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ABSTRACT

A central function of code review is to increase understanding; help-

ing reviewers understand a code change aids in knowledge transfer

and finding bugs. Comments in code largely serve a similar purpose,

helping future readers understand the program. It is thus natural

to study what happens when these two forms of understanding col-

lide. We ask: what documentation-related comments do reviewers

make and how do they affect understanding of the contribution?

We analyze ca. 700K review comments on 2,000 (Java and Python)

GitHub projects, and propose several filters to identify which com-

ments are likely to be either in response to a change in documen-

tation and/or call for such a change. We identify 65K such cases.

We next develop a taxonomy of the reviewer intents behind such

“comments on comments”. We find that achieving a shared under-

standing of the code is key: reviewer comments most often focused

on clarification, followed by pointing out issues to fix, such as ty-

pos and outdated comments. Curiously, clarifying comments were

frequently suggested (often verbatim) by the reviewer, indicating a

desire to persist their understanding acquired during code review.

We conclude with a discussion of implications of our comments-

on-comments dataset for research on improving code review, in-

cluding the potential benefits for automating code review.
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1 INTRODUCTION

Code review is an important mechanism for preventing bugs in

software projects [6]. To do so effectively, reviewers focus heavily

on understanding the code and change made to it [3]. Natural

language communication is a key component here: reviewers use

comments to discuss new ideas and to overcome issues [9], as well

as transfer knowledge, social norms and conventions [4].

Another form of natural language associated with programming

is documentation, in the form of block or in-line comments in the

code. Studies have shown that these help developers better under-

stand code [8, 11]. Pascarella et al. [7] manually annotated 2,000
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Java files to develop a taxonomy of code comment types and found

that ‘summary’ and ‘usage’ were the most prominent categories

implying that comments mainly serve as a means for transferring

knowledge, especially to end-user developers. Aghajani et al. empir-

ically studied 878 documentation-related artifacts and found that

issues related to the correctness of code comments, such as insuf-

ficient or obsolete content, seemed most common [2]. A survey

confirmed that these issues negatively affected understanding and

made it more challenging to use others’ code [1].

Given that code review heavily relies on natural language to

facilitate understanding and that code comments serve much the

same purpose, we wonder: do contributors and project maintainers

give consideration to documentation during code review, and, if

so, how does documentation factor into the review? To the best

of our knowledge, no prior work has studied this coalescence of

“comments on comments”; thus, in this work we provide a first,

data-driven exploration at the intersection of these two domains.

Specifically, we commence by quantitatively analyzing how of-

ten reviewers pay attention to changes made, and/or request that

changes be made, to documentation in contributed code. We ap-

proach this by mining code review data from the event streams

of 1K popular GitHub repositories in Python and Java each, with

700K review comments between them. We filtered this data to iden-

tify cases that likely represent documentation-related review com-

ments (Figure 1). We identify three salient types of comments on

comments, ordered by frequency:

(CRC) A revision includes a change to a code comment (C); the

reviewer comments on it (R), following which the developer

updates the code comment again (C).

(CRN) A revision included a change to a code comment (C), the

reviewer comments on it (R), but this does not result in a

further change (N).

(NRC) A revision did not change (N) a code comment (only the

code was modified), then following a review comment (R)

the developer updates a code comment (C).

We next conduct a qualitative analysis of samples from each of

these categories to derive a taxonomy of intents behind reviewer

comments (Figure 2). We find that reviewers frequently ask for

clarification related to the code or comment change, indicating that

the initial comment revision (or lack thereof) inadequately captured

the change. Interestingly, they often state the clarification required,

regularly verbatim. This highlights a desire for reviewers to ensure

that their understanding of the code (change) is persisted, for which

in-code documentation is a natural fit.

