a large overlap among the features (in about 18% of reposi-

tories), which shows that developers who use one complex feature

are more likely to use others as well. We elaborate on the overlap

and the differences between the 2019 and 2021 results in Sect. 3.3.

Fig. 2 shows that nearly all organizations use one of the features.

3.2 RQ2: In What Ways Do Developers Use
Complex Features?

To address the second research question, we break down the usage

within each broad category. We also examine code manually to

better understand usage, particularly in cases when the results

surprise us.

3.2.1 Dynamic Features. In the general case, dynamic features

present an unsurmountable burden for static analysis. For example,

eval, where the argument expression is constructed, parsed and

interpreted at runtime, cannot be resolved statically. However, dy-

namic data is often available before program execution rendering

the use of a dynamic feature unnecessary. Richards et al. study

usage of eval in JavaScript and identify a significant percentage of

unnecessary use [25].

Figure 3 shows the histogram of the dynamic features in the

2021 dataset. One observation is that eval and exec occur relatively

infrequently. The built-in dynamic attribute getters and setters,

namely getattr, hasattr, and setattr, dominate in our results and

fortunately, they often can be handled soundly by a static analysis.

We examine 30 randomly selected files that contain dynamic

features and 30 uses occurring in these files. (If there are multiple

Figure 1: Per-repository features from the 2021 dataset.

Figure 2: Per-organization features from the 2021 dataset.

uses of dynamic features, we randomly settle on one.) Based on our

experience, we believe that in 5 cases dynamic features cannot be

handled by static analysis, while in 24 cases they can be handled

soundly in the analysis. In the 24 cases where dynamic features

can be handled by static analysis, the majority are getattr accesses,

where the attribute argument is a string constant, i.e., it is known
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Figure 3: The frequency of overall dynamic features in Python, counting the number of occurrences of each construct across

all files in the 2021 dataset.

before program execution what attribute of the target object the

program may access at this point. For example,

1 # Cheap way of de−None−ifying things

2 hosts = hosts or getattr(dj_settings,'ES_HOSTS',DEFAULT)

3 timeout = (timeout if timeout is not None else

4 getattr(dj_settings,'ES_TIMEOUT',DEFAULT))

In this example, we may replace the dynamic call with direct

attribute access to dj_settings.ES_HOSTS. However, this misses

the default value — the semantics of getattr is that if the object

does not have the attribute argument, it returns DEFAULT. Thus,

to completely mimic the behaviors of this example, a flow-sensitive

static analysis may handle the case by reducing to a try/except

block, catching theAttributeError and assigning theDEFAULT value

accordingly. A flow-insensitive analysis may handle the case by

reducing it to a sequence of assignment statements. For example,

getattr(dj_settings,’ES_HOSTS’,DEFAULT) would reduce to

1 tmp = dj_settings.ES_HOSTS

2 tmp = DEFAULT

There are 17 programs that use Python for regex interpretation,

such as for reading raw HTTP packets and building relevant infor-

mation inside a Python object and dynamically creating Python

objects at runtime. Creating objects at runtime does not appear

to be essential in our examination. Most such programs are do-

ing so because the dynamically constructed structures are easily

manipulated late in the data’s lifetime.

This is an example of use of eval in a network setup program

from our dataset:

1 def fortios_ips(data, fos):

2 ...

3 methodlist = ['system_zone']

4 for method in methodlist:

5 if data[method]:

6 resp = eval(method)(data, fos)

7 break

8 ...

Clearly, the method is available before program execution and it is

unclear why the programmer used eval.

In 5 cases the dynamic features we observed cannot be easily

handled by static analysis. Consider the example below, which loads

a module dynamically, then queries the module object based on a

substring that is not known until runtime:

1 ...

2 try:

3 ...

4 module = __import__(path)

5 ...

