
AIMMX: Artificial Intelligence Model Metadata Extractor

Jason Tsay
jason.tsay@ibm.com

IBM Research

Yorktown Heights, New York, USA

Alan Braz
alanbraz@br.ibm.com

IBM Research

São Paulo, Brazil

Martin Hirzel
Avraham Shinnar
Todd Mummert
hirzel@us.ibm.com

shinnar@us.ibm.com

mummert@us.ibm.com

IBM Research

Yorktown Heights, New York, USA

ABSTRACT

Despite all of the power that machine learning and artificial intelli-

gence (AI) models bring to applications, much of AI development

is currently a fairly ad hoc process. Software engineering and AI

development share many of the same languages and tools, but AI de-

velopment as an engineering practice is still in early stages. Mining

software repositories of AI models enables insight into the current

state of AI development. However, much of the relevant metadata

around models are not easily extractable directly from repositories

and require deduction or domain knowledge. This paper presents a

library called AIMMX that enables simplified AI Model Metadata

eXtraction from software repositories. The extractors have five

modules for extracting AI model-specific metadata: model name,

associated datasets, references, AI frameworks used, and model

domain. We evaluated AIMMX against 7,998 open-source models

from three sources: model zoos, arXiv AI papers, and state-of-the-

art AI papers. Our platform extracted metadata with 87% precision

and 83% recall. As preliminary examples of how AI model meta-

data extraction enables studies and tools to advance engineering

support for AI development, this paper presents an exploratory

analysis for data and method reproducibility over the models in the

evaluation dataset and a catalog tool for discovering and managing

models. Our analysis suggests that while data reproducibility may

be relatively poor with 42% of models in our sample citing their

datasets, method reproducibility is more common at 72% of models

in our sample, particularly state-of-the-art models. Our collected

models are searchable in a catalog that uses existing metadata to

enable advanced discovery features for efficiently finding models.

KEYWORDS

Artificial Intelligence, Machine Learning, Model Mining, Model

Metadata, Model Catalog, Metadata Extraction

ACM Reference Format:

Jason Tsay, Alan Braz, Martin Hirzel, Avraham Shinnar, and ToddMummert.

2020. AIMMX: Artificial Intelligence Model Metadata Extractor. In 17th

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387448

International Conference on Mining Software Repositories (MSR ’20), October

5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3379597.3387448

1 INTRODUCTION

The combination of sufficient hardware resources, the availability

of large amounts of data, and innovations in artificial intelligence

(AI) models has brought about a renaissance in AI research and

practice. For this paper, we define an AI model as all the software

and data artifacts needed to define the statistical model for a given

task, train the weights of the statistical model, and/or deploy the

trained model weights for prediction in a service or application.

Our definition of model includes both traditional machine learning

(ML) and deep learning models. AI as an engineering practice is

still in its early stages with often unpredictable and costly results

(both in terms of time and quality) [18] which are often difficult to

reproduce [17]. The sheer amount of possible AI approaches and

algorithms [38] and recent increase in released AI frameworks [9]

result in a large variety of AI models and representations. The

sheer variety and lack of standardization results in models that are

difficult to interact with and reason across at scale. For example,

even if two models use the same AI framework, they may be in very

different domains such as Vision or Natural Language Processing

(NLP) or use different algorithms or datasets. Even when a model’s

code is available, often using or understanding this model requires

much manual effort, sometimes even requiring reading associated

papers. This manual effort often precludes using these models at

scale. We propose that extracting standardized model metadata

will reduce this manual effort and even enable programmatically

analyzing or interacting with a large quantity of models.

One avenue for standardization is that software and AI develop-

ment share many of the same languages and tools, such as version

control systems. Existing software repository tools and services,

such as GitHub, are popular with AI developers to store model

definition code and development artifacts such as configurations

and training logs. In fact, software repositories are popular methods

of disseminating examples of models for these frameworks, such as

model zoos that collect models for a given framework. Enterprise AI

systems also commonly use versioning systems meant for software,

to store both AI and non-AI components [7]. One possibility is that

existing software repository mining techniques such as software

analytics techniques [22] or bug prediction techniques [15, 25] can

be adapted or reused for AI development. However, developing (and

mining) AI models presents additional challenges over traditional

81

2020 IEEE/ACM 17th International Conference on Mining Software Repositories (MSR)

software engineering. AI development often requires managing

many model-specific components that are entangled [7, 29] such

as code, data, preprocessing, and hyperparameters. The tools that

support software development, such as version control systems,

tend to not support representing these entangled components. We

expect that mining the repositories of AI models will give insight

into AI development, but often information about these compo-

nents is not directly accessible. For example, an image classification

model often contains code that defines the model but information

such as the dataset used, papers referred to, and even the domain

of the model is absent or hidden in documentation.