Our findings show that code comments are an important con-

sideration in code review in open-source projects, and that such
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Figure 1: Breakdown of the data collection process leading to the three categories of comments-on-comments that we identify

(see Section 2.2). Note that the scaling in the first transition has been altered to better emphasize the subsequent distributions.

comments frequently lead to improved documentation. Besides ad-

vancing our understanding of code review, we expect these find-

ings to support efforts towards improving and automating code re-

view, where AI-based models [10] have struggled to capture the full

scope of code comments seen in practice [5]. Incorporating infor-

mation from (changes to) code comments may help these models

better understand reviewing needs. The CommentsOnComments

dataset can be found here - https://doi.org/10.5281/zenodo.5886145

2 METHODOLOGY

We collect our data from events stored on the GitHub Archive.1

We focus on events related to pull request (PRs) belonging to the

1,000 projects with the most review comments in Java and Python,

archived between January 2017 to November 2020. We split each

pull request into a series of “diff chunks” that modify successive

line(s), resulting in ~3.5 million such diffs (ca. 2M from Java and 1.4M

from Python). Following the process outlined by Hellendoorn et

al. [5], we then align each code review comment, which comes with

an associated diff at the time of said comment (as in Figure 3), with

one of the diff chunks in the final PR. This gives us a triple of 〈initial

change, review comment, final change〉. Out of the 3.5M total diff

chunks, ca. 700K were aligned with a review comment in this way.2

2.1 Data Pre-Processing

We next apply a series of filters to identify review comments that

are likely documentation-related – we call these “comments on

comments”. Following the flow in Figure 1, we first identify diff

chunks with associated review comments (~700K), and next subset

diffs containing changes to in-line or block code comments (either

before or after the reviewer’s comments, ~370K). We found that the

presence of both types of comments alone is rarely indicative of a

code comment-related review comment (diffs can be quite large),

so we apply two filters to find reviewer comments that are likely

to be documentation-related:

Documentation-related comment. This filter identifies cases

where reviewers explicitly mention documentation. We look for

both the following documentation related keywords: {documenta-

tion, docstring, javadoc, comment, todo} and for review comments

containing code suggestions (a commonly used feature on GitHub,

1https://www.gharchive.org/
2In fairly rare cases, a diff chunk may be commented on multiple times.

see Figure 3c) that involve changes to inline comments (i.e., con-

taining one of //, /*, */ for Java and #, """, ‘‘‘ for Python). We con-

structed the list of keywords based on a manual analysis of random

samples from the aforementioned 370K subset in which we itera-

tively added keywords that were used to refer to code comments

until no new words appear. To elaborate, we started with the key-

words “comment” and “documentation”, from which one annotator

used snowballing to construct the final list across 3 iterations with

60 diff chunks each (not included in 240 final samples used in Sec-

tion 2.3). The annotator added new keywords that predominantly

occurred in reviewer comments on documentation-related samples

identified via the initial set of keywords. This occasionally yields

false positives; e.g., reviewers sometimes use the keyword ‘com-

ment’ to refer to another/previous review comments (e.g., ‘Please

refer to my previous comment’).

Comment near comment.We expect that a reviewer comment

placed ‘near’ a code comment is likely to relate to it. Due to GitHub’s

UI design, which typically shows three or more lines preceding the

line being commented on, reviewer comments often refer to lines

of code placed above them within that window. Thus, we mark a

review comment as ‘near’ a code comment if the latter is present in

that window. This is especially useful in filtering out false positives

in large diff chunks with multiple review comments.

As Figure 1 shows, the first filter yields the most cases (81K).

These filters are also fairly disjoint, yielding 110K samples in their

union, thus reducing the naive alignment by around 70%. While

Java had more documentation related comments, Python had more

comments near comments, so both languages contribute roughly

evenly to this filtered set (ca. 60K and 50K respectively).

Evaluation of filters.We compute the recall and precision scores

for the filters used using the labels obtained from the manual anno-

tation performed in Section 2.3. The documentation-related com-

ments filter has a recall of 79.7% and precision of 66.7% whereas

the comments-near-comments filter has a recall of 46.7% and a pre-

cision of 43.9%. Note that these scores do not impact our findings

in RQ2 and RQ3.