6 for part in path.split('.')[1:]:

7 try:

8 module = getattr(module, part)

9 except AttributeError: return None

10 return module

We observe that hasattr, getattr, setattr, and delattr are some-

times used for extensions and updates. They would be used for

inspecting, deleting, creating or modifying objects at runtime. On

the other hand, statically typed languages can only read or modify

objects’ attributes at runtime. Developers may account for future

extensions by adding potentially redundant structures/classes in

static environments. This may lead to overhead in development

and in run-time memory, compared to dynamic methods.

Another observation is that dynamic features such as hasattr are

used in programs that do object "introspection" and observation; in

the 5 programs, 2 are programs that check the class of an object.

For example:

1 # list_max_show_all

2 if hasattr(cls, 'list_max_show_all') ...:

3 raise ImproperlyConfigured(...)

These programs inspect class objects and return information about

the structure of the class of the object. For example, one part of a pro-

gram is able to directly reverse-engineer the structure of input ob-

jects using combinations of dynamic features such as getattr(object,

"__name__", None) to reconstruct the source code.

286

Authorized licensed use limited to: IBM. Downloaded on June 24,2022 at 17:56:39 UTC from IEEE Xplore.  Restrictions apply. 



MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Yang et al.

These introspection-type features are difficult to handle by static

analysis. In a statically-typed language such as Java, an objects’

structure is determined at compile time and it does not change

during the objects’ lifetime.

3.2.2 Functional Features. Functional features do not inherently

impede static analysis. We have selected them for mining because

they do complicate the analysis — traditional analysis for impera-

tive object-oriented languages (the analysis that most closely fits

Python) does not handle functions as first class values, closures, or

infinite lists; it requires extensions to adapt to those features.

Functional features occur frequently, as shown in Tab. 1 and

Fig. 4. As discussed earlier, the functional features are computed

by counting AST constructs, such as ListComp. Not surprisingly,

list comprehensions and lambdas have the largest number of occur-

rences in code by far. On the other hand, we found the high number

of occurrences of Yield somewhat surprising.

Yield is used to define generator functions that allow for Haskell-

style infinite lists and lazy generation of elements of the list. For

example, in Haskell [1,_] represents the infinite list of positive

integers; the programmer can retrieve the elements of this list one

by one for as long as they are needed, but if they try to evaluate the

entire list (for example, to display on screen) the program descends

into infinite recursion. Yield-constructed generators have similar

functionality:

1 def ints():

2 i = 1

3 while True:

4 yield i

5 i = i +1

6

7 infinite = ints() # infinite is a generator object

8 print(infinite.__next__()) # prints 1

9 print(infinite.__next__()) # prints 2

10 ... # can print as many integers as needed

The above ints function returns a generator object. The first call

infinite.__next__() evaluates yield, and passes the value of 1 to the

main function. Control returns to the main function and it prints 1.

The next call to infinite.__next__() returns control to ints, where

the first yield left off; ints increments i, yields a second time and

returns control to main, and so on. The client can generate as many

integers as needed.

Python provides the GeneratorExp construct as well:

1 finite = (i for i in range(1,3)) # finite is a generator object

2

3 print(finite.__next__())

4 print(finite.__next__())

In the above example, finite is a generator object; its task is to gen-

erate two integers. The above use is similar to list comprehensions,

however, a list comprehension is fully evaluated while the elements

of the generator are produced one-by-one (e.g., as a result of calls

to __next__()). Note that if we try to get a third integer the program

terminates with an exception as we have reached the limit.

We were surprised by the high number of occurrences of yield

because the semantics of yield are non-trivial. A deeper look into

yield from the source code shines light on how developers use

yield as they use it almost as frequently as lambda. We examine 30

randomly selected files, and for all but 4 inconclusive cases, yield

appears to be used for Haskell-style lazy generation of elements.

In Haskell, lazy lists can improve the algorithmic complexity of

incremental data structures, such as Okasaki’s functional queues

and deques [18].

In most cases the callee passes a value to the caller using a return

statement and the value is fully evaluated. However, there are cases

where the callee passes a generator expression and the elements

are not fully evaluated. They are evaluated when they are needed.