We present a library called AIMMX (AI Model Metadata eXtrac-

tor) for simplified and standardized extraction of AI model-specific

metadata from software repositories. The extractors take exist-

ing software repositories which contain AI models and aggregate

data from multiple sources, such as documentation, Python code,

model definition files, etc. Our extractors aggregate this data for AI

model-specific metadata. Aggregation also enables further infer-

ring additional model-specific metadata that is not easily available

directly from software repositories. The extraction library contains

five main modules to extract model-specific metadata: model name,

references, dataset, AI frameworks, and model domain. The model

domain inference module in particular uses machine learning to

automatically infer a model’s domain such as Computer Vision or

Natural Language Processing (NLP).

In contrast to other model metadata efforts such as ONNX [5],

PMML [16], and PFA [27] that focus on defining the model’s low-

level computational graph, our metadata extraction is more con-

cerned with higher-level questions such as the domain or which

datasets were used to train a given model or how to use a given

model rather than model definition specifics such as the topology

of the neural network the model uses. We evaluated our extractors

by collecting 7,998 models from public software repositories from

three sources: 1) 284 “model zoo” example repositories, 2) 3,409

repositories extracted from AI-related papers, and 3) 4,324 reposi-

tories associated with state-of-the-art AI models. Using a subset of

this dataset, we created test sets and evaluations for each of our five

extraction modules as mentioned above as well as a holistic evalu-

ation of the entire system. The automatically extracted metadata

have an average precision of 87% and recall of 83%. The evalua-

tion dataset is available as part of the replication package. After

extraction, the metadata is ready for consumption in both machine-

readable and human-readable states. See Figure 1 for an overview

of the extraction system, dataset collected, and preliminary usage

of the extracted metadata.

Extracting metadata in a standardized way is useful for further-

ing engineering support for AI development. Metadata enables

large-scale analysis and tools in research and practice that man-

age multiple varying models. We perform an exploratory analysis

across our evaluation dataset for the reproducibility of AI models.

Reproducibility in AI papers [17] and Jupyter Notebooks [26] tends

to be relatively poor, due to a lack of documentation over method

selection, datasets used, or experiments ran. We quantitatively ex-

amine our metadata dataset of 7,998 models for signals of both data

(datasets used for an AI model) and method (algorithms and design

decisions for an AI model) reproducibility [17]. Our exploratory

analysis found that data reproducibility tends to be relatively low

Figure 1: Overview of Extractor System.

at 42% of models in our sample having extractable information

about datasets used. Method reproducibility, proxied by extracted

references, is higher than data reproducibility at 72% of models in

our sample, with state-of-the-art models being particularly high at

92%. As an example of a tool that leverages extracted metadata, we

also describe an implementation of a searchable catalog that uses

metadata to manage discovering and evaluating collected models.

The system is scalable for cataloging thousands of models, allowing

model producers to add their own models in a manner that imposes

minimal burden due to AIMMX enabling automated metadata ex-

traction. In contrast, other model management systems such as

ModelDB [36] provide these features but require that model pro-

ducers instrument their code. Using AIMMX’s extracted metadata

in a catalog provides automatic connections between code, datasets,

and references which is similar to the manual connections in the

Papers With Code website [2]. These connections may also enable

automated training or deployment in future tools.

This paper makes the following contributions:

• Tool for extracting AI model-specific metadata from soft-

ware repositories with currently five extraction modules

(Section 2).

• Evaluation of our tools against a dataset of 7,998 models

(Section 3). This AI model metadata dataset is also available

as part of a replication package.

• Preliminary usage of extracted metadata via an exploratory

analysis of the data and method reproducibility of AI mod-

els in our dataset and implementation of a cataloging tool

(Section 4).