2.2 Comments On Comments Dataset

We categorize the resulting documentation-related review com-

ments based on the preceding and subsequent changes to the cor-

responding documentation. We consider three cases: two in which
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Figure 2: Taxonomy of review comment intents, based on 80 samples from each of the three comments-on-comments categories.

Ca. 56% of these were indeed code-comment related discussions, of which more than half related to clarification.

the review comments are likely to be a response to a change in doc-

umentation (CRC & CRN, depending on what happens next), and

one in which it likely called for such a change (NRC). To elaborate:

CRC - Changed code comment (C) followed by review com-

ment (R), and then another change to the code comment (C).

CRN - Changed code comment (C), then review comment (R), no

further changed code comment (N). The reviewer comment lead to

no change at all or the changes were directed only towards the code.

NRC - In this case, the initial revision affected some code but not

(N) its nearby comment. The reviewer comment (R) then triggers a

further change, this time involving the nearby code comment (C).

Note that we omit a fourth scenario in which no change was

made to a code comment both before and after a review comment,

since we found reviews in such cases to be rarely related to docu-

mentation in a preliminary analysis. As shown in Figure 1, these

categories comprise the majority of the 110K samples filtered ear-

lier, with the CRC category the most common.

2.3 Qualitative Analysis & Taxonomy

Based on a casual inspection of 30 randomly chosen samples from

the comments on comments data (10 per category), we observed that

reviewers talked about documentation in several different ways. To

derive a more formal taxonomy of reviewer intents, we randomly

choose 40 samples from each of the three cases (CRC, CRN and

NRC) for both Java and Python and distribute the resulting 240

samples across three annotators. For each datapoint, the annotator

was required to look at both the review comment and the diff chunk

before and after the review comment was placed, and note the

following: (i) whether the review comment was documentation-

relevant; i.e. it directly discussed documentation and/or triggered

a change to documentation, (ii) the high-level reviewer intent for

the review comment, and (iii) any additional notes capturing finer

details or sub-intents. Additionally, annotators were asked to make

a note of any ambiguous samples. Note that each annotator looked

at a distinct subset due to the lack of ambiguity in this task. For (ii),

the goal was to summarize the purpose of the comment in one or a

few words; annotators were not constrained to a fixed vocabulary,

but were given several examples, such as “clarification” and “fix

issue”, based on a preliminary annotation for reference. Note that

the reference captured common trends seen during the exploratory

analysis. While this reference included several examples of reviewer

comments with different intents, it did not serve as an exhaustive set

of intents for annotators to consider – several categories including

“Add TODO” emerged during annotation. We observed that there

was a significant overlap in the intent categories derived by each

annotator, with an exception of a few rare corner cases. Less than 3%

(7/240) were marked ambiguous; these were resolved by discussion

with all three annotators with 100% negotiated agreement (2/7

samples were assigned multiple intents). This was followed by a

discussion among the annotators which resulted in a coordinated

taxonomy of intent categories and (for the largest categories) sub-

intents. We did not observe any noticeable differences in the intent

categories found for Java and Python. Figure 2 summarizes the

distribution of intents in the annotated data.

3 RESULTS

We seek to answer three research questions using our data set.

RQ1: How often do review comments concern code com-

ments?

We ground our discussion in an analysis of the prevalence and char-

acteristics of code comment related review comments. First, out of

the 700K diffs that receive review comments, we identify ca. 370K

that contain code comments. It is worth noting that only ca. 29%

(~1M out of 3.5M) of the initial set of diffs (commented on or not)

contained documentation, implying that such diffs are relatively

more likely to be commented on (370K/1M = 37% vs. 330K/2.4M =

14%).3 Based on the filters applied in Section 2, we find that 15.8%

(110K/700K) of the diffs with reviewer comments are plausibly being

commented on in relation to documentation. Breaking this down

further, 11.6% (81K) of the reviewer comments explicitly talked

about documentation and 5.4% (38K) of the reviewer comments are

near code comments (leaving a 0.8% overlap between these cases).