Lazy evaluation or more precisely lazy generation of list elements

can have two applications. In one case, it may be beneficial to have

better run-time performance at generation time but a slowdown

at data access time. In another case, the bound on the number of

elements that are needed may not be known at generation time.

Consider this example from our 2021 dataset:

1 def ibytes2icompressed(source):

2 yield (

3 b'\037\213\010\000' +

4 # Gzip file, deflate, no filename

5 struct.pack('<L', long(time.time())) +

6 # compression start time

7 b'\002\377'

8 # maximum compression,

9 )

10 ...

11 for d in source:

12 ...

13 chunk = compressor.compress(d)

14 if chunk:

15 yield chunk

16 yield compressor.flush()

17 ...

Function ibytes2icompressed(source) returns a generator object.

The first element the client retrieves with __next__() is the times-

tamp (generated by the yield in Line 2), the subsequent elements

are the compressed chunks (the yield at Line 15), and the last el-

ement is the result of flush. Since the argument source can itself

be a generator, defining compression as a generator helps retain

the incremental nature of the data generation and transformation.

A benefit of this style of generator chaining is that intermediate

results need not be materialized in their entirety; for instance, the

result of compression could be streamed straight to disk or a socket.

Consider another example of usage from our dataset:

1 def gen_invalid_vectors():

2 '''Generate invalid test vectors'''

3 yield "",

4 yield "x",

5 while True:

6 ...

7 for template in templates:

8 val = gen_invalid_vector(...)

9 ...

10 if not is_valid(val):

11 yield val,
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Figure 4: The frequency of overall functional features in Python, counting the number of occurrences of each construct across

all files in the 2021 dataset.

In the case of the gen_invalid_vectors function, the generator

appears to abstract an infinite list of values — the number of vectors

that can be generated is unbounded at runtime (notice while True

in Line 5). Such usage allows for better flexibility and likely better

performance.

There are 10 cases where yield abstracts away application logic

and makes it available as a generator. In these cases, a function

codes a set of application-specific logic rules and yields a sequence

of corresponding elements. For example:

1 def tokens(self, event, next):

2 kind, data, pos = event

3 if kind == START:

4 tag, attribs = data

5 name = tag.localname

6 namespace = tag.namespace

7 ...

8 if ...:

9 for token in self.emptyTag(...):

10 yield token

11 else:

12 yield self.startTag(...)

13

14 elif kind == END:

15 ...

16 if name not in voidElements:

17 yield self.endTag(namespace, name)

18

19 elif kind == COMMENT:

20 yield self.comment(data)

21 ...

This function is part of a XML parser, which uses yield state-

ments to walk through a XML-tree structure. In this category of

yield usage, there is logic for generation of HTML files, application

settings, HTTP packets, and so on.

One observation is that in nearly all examples developers used

multiple yield statements in generator functions. This places the

burden on the client to ensure consistency when they retrieve

expressions. In the above example, the expressions can be tags or

comments and the client may need to make a distinction. It was

unclear whether and how consistency of yield-generated elements

is handled.

There are 11 cases that use yield as in the following Python code:

1 def createFields(self):

2 # Access flags (16 bits)

3 yield NullBits(self, "reserved[]", 4)

4 yield Bit(self, "strict")

5 yield Bit(self, "abstract")

6 yield NullBits(self, "reserved[]", 1)

7 yield Bit(self, "native")

8 yield NullBits(self, "reserved[]", 2)

9 yield Bit(self, "synchronized")

10 yield Bit(self, "final")

11 yield Bit(self, "static")

12 yield Bit(self, "protected")

13 yield Bit(self, "private")

14 yield Bit(self, "public")

15 ...

This function simply constructs a sequence of expressions with-

out any logical filtering via if statements. It appears that these cases

could be translated into invocations at the client side. They might

be used as base cases for recursively-applied generators. We en-

countered this method of using yieldmultiple times in the programs

we examined.

On a final note, while use of yield is ubiquitous, use of yieldFrom

is surprisingly rare (see Fig. 4). We conjecture two reasons for this:

(1) yieldFrom was introduced in Python 3.3 in 2012, while yield

was introduced in Python 2.2 ten years earlier. (2) The semantics

of yieldFrom is perhaps too complex and developers forgo usage.