2 AUTOMATED MODEL METADATA
EXTRACTION

The core of AIMMX is a Python library that reads software reposi-

tories, specifically from GitHub [4], and extracts AI model-related

information into standardized model metadata in the JSON format

that is machine and human readable. This library is open source

and publicly available for use1. AIMMX is meant to be simple to

use: once it is instantiated with a GitHub API key, then the user

calls a function with a desired GitHub URL which then runs the

extractors and returns the extracted metadata. The advantages of

choosing to use software repositories and GitHub specifically are

that they are already in common use for AI development [7]. For

example, most major AI-related frameworks such as TensorFlow,

1https://github.com/ibm/aimmx

82

PyTorch, and Caffe2 have public model zoos, collections of example

or demonstration models, hosted on GitHub. Another advantage is

that software repositories often document more than just code, for

example, there is a culture of rich documentation through README

files that are automatically displayed on GitHub repository pages.

Depending on the community, data scientists will often spend extra

effort to ensure documentation is updated [33]. GitHub also has a

rich Application Programming Interface (API) [14] that enables our

tools to integrate with it in a straightforward manner. The extractor

supports three forms of URLs: full repositories, subfolders within

a repository, and individual files in repositories. For example, the

TensorFlow model zoo contains multiple folders, each containing

an example model whereas the Keras model zoo contains a folder

with multiple Python files, each containing an example model. From

the GitHub API, information such as the repository name, descrip-

tion, tags (topics in GitHub), authors (contributors in GitHub), open

source license, primary programming language, date of last code

commit, number of stargazers for the repository (a popularity met-

ric similar to Likes in Facebook or Twitter [12]), and list of files are

directly extractable. Then, the extractor optionally mines additional

information depending on whether the repository contains certain

files such as the README file, Python code, Python-specific con-

figuration files, and certain types of ML or AI framework-related

binary or configuration files. For example, Caffe2 commonly de-

scribes the expected dimensions for input data in value_info.json. Our

tools extract this information and encode it in the metadata as an

embedded JSON schema in input_data_schema. Specific binary files

are automatically identified and placed into the trained_model subob-

ject based on the file extension (e.g. .pb for Caffe2, .h5 for Keras,

.onnx for ONNX), and Dockerfile for containerized models.

An issue with using version control systemsmeant for traditional

software is that AI model-specific metadata is not directly avail-

able through repositories or associated code or configuration files.

However, by analyzing the aggregated metadata, model-specific

metadata can be extracted or inferred. This metadata is then able to

augment the aggregated metadata that is more directly extractable

from software repositories, code, and configuration files. The cur-

rent version of the extractors contains five such modules: model

name, references, associated datasets, AI frameworks used, and

model domain inference.

2.1 Model Name Extraction

The first main module attempts to extract a more descriptive name

for a given model from available metadata. In many cases, the most

obvious name, the repository name, is insufficient or suboptimal.

Models often exist as part of subfolders or individual files within

repositories, especially in “model zoo” collections which often can-

not directly use the repository name. Also, the repository name

is often a nickname or a non-obvious abbreviation. For example,

a repository may be named “hip-mdp-public” but a more descrip-

tive name would be “Robust and Efficient Transfer Learning with

Hidden Parameter Markov Decision Processes.” To extract more de-

scriptive names, this module uses a rule-based approach to analyze

documentation for potential names. Specifically, the documenta-

tion analyzed depends on the repository and what is available. If

the model is in a repository subfolder, the subfolder’s README

file is used if available. If the model is a specific Python file, the

docstring, documentation comments at the top of the file, is used if

available. If the model is a repository or other files are not available,

the repository-level README is analyzed. Once the documenta-

tion to analyze is determined, the README or docstring is iterated

line-by-line, skipping non-relevant items commonly found at the

top of README files such as CI badges, image banners, heading

characters (such as *** or ===), and administrative notes such as

“**NOTE: This repo...”. When the first relevant line is found, then it

is stripped of Markdown or HTML characters and any hyperlinks.

This cleaned line is returned as a potential name. If this potential

name is not found, then the repository name is used as a fallback.