We further dissected these 110K samples based on the three sce-

narios described in Section 2.2. We find that reviewers are much

more likely to comment on a diff chunk when the contributor had

already made some change to a code comment (50.8%) compared to

diff chunks that only made changes to the code (15.8%). Extrapo-

lating from the manual annotation performed in RQ3, we find that

our estimate of 55.8% of samples being documentation-relevant, i.e.

the comment discussed documentation and/or triggered a change

to documentation, comes with a 95% confidence interval of 6.5%

3This need not be a causal relationship; more complex code may simply require both
more documentation and reviewer attention.
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using the Clopper-Pearson exact method. This indicates that be-

tween 32,133 and 40,554 of the complete set of samples is likely to

be documentation-relevant.

Finding: Reviewers frequently consider documentation when re-

viewing code. They are more likely to comment when contributors

updated code comments initially.

RQ2: Do reviewer comments affect the documentation of

contributed code?

Within the 65K “comments on comments” cases, where a review

comment is either in response to a change in code comment or a

call for such a change, we find that a review comment in response

to a change made to the code comment lead to the code comment

getting updated (CRC) 76.4% (46K/61K) of the time, with less than

a quarter of reviewer comments resulting in no further change

to the code comments (CRN). In comparison, review comments

on code changes that previously did not change a comment only

resulted in the code comment getting updated (NRC) in 26.8% of

cases. We also observed that reviewer comments were more likely

to lead to a comment getting updated in Python compared to Java.

More specifically, following an initial change in documentation

and review comment (CRC vs. CRN), the odds ratio of a further

change in documentation in Python vs. Java is 2.02 (±0.08, 95%

confidence interval). In contrast, the odds ratio irrespective of an

initial documentation change (CRC+NRC vs. CRN) is 1.25 (±0.05,

95% confidence interval).

Finding: Review comments in response to a code comment change

often result in the code comment getting updated.

RQ3: What are the intents of reviewing documentation?

We next conduct a qualitative analysis of review comments from

each category based on our manual annotation following the pro-

tocol described in Section 2.3. This results in the taxonomy of re-

viewer intents for changes made to code comments that is visual-

ized in Figure 2. We found that clarification was the most common

goal (70/134 documentation-relevant comments) of a review com-

ment, where some change needed to be made to the documentation

to help understand the updated code. This type of change was of-

ten initiated by the reviewer, either as a request (28/70) to elaborate

on a change, or a (regularly verbatim) suggestion (34/70) of what to

comment to help clarify the new code for others. Figure 3a shows

such a case, in which a reviewer encourages the author to docu-

ment the need for the added try/catch block by prescribing what

that comment should say. Less commonly, the author would either

respond (6/70) with clarification to a comment or code change sug-

gested by the reviewer or preemptively initiate (2/70) a discussion

related to the change. Figure 3b illustrates the latter case, in which

an author reviewed their own code after submission and later added

an informative code comment reflecting the one seen here.

The next-most common intent was fix issue (31/134), where re-

viewers mostly asked to fix typos (10/31), update comments that

were inaccurate/ambiguous (7/31), remove comments that were re-

dundant (7/31), or update newly-outdated comments (6/31). We

also identified several other, less common intent categories, includ-

ing where reviewers asked to make a style related change (10/134,

e.g. adjusting capitalization), or to add either a Javadoc/Docstring

(7/134), a to-do statement (6/134), or a link to the corresponding

(a) NRC + intents: clarification - reviewer suggested

(github.com/elastic/elasticsearch/pull/64744)

(b) CRC + intents: clarification - author initiated

(github.com/getsentry/sentry/pull/17267)

(c) CRC case, intents: fix issue - typo, link issue

(github.com/dask/distributed/pull/3689)

Figure 3: Examples of comments on comments with annota-

tions.

GitHub issue (5/134), or requested a refactoring (4/134) such as mov-

ing the comment to a different location. Figure 3c shows an exam-

ple of both a typo fix and issue link addition being recommended

through GitHub’s “suggested change” option. We found little differ-

ence in intent distributions between Python and Java. For example,

the clarification intent prevalence was 52.7% in Python and 51.6%

in Java; the “fix issue” ratios were 25% and 20% respectively. The

largest difference was in the relevance of samples for the CRN case

(67.5% for Python and 35% for Java).