Overall, we conclude that yield statements are often used and static

analysis ought to support them, while they can omit the more

complex yieldFrom and still achieve good coverage of Python code.

Fortunately, Fromherz et al. [10] have defined a static semantics for

yield.
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Figure 5: Occurrences of themost frequent decorator strings

across all files in the 2021 dataset.

3.2.3 Decorators. Another complex feature is the decorator. Tab. 1

and Fig. 1 show that decorators are widely used. About 12% of

the files and 10% of repositories make use of decorators. Fig. 6

shows a histogram of the number of occurrences of different dec-

orator strings in our 2021 dataset. As one can see, there is a wide

variety of decorators — built-in decorators (e.g.,@property,@class-

method), standard-library-defined (e.g.,@abstractmethod), third-

party-library-defined and user-defined ones.

Importantly, our results show that the built-in decorators@prop-

erty,@classmethod, and@staticmethod are by far the most widely

used. The semantics of these decorators is well-known and can be

modeled in static analysis. (But they should not be ignored.)

3.2.4 With Statement. Fig. 5 shows a histogram of all AST Names

that occur during the recursive traversal of items inwith-statements.

For example, inwith contextlib.nested(mock.patch(...), mock.patch(...)):

... we count contextlib once andmock twice. High frequency of self,

mock, pytest, and ...Error point to usage with testing frameworks. In

most developers’ experience with Python, with is used for opening

Figure 6: Occurrences of names in with-statement items.

a file in a block. As expected, our histogram shows high frequency

of usage of open as well.

To understand usage of the with statement we examine 40 ran-

domly selected Python programs.While a common use ofwith is for

resource management, only 8 with-enclosed expressions were calls

to open; the remaining uses of with came from testing frameworks.

For example:

1 def test_onetoone_reverse_no_match(self):

2 ...

3 with self.assertNumQueries(0):

4 with self.assertRaises(...):

5 ...

As suggested by the histogram in Fig. 5 we observed self a lot

during manual inspection. Methods in custom testing frameworks,

as in the example above, are wrapped in the contextmanager deco-

rator which turns the code into a context manager. This finding is

consistent with Fig. 6 where the contextmanager decorator features

as the 8th most frequently used one.

Or another example:

1 class IBMPluginV2TestCase(...):
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2 def setUp(self):

3 with contextlib.nested(

4 mock.patch(...),

5 mock.patch(...)):

6 super(IBMPluginV2TestCase,self)

7 .setUp(plugin=_plugin_name)

The names of functions, variables, classes, or files led us to con-

clude that the uses are for testing purposes: they all contain key-

words such as “test” or “testing”.

We observed one user-defined method, which we found was a

wrapper around the built-in open and it was passed into a mock

object. These results lead to a conjecture that with statements are

used for handling files and streams or in conjunction with testing

frameworks. However, more mining and analysis is needed in order

to confirm or refute this conjecture.

To expand the scope of the manual analysis, we analyzed an

additional 30 random programs this time excluding open and testing

frameworks. There are 24 user-defined methods that appear to

function similarly to mock objects, and 6 enclosed statements that

appear to just set the environment of the code block enclosed in

the with statement. This leads us to a conjecture that developers

may not grasp the role of context managers and may mistakenly

believe that with statements introduce their own nested scope.

Although use of with statements is widespread, it appears in

limited contexts: (1) testing frameworks, and (2) file management.

Therefore, we conjecture that static analysis tools can define special

handling in these contexts and still achieve good coverage and

precision.

3.2.5 Async features. There are only a few occurrences of async.

This might be because the feature is still new or because its seman-

tics are not clear to developers. Somewhat surprisingly, async is the

only feature that has lower usage frequency stand-alone than in

combination with other features, as we will see in Table 3.