2.2 Reference Extraction

We chose to implement a module to extract references to papers

because in preliminary user testing, data scientists tend to discuss

models in terms of corresponding academic papers. This module

uses three rule-based approaches to extract references: 1) regular

expressions to search for common reference formats, 2) search for

arXiv IDs with correspond lookups to the arXiv API, and 3) identify

and import code blocks containing BibTeX references. The first

approach attempts to find a variety of references that may include

various conferences or even blog posts while the second and third

approaches attempt to find specific formats that are popular with

machine learning papers. For all three approaches, the module

searches across README files and docstrings using the same rules

as the model name module. In the case of overlapping references

found bymultiple approaches, the reference with themost metadata

as measured by fields extracted is kept with a preference for the

arXiv and BibTeX approaches over the pattern-matching approach.

The first approach uses nine regular expression patterns to find

both references to academic papers and links to blog posts and

other webpages. The patterns were developed by examining ex-

isting references in documentation for repositories in model zoos.

The metadata returned for this approach varies depending on the

pattern. The simplest example is a blog post which returns only the

article title and the URL while a more complicated pattern may re-

turn the title, list of authors, year, arXiv ID, and URL. This approach

is the broadest in terms of what types of references are allowed, as

any conference, journal, or blog post is potentially valid. However,

the pattern-based approach is quite limited in that only references

that match the patterns defined will be matched.

The second approach searches for arXiv papers. ArXiv is a

preprint hosting service particularly popular with academics in

AI fields [3]. Specifically, links to arXiv papers are searched for

within the given README and then the arXiv ID is extracted from

the link. The ID is then looked up against the arXiv API [1] for

additional information such as the article title, authors, and pub-

lishing date. The advantage of this approach is that arXiv is very

popular amongst machine learning researchers and is commonly

used. Using the arXiv API also allows for extracting reference in-

formation in a standardized way that is robust to differing citation

styles. The disadvantage of using arXiv is that its references tend

to be preprints and publishing conference or journal information is

often lost or unavailable.

83

The third approach searches for code blocks within the docu-

mentation for BibTeX references. This particular approach relies

on searching for code blocks as defined by the Markdown language

that GitHub uses for README files. The entire code block must be

a valid BibTeX reference (it cannot contain anything except BibTex).

Multiple entries in the code block are allowed. Usage of BibTeX

seems to be particularly popular to provide a citation to a model

repository’s associated paper. The advantage of this approach is

that BibTeX is a well-established and precise format.

2.3 Dataset Extraction

Data management is a hard challenge in engineering AI systems [7,

38] and models in software repositories often have no formal de-

scriptions of datasets used. Our module attempts to automatically

extract and link models to the datasets used. For this version, the

module extracts the name of the dataset and potentially a link to

the dataset. The module uses two rule-based approaches: searching

for links in the README and searching for references to common

datasets. The first approach allows for finding arbitrary datasets

and the second approach allows for finding commonly used datasets

in machine learning papers. For the first link-based approach, the

README is searched for links that contain dataset-related key-

words, specifically “dataset”, “data”, and “corpus.” The names and

then referenced URLs of the extracted dataset is returned. The

second approach uses a set of 640 common dataset names and

searches for mentions to these datasets in the README. To avoid

partial matching of short dataset names such as “MNIST” versus

“Fashion-MNIST,” matching datasets must be their own token(s) and

surrounded by whitespace or punctuation. If this approach finds

a match, then only the dataset name is returned. For cases where

both approaches return the same dataset, such as the “New York

Times Corpus,” the extracted metadata is merged by combining the

name and link. This module follows the same rules to the model

name module in determining which documentation file to analyze.

The list of common datasets was extracted using the Papers

With Code website [2] which compiles machine learning papers

and repositories and metadata that links the two. In the Papers

With Code data2, there are common machine learning tasks such

as Language Modeling and Semantic Segmentation. For each task,

there is a list of datasets and a leaderboard for each dataset with

associated papers and associated code repositories for each paper.

For example, the Language Modeling task includes the One Billion

Word dataset [11]. The module collected each of the datasets for

each of the tasks (as of 8/20/2019), resulting in 640 total dataset

names that the module searches for in the README. Some dataset

names were removed to prevent false positives such as “Datasets.”

Since the datasets are known, future work should add additional

metadata for matched datasets. For example, if “MNIST” is matched,

then metadata such where the dataset is available and the schema

could also be made available.