Finding: Most reviewer comments seek some form of clarification

to increase or enshrine their understanding of the change made to the

code, followed by fixing issues in the comments themselves.

4 DISCUSSION

Our work at the intersection of code review and documentation

highlights that achieving a shared understanding of code is vital in

open source project maintenance. Previous work established that

code review is a key mechanism for transferring knowledge and

reviewers spend much of their time on understanding a contribu-

tion [3] for which they rely on discussions and during which they

impart their knowledge of the project to the contributor in turn [4].

The results from our analysis suggest that when reviewers and au-

thors discuss documentation, it is mostly to clarify the code or doc-

umentation changes. We observe that this facilitates understanding

not only for reviewers but also often for contributors.
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Code review discussions often explicitly or implicitly involve

third party stakeholders in the “audience” [9]. Our results clearly

show that discussing documentation not only helps to achieve a

shared understanding between reviewers and authors, but also ben-

efits the understanding of other, future readers. For instance, re-

viewers frequently demonstrated that they personally understood

a change, but also suggested documentation changes to ensure that

future readers would share that understanding. Our dataset is well-

suited towards better understanding the nuances behind this un-

derstanding process by aligning actual changes in code comments

to related review discussions. For example, 74.3% of the clarifica-

tion discussions mentioned above resulted in subsequent revisions

to the relevant documentation. This suggests at least some success

in achieving a shared understanding of the code.

Our results also show that reviewers are spending considerable

attention and effort on documentation, as evidenced by their higher

response rate when documentation is updated in a revision and

by the many cases of review comments triggering documentation

changes. Given that achieving understanding of a code contribution

is particularly time consuming for reviewers [3], and that recent ef-

forts have shown significant challenges in automating code review

using AI [5, 10], our findings may offer a path forward for support-

ing tool-based understanding of code changes. Namely, such tools

should both earnestly consider relevant documentation while also

expecting it to be often at least somewhat flawed. And they should

perhaps take a cue from real-life reviewers and learn to ask for (or

suggest) clarification. Such dialogue-like agents are scarce in soft-

ware engineering practice, but our results hint at the potential im-

portance of this ability.

Threats to Validity. We designed several filters to identify 65K

comments that are plausibly documentation-related. Some of these

filters are conservative: the list of keywords used to identify docu-

mentation-related comments was fairly short, so our analysis may

miss some cases. Vice versa, our manual annotation showed that

these filters also include around 44% non-documentation relevant

comments, whichmay impact the absolute tallies in our quantitative

analysis. Encouragingly, we did not find that any language or com-

ments on comments category was significantly less likely to be rel-

evant than others, so we expect our relative trends to hold. Our tax-

onomy was derived based on an even sampling of the three types of

comments-on-comments, so the distributions of intents in the tax-

onomy may not be representative of those in the wild. This was an

intentional decision, as we wanted the taxonomy to cover a broad

span of motivations. While sample sizes are too small to run statis-

tical tests, we did not notice a strong bias of intents towards certain

cases.4 Lastly, we limit our study to only changes made to inline

comments (and not block comments unless they have a documenta-

tion related reviewer comment associated with it) for the 3 cases.

5 CONCLUSION

We present the first data-driven study at the intersection of code

review comments and in-code documentation comments. We find

these to be a relatively common topic of discussion during code

4We did notice a slight, and intuitively plausible, preference for clarification comments
to originate from reviewers unprompted by a comment change (NRC) and for “fix issue”
comments to occur in the CRC case. Future work may study this effect in more detail.

reviews among a large number of GitHub projects, in particular

when the initially submitted changeset affected documentation com-

ments to begin with. Review comments in such locations frequently

spurred further revisions to documentation, most commonly to add

clarifications for the benefit of future readers, highlighting that re-

viewers are concerned with persisting their understanding of code

changes. Our quantitative and qualitative analysis highlights the

important role of documentation in the discussion of code contri-

butions. We release our data to benefit further studies.
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