3.3 RQ3: Does Use of Complex Features
Increase or Decrease Over Time?

To address the third question we compare feature usage across the

2019 dataset and the 2021 dataset. Tab. 3 shows a detailed break-

down of the results presented earlier in Tab. 1 and Tab. 2. As Python

is becoming feature-rich, we were curious whether Python usage

is diverging. Specifically, it is conceivable that it either diverges

by paradigm (e.g., functional vs. imperative) or by sophistication

(beginner vs. advanced). Therefore, this table shows intersections

of features; for example, FNL counts files that have only functional

features but no other features, and FNL WTH DEC counts files that

have functional features, with statements, and decorators, but no

dynamic features and no async.

Overall, the number of files that have no complex features in-

creased from 51% to 59% (row (none) in Tab. 3). The main takeaway

is that even though there are some changes — the percentage of

files with dynamic features increased from 9% to 13% and the per-

centage of with files decreased from 16% to 12% (Tables 2 and 1) —

occurrence of complex features remains mostly stable from 2019

to 2021. Looking at the intersections, it seems like when a file uses

some complex features, it often also uses others, possibly because it

Feature 2019 Frequency 2021 Frequency

Combination Count % Count %

(none) 620,300 51.353 1,822,194 58.891

FNL 177,236 14.673 365,869 11.824

WTH 96,596 7.997 146,389 4.731

DEC 78,579 6.505 126,778 4.097

FNL DYN 28,096 2.326 113,120 3.656

DYN 40,096 3.319 112,020 3.620

FNL WTH 54,201 4.487 98,827 3.194

FNL DEC 41,063 3.400 77,458 2.503

FNL DEC DYN 14,436 1.195 63,908 2.065

FNL WTH DEC 13,132 1.087 33,101 1.070

FNL WTH DEC DYN 3,781 0.313 32,739 1.058

FNL WTH DYN 7,295 0.604 31,393 1.015

DEC DYN 9,819 0.813 25,692 0.830

WTH DEC 12,217 1.011 20,542 0.664

WTH DYN 6,957 0.576 17,373 0.561

WTH DEC DYN 1,755 0.145 4,808 0.155

DEC ASC 441 0.037 355 0.011

ASC 607 0.050 317 0.010

FNL DEC ASC 262 0.022 281 0.009

FNL ASC 308 0.025 172 0.006

FNL DEC DYN ASC 68 0.006 157 0.005

FNL WTH DEC ASC 90 0.007 123 0.004

WTH DEC ASC 112 0.009 91 0.003

FNL WTH ASC 124 0.010 82 0.003

WTH ASC 163 0.013 68 0.002

FNL WTH DEC DYN ASC 14 0.001 51 0.002

FNL DYN ASC 36 0.003 50 0.002

DEC DYN ASC 49 0.004 42 0.001

DYN ASC 44 0.004 16 0.001

FNL WTH DYN ASC 16 0.001 14 0.000

WTH DEC DYN ASC 10 0.001 8 0.000

WTH DYN ASC 9 0.001 4 0.000

Table 3: Per-file feature combinations. Each file that uses ex-

actly a given combination of the features is counted as 1.

was written by a programmer who is more familiar with advanced

language features across the board.

Fig. 7 and Fig. 8 present our final datapoint. The Venn diagrams

show overlapping features per file. One can make several observa-

tions: (1) Dynamic feature usage has increased from 2019 to 2021

while functional features and decorators are about the same. Based

on our analysis in RQ2, we conjecture that the increase is driven

by use of getattr with constant string arguments. (2) The overlap of

features per file, though significant, is a much smaller subset com-

pared to the per-repository and per-organization Venn diagrams

that we presented earlier (Fig. 1 and Fig. 2). This is expected as

repositories typically include multiple Python files.

3.4 Not-so-Featherweight Python

To summarize, nearly 50% of all projects and over 40% of all files in

the 2021 dataset use complex features. While it is reassuring that
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Figure 7: Per-file features from the 2019 dataset.

Figure 8: Per-file features from the 2021 dataset.

dynamic execution (i.e., eval) and async occur infrequently, uses

of complex features such as with and decorators are widespread.