2.4 AI Framework Extraction

AI frameworks play an important part towards enabling the model

development process. Recent years have seen a spike in the release

2At the time of publishing, their data is available under the CC BY-SA license.

and adoption of AI frameworks [9] and framework-related ques-

tions are a major category of machine learning-related topics on

Stack Overflow [8]. Our module identifies which AI frameworks a

particular model uses by searching the source code. We focus on

Python AI frameworks as they are the most popular [9]. Themodule

then concatenates all Python (.py) and code cells of Jupyter Note-

books (.ipynb) into a single text string. Once all the code is extracted

and merged into a single string, a regular expression is used to find

the name of the modules imported, specifically cases of ‘import

module_name’ and ‘from module_name import function_name’

and all its variations (like with ‘as nickname’, multiple modules at

the same line, or functions from submodules). The found module

names are then filtered by a fixed list of well-known frameworks

such as Caffe, Keras, Lasagne, MXNet, NLTK, PyTorch (or torch), Ten-

sorFlow, Theano, scikit-learn (or sklearn). The only exception is the

Caffe2 framework which is not a Python module. Therefore, we

check the coexistence of the files: init_net.pb and predict_net.pb,

and if so, its name is added to the frameworks list. A full list of AI

frameworks for extraction is in Table 6.

2.5 Automated Domain Inference

This module uses machine learning to infer the domain of a given

model based on its available metadata. Here domain refers to the

genre or type of activity that the model is associated with, for ex-

ample: Computer Vision, Natural Language Processing (NLP), etc.

A general issue with extracting model metadata is that often the

domain of a model is not explicitly defined. However, machine learn-

ing practitioners often naturally describe models by their domain.

We use machine learning on a public dataset of model repositories

to create a machine learning model that takes in model metadata

as input, and outputs the model’s inferred domain and task along

with a confidence score.

To create the domain inference model, we created a training and

validation dataset of repositories and their associated domain and

task using data from the Papers With Code website [2]. In this case,

domain is a more general category for models whereas task is a

more specific activity within the category. Given the previous exam-

ple in the datasets extractor module, in Papers With Code, Natural

Language Processing (NLP) is a domain and Language Modeling is

a task within that domain. We use data from Papers With Code be-

cause it provides ground truth for the domains and tasks for model

repositories which is often unavailable otherwise. We use a total

of 2,915 repositories labeled with domains and tasks from Papers

With Code along with 300 repositories written in Python that have

nothing to do with machine learning as negative examples for a to-

tal of 3,215. These negative examples were manually gathered from

GitHub’s most popular Python repositories. This dataset is then

split into training and validation sets with 70% or 2,237 repositories

in the training set and 978 in the test set. For the current version

of this module, we take a bag-of-words approach with the input

model metadata. Specifically, only the README is considered in

the domain inference model but it is stripped of all tags and special

Markdown characters and then tokenized and vectorized.

Through examining the dataset and empirically, we settled on

an ensemble of support vector classification models that work in a

two-stage process as seen in Figure 2. The first stage determines

84

85

Table 1: Evaluation dataset summary.

Model Zoo No. Models URL

TensorFlow Models 73 https://github.com/tensorflow/models

Caffe2 Model Repository 87 https://github.com/caffe2/models

PyTorch Examples 12 https://github.com/pytorch/examples

Keras examples directory 42 https://github.com/keras-team/keras/tree/master/examples

MXNet examples directory 38 https://github.com/apache/incubator-mxnet/tree/master/example

Model Asset Exchange 32 https://developer.ibm.com/code/exchanges/models/

Model Zoo Dataset 284

arXiv Paper Dataset 3,409

SotA Paper Dataset 4,324

Total 7,998 (19 overlap)

Table 2: Evaluation results summary.

Evaluation Count Metric Value

Model Name 400 Correctness 0.853

Reference 4,094 Precision 0.655

Dataset 160 F1 0.757

Framework 252 Precision 1.000

Domain Inference 978 Domain Accuracy 0.859

Task Accuracy 0.723

System 80 Precision 0.872

Recall 0.833

default repository name is the full name of a model or approach. For

example, “BERT” is correct for the BERTmodel [13]. The percentage

correct of the test set was 85.3% or 341 of 400 repositories.

3.3 Reference Extraction

To evaluate the reference extraction module, we created a test set

with 4,094 pairs of paper references andmodel software repositories.

For this evaluation, we needed repositories with known connec-

tions to references. We made use of the SotA dataset described

earlier from Papers With Code [2] as it links together paper refer-

ences with software repositories. We assume that the link should

also work in reverse: each AI model software repository should be

associated with its paper. Papers in the test set may be associated

with multiple repositories and repositories may be associated with

multiple papers. For the evaluation, we measure the precision of our

reference extraction module. We chose to use precision due to the

direction of the labeled data available. Whereas our extraction has

a one-to-many relationship between repositories and references,

the labeled data has a one-to-many relationship between references

and repositories. To reconcile the two, we identify pairs of refer-

ences and repositories and examine if the extracted metadata for

the repository contains the associated reference. Specifically, we

count the pair as correct if the title of the reference in the test set

matches one of the references in the extracted model metadata for

the repository. The precision of our evaluation was that 2,682 or

65.5% of the pairs in test set were correct.

3.4 Dataset Extraction

To evaluate the dataset extraction module, we created a test set that

is a random sample of 160 repositories out of the collected dataset of

7,998.We performed a manual evaluation because we lacked ground

truth for datasets associated with models. One of the researchers

Table 3: Frameworks extracted from model zoos models.

Model zoo Count Framework(s)

Caffe2 87 Caffe2

Keras 42 Keras, TensorFlow, Theano, scikit-learn

MXNet 38 MXNet, Keras, Caffe, PyTorch, scikit-learn

PyTorch 12 PyTorch

TensorFlow 73 TensorFlow, Keras, NLTK, scikit-learn

manually examined each of the repositories in the random sam-

ple to create a ground truth dataset of available datasets for each

repository. The researcher had access to the same documentation

artifacts that the dataset extractor had access to: the README file

in most cases or the docstring if the model is a single Python file.

Using that documentation, the researcher had to determine which

datasets the model used to either train or evaluate the model. For

example, a given image classification model may use “ImageNet”

to train the model and evaluate the model on “CIFAR-10.” For each

repository in the sample, we then compare the names of extracted

datasets to the manually created ground truth set. The precision

of our evaluation was 76.91%, the recall was 75.99%, and the F1

score was 75.75%. In further inspection of the evaluation sample,

86 or 53.8% of the repositories had no extracted datasets with the

F1 score of this subsample at 80.2%. In the 74 (46.2%) repositories

with extracted datasets, the F1 score was 70.5%.

3.5 Framework Extraction

To evaluate the framework extraction module, we use 284 models

from “model zoos” as ground truth as most model zoos are associ-

ated with a particular deep learning Python framework as seen in

Table 1. The precision of the module can be assessed by whether

the AI frameworks extracted frommodels match the framework the

zoo is associated with. For example, a model from the TensorFlow

zoo should have the TensorFlow framework in its extracted meta-

data. A total of 252 models are from these framework-associated

model zoos which are summarized in Table 3 along with all of

the extracted frameworks. For all cases we see that the expected

framework is extracted for a precision of 100%.

3.6 Automated Domain Inference

To train the domain inference module, we created a training dataset

from a subset of the SotA dataset along with non-model software

repositories. Specifically, from the 3,215 repositories labeled with

domain information, 30% or 978 were reserved for a test set. Each

86

Table 4: Domain inference evaluation result summary with

breakdown by domain.

Dataset Size Domain Accuracy Task Accuracy

Test Set 978 0.859 0.723

Computer Vision 502 0.940 0.785

NLP 252 0.802 0.583

Other 134 0.597 0.597

Unknown 90 0.956

of the repositories in the test set were labeled with a domain con-

sisting of: Computer Vision, Natural Language Processing (NLP),

Other, or Unknown (not a model). Repositories labeled with Com-

puter Vision or NLP domains are also labeled with an associated

task. Repositories labeled with Other domain are also labeled with

a more specific domain such as Medical, Playing Games, etc. For the

evaluation, we determine the accuracy for both the domain stage

and the task/other domain stage of the domain inference ensemble.

As Unknown domain models do not go to the task/other domain

stage, they are not included in the accuracy calculation for that

stage. The domain stage accuracy for the test set is 0.859 and the

task stage accuracy for the test set is 0.723. We break down the

results by domains in Table 4 and note that the domain stage per-

forms better than the task/other domain stage. Similarly, Computer

Vision performs better than NLP which performs better than Other

domains, perhaps due to having more examples in the training set.