A minimal “Featherweight Python” with a known imperative se-

mantics is unfortunately a mirage. Our actionable result is a list of

features that program analysis ought to handle in order to cover

developer usage of Python features and move forward towards

sound and effective analysis of Python:

(1) getattr with constant string argument occurs frequently. As dis-

cussed earlier, we believe this feature can be modeled effectively

in both flow-sensitive and flow-insensitive analysis.

(2) hasattrwith constant string argument occurs frequently as well.

While in many cases the code takes an object (an instance of

given class) as argument, in a number of cases it takes a class

(a meta-object) as argument. We believe that the former can be

modeled easily, but the latter requires a significant extension

of standard static program analysis techniques with reasoning

about classes and runtime modification of class structure.

(3) List comprehensions and generator expressions (via explicit

constructors or yield statements) occur frequently. List compre-

hensions can be modeled effectively by rewriting them into a

for-loop. Fortunately, Fromherz et al. [10] have defined a se-

mantics for generator expressions.

(4) lambdas and higher-order functions occur frequently. This again

requires extensions to flow analysis techniques for imperative

languages.

(5) With statements and context managers. They present perhaps

the biggest challenge to soundness and effectiveness of static

analysis.

(6) Built-in decorators, particularly@property,@staticmethod, and

@classmethod. A static analysis needs to be able to model the

semantics of the corresponding built-in functions.

4 THREATS TO VALIDITY

Our study shares some threats to validity common among studies

of language feature usage “in the wild”. First, the set of complex

features we select may be incomplete. Based on our experience

with Python and static analysis, we believe we are covering an

important set of features. However, Python has a rich set of features

that constantly evolve.

Second, the scope of the analysis may be incomplete. We settled

on analysis within the boundaries of the user code of a particular

repository. We did not analyze standard libraries or third-party

libraries imported with the project. This may underestimate usage

since libraries may use complex features even if the user code does

not. Sound static analysis ought to handle libraries as well. For this

study we set a boundary — we settled on purely syntactic analysis,

fixed the feature categories and analysis scope and focused on

obtaining initial results. On the positive side, keeping our analysis

simple and general makes the results interesting not just to tool

builders but also to language users and educators.

One threat to validity, particularly the findings on RQ3, is the

composition of the two 2019 and 2021 datasets. The two datasets

may overlap, in which case we may overstate similarity of feature

usage. We were unable to collect overlap and finer grained statistics

on the datasets due to severe time constraints; we plan to do so as

we continue work in this exciting direction.

Finally, our mining is static. It may be the case that a single

syntactic occurrence never executes at runtime or that it executes

thousands of times. Since our interest is static analysis and appli-

cability of static analysis we think our numbers are still relevant.

Dynamic analysis can bring additional information and insights.
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5 RELATEDWORK

Studies of programming languages “in the wild”. Not all program-

ming language features get adopted widely, and sometimes they

are used in surprising ways. There have been several studies that

empirically explore how features are used in practice, typically

based on mining a corpus such as from a software repository, as

we do. In 2009, Holkner and Harland instrumented 24 Python ap-

plication and studied their dynamic execution traces to understand

how they use dynamic Python features [12]. They found many

uses of getattr and setattr, no uses of delattr, and some uses of

reflection over local or global symbol tables and of eval and exec. In

2014, Åkerblom et al. did a similar study on 19 Python application,

with similar results [23]. Our paper expands on these results by

studying a larger corpus and a broader (and newer) set of Python

features including context managers and decorators. Pimentel et al.

analyzed code in Jupyter notebooks, 93% of which use Python, and

found that notebooks tend to use fewer complex features, often not

even defining classes or functions [20]. In 2020, Rak-amnouykit et

al. analyzed Python 3 type annotations in around 173,000 Python

files mined from GitHub [21]. They found shockingly many type

mistakes, and on top of that, found that popular type checking

tools frequently disagree with each other. Our paper studies differ-

ent Python features, looking not at types but at dynamic features,

functional features, etc. In 2021, Peng et al. analyzed the ASTs of

35 Python repositories for a variety of Python features such as

different flavors of parameter passing and class inheritance [19].