We also note that our module performs very well at discriminating

between models and not-models (Unknown) at 0.956, suggesting

perhaps future usage of the domain inference module to automati-

cally determine if a given software repository is an AI model.

3.7 System Evaluation

To evaluate the entire extraction system holistically, we manually

evaluated extracted metadata for a random sample of 80 reposito-

ries of the collected dataset of 7,998. We first manually created a

ground truth dataset from this sample. The researcher who created

the ground truth dataset had access to the same sources as the au-

tomated extraction: GitHub repository, README files, and Python

code. Using domain knowledge, the researcher manually annotated

the extracted model metadata sample by comparing to this ground

truth dataset, listing two cases of errors: properties that are present

but incorrect and properties that are missing. For example, the au-

tomated extractor may extract three properties from a model: name

is “MNIST model”, dataset is “MNIST”, and the model has three

authors: A, B, and C. The ground truth dataset may then note that

the authors list is actually A, B, and D and that the README file

also has references to two papers. In this case, there are two errors:

1 property (authors list) is incorrect and 1 property is missing (ref-

erences). As the previous example demonstrates, properties that

are lists are counted as one property as it gives a more conservative

indication of the performance of the extraction. We then calculate

precision and recall for our sample based on the number of correct

and missing extracted properties.

For the system evaluation, the researcher additionally had to

determine whether the repository was actually an AI model us-

ing the criteria described earlier. Out of the original 80 sampled

repositories from the paper dataset, 66 (82.5%) of the repositories

actually contained models. For this evaluation, the documentation

of the model also needed to be in English. Sixteen ineligible reposi-

tories (14 non-models, 2 non-English) were removed and iteratively

replaced with random samples from the dataset of 7,998 until 80 eli-

gible total model repositories were collected. The system evaluation

was performed on this sample.

The precision of our system evaluation was 87.17%, the recall

was 83.34%, and the F1 score was 85.14%. Upon further inspection

of the evaluation sample, if the extracted properties were restricted

to only what was returned by the five extraction modules described

earlier, then the precision drops to 70.73%, the recall to 66.83%, and

the F1 score to 68.48%.

4 PRELIMINARY METADATA USAGE

Automatically extracting standardized AI model metadata enables

quantitative analysis and tool support across a wide set of AI models.

We use our evaluation dataset of 7,998models in both an exploratory

analysis of model reproducibility and in an example catalog tool.

4.1 Exploratory Reproducibility Analysis

We demonstrate the potential of the extracted metadata by quan-

titatively analyzing the evaluation dataset for AI model data and

method reproducibility. AI research papers tend to be poorly doc-

umented for reproducibility [17]. Borrowing terminology from

Gundersen et al. [17], we examine two types of reproducibility

for AI models in our evaluation dataset: data and method repro-

ducibility. Data reproducibility is the data used in AI experiments

whereas method reproducibility are the algorithms used and deci-

sions behind algorithm selection. We examine extracted datasets to

explore data reproducibility in our models and extracted references

to explore method reproducibility. Our analysis is exploratory be-

cause we do not attempt to manually reproduce AI models (such as

in [17, 26]) but rather quantitatively analyze a larger-scale dataset

for signals of reproducibility based on literature.

We first report descriptive statistics for the repositories in the

dataset which are summarized in Table 5. We split the statistics

by source of the repositories as described in the previous section:

“model zoos”, from arXiv [3] papers, and state-of-the-art AI mod-

els [2] (with 19 models that overlap). We report the median Stars

of repositories, the percentage of repositories that primarily use

Python (includes Jupyter Notebooks which tend to be popular with

data scientists), repositories with README files (which our ex-

tractors use as a source of information), repositories with inferred

domains (cannot be "Unknown"), at least one extracted reference,

at least one extracted dataset, and at least one extracted AI-related

framework. We note that most (72%) models in the dataset contain

at least one extracted reference, supporting a suggestion from pre-

liminary user testing that data scientists tend to discuss models in

terms of papers. We also note that the high level of extracted AI

frameworks is a positive sign for reproducibility, as knowing the

module dependencies in Jupyter notebooks also promoted repro-

ducibility [26] (a distribution of usage is available in Table 6).

For data reproducibility, we explore extracted datasets in model

metadata as a signal for documentation of datasets used in AI mod-

els. Compared to traditional software engineering, the success of

87

Table 5: Evaluation dataset descriptives.