Our paper also analyzes ASTs, but considers orders of magnitude

more Python repositories, and studies complex features such as

comprehensions, generators, and context manager that they omit.

Going beyond Python, Richards et al. studied dynamic traces of

browser-side JavaScript code for 100 websites [25]. They measured

things like function size, prototype depth, kinds of objects, and

polymorphism, as well as dynamic features: adding fields, adding

methods, and eval. Their study showed that JavaScript tools cannot

ignore the dynamic features, including eval. In a follow-on study,

they expanded their corpus to 10,000 websites while narrowing

their focus to eval [24]. They find that while many strings passed to

eval contain JSON data, there are also many other categories of eval

uses in JavaScript. Morandat et al. analyzed 3.9 million lines of code

in the R language, with a focus on features affecting computational

performance [17]. They found that R’s lazy evaluation incurs a

high performance penalty and is used a lot in standard libraries but

rarely in user code. In contrast, our study of Python focuses less

on performance and more on features that inhibit bug finding and

developer productivity tools. Dyer et al. analyzed 9 million Java

files for their usage of features newly introduced by Java versions 2,

3, and 4 [9]. They found that the features most commonly adopted

were Java annotations (similar to Python decorators) and generic

types, while Java 4’s try-with-resources (similar to Python context

managers) had not yet been adopted much at the time of their study.

Our study includes some similar features but focuses on Python,

whose tool support lags far behind that of Java.

We wrap up our discussion of “in the wild” studies with two

pieces of work that are further afield but still related in spirit.

Meyerovich and Rabkin explored the adoption of not individual

language features but entire programming languages [15]. They

find that “when considering intrinsic aspects of languages, devel-

opers prioritize expressivity over correctness”. We study Python

features whose primary motivation is expressivity and that com-

plicate the construction of tools for correctness. Tsay et al. mined

7,998 machine-learning models, mostly in Python and mostly from

GitHub [27]. They focus on metadata that is needed to understand

and reuse these models, and found that most models have poor data

reproducibility but somewhat better method reproducibility. Our

study is similar in that it focuses on GitHub Python code, but while

they explore applications, we explore language features.

Minimal language subsets. We have motivated our paper with

static analyses and tools that benefit from focusing on a language

subset. By exploring how language features are used in the wild,

we can help prioritize which features to model and to what extent.

A famous language subset is Featherweight Java, a core Java sub-

set with formal semantics just big enough to include classes and

methods [13]. Featherweight Java focuses on type systems, and

enables the authors to prove type safety, including for an extension

with generics. Another well-known language subset from 2007 is

RPython, a static Python subset [6]. Its main motivation was not

theoretical proofs but rather computational performance: RPython

is suitable as a target language for dynamic compilation and as a

source language for static compilation. Our work differs in that

we empirically study modern Python, focusing on features that

complicate static analysis rather than compilation. Featherweight

TypeScript is a subset of TypeScript plus associated type rules [7].

It helps delineate exactly how far the correctness guarantees of

types go and where TypeScript becomes unsound.

Mainstream static analysis tools. PyLint [5] and PyType [4] are

mainstream program analysis tools that provide style checking and

linting (PyLint) and type checking and inference (PyType). PyLint

in particular has been adopted widely in Python development [11].

We believe that our study, which aims to support deeper semantic

analysis, can lead to improvement in mainstream productivity tools.

6 CONCLUSION

This paper explores how often and in what ways developers use

certain complex features. Our goal is far-reaching — we wanted to

understand use of complex features in order to build better static

analysis tools. We analyzed millions of Python files mined from

GitHub to address the following research questions: (i) How often

do developers use certain complex Python features? (ii) In what

ways do developers use these features? (iii) Does use of complex

features increase or decrease over time? We present an actionable

result — a list of Python features that any “minimal syntax” ought to

handle in order to capture developers’ use of the Python language.
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