Attribute Overall
Model Zoo
Dataset

arXiv
Dataset

SotA
Dataset

Median Stars 12 17513 34 2

Uses Python 74% 96% 55% 87%

Has README 99% 100% 98% 100%

Domain Inferred 70% 45% 46% 90%

References Found 72% 43% 49% 92%

Dataset Found 42% 51% 31% 49%

AI Framework Found 98% 100% 96% 100%

Count 7998 284 3409 4324

Table 6: AI frameworks extracted with usage by repository.

AI Framework Repository Count

Caffe 415

Caffe2 113

Keras 1056

Lasagne 115

MXNet 164

NLTK 455

PyTorch 1744

TensorFlow 2556

Theano 411

scikit-learn 1139

AI models tends to be highly tied to data used and its process-

ing [10, 38]. In enterprise settings, this reliance on quality data for

success means that sharing and reusing datasets is vitally impor-

tant [7]. We use extracted datasets to explore the degree to which

types of models have documentation regarding datasets. Table 5

shows that 42% of models in our sample have an extracted dataset

with state-of-the-art models having a higher rate of having an ex-

tracted dataset at 49% and arXivmodels at a lower rate at 31%.When

we split the models by domain (with "Unknown" domain models

removed), there is a noticeable increase in models with datasets,

particularly for the popular domains of Computer Vision (53%) and

Natural Language Processing (49%). The domain split is summa-

rized in Table 7. We note that a disproportionately small amount

of datasets tend to be used by most models, as the distribution of

datasets to repositories in our sample is highly skewed (skewness

6.07) with each dataset having an average of 26.0 repositories but a

median of 4.0. As a limitation in our current extractor, we are not

able to automatically determine if the dataset extracted from an AI

model is used for training, validation, or testing. Our findings are

in line with Gundersen et al.’s study with a similar rate of dataset

sharing (49% vs 42%) [17].

For method reproducibility, we explore extracted references in

modelmetadata as a signal for documentation of algorithm selection

and design choices. We again borrow terminology from Gunder-

sen et al. to distinguish between AI program and AI method where

the method is the conceptual idea that the program implements. In

this case, we consider the software repository as the program and

papers referred to as describing the method. In particular, method

reproducibility also considers design decisions because often AI

development is much more flexible than traditional software devel-

opment, with tens to hundreds of candidates to be considered [38].

From our descriptives in Table 5, we see that 72% of models in our

Table 7: Repositories with datasets or references by domain

(“Unknown” is excluded).

Domain Count Datasets References

Computer Vision 3537 53% 86%

NLP 1484 49% 80%

Playing Games 245 29% 85%

Medical 129 23% 88%

Graphs 102 65% 85%

Speech 51 22% 84%

Misc 27 59% 89%

Total 7998 42% 72%

sample have at least one reference extracted with state-of-the-art

models having a much higher rate of 92% whereas arXiv models

are much lower at 49%. When we split the models by domain (Ta-

ble 7), we note that our known domains have higher rates of having

references, such as Vision with 86% and NLP with 80%. Similar to

datasets, a small amount of references also tend to be used by most

models. The distribution of references to repositories in our sample

is also highly skewed (skewness 15.12) with each reference having

an average of 2.1 repositories with a median of 1.0.

Our findings suggest that both state-of-the-art models and par-

ticular domains tend to have more documentation that supports re-

producibility. The concentration of references to particular datasets

and papers suggests that there may be low-hanging fruit in better

supporting these popular approaches and datasets. For example,

future work for AIMMX may identity that a popular dataset such

as MNIST is used and provide meta-features of the dataset such as

size and number of classes.

4.2 Model Catalog Tool

As an example of a tool that is able to leverage extracted metadata,

we implemented a catalog web application for the discovery and

evaluation of AI models. The catalog application consists of two

main views: a list of models with filter and search features (see

Figure 3) and a page that displays individual model details (see Fig-

ure 4). Models in this catalog are added through providing GitHub

repository URLs which are then passed to AIMMX for metadata

extraction. The metadata are then inserted into the catalog’s docu-

ment database, validated automatically, and then made available

for discovery. The system is available as an online service4.

The model list view is the main page for discovering models and

contains summary information for each model such as name, stars,

domain, frameworks used, and lifecycle stages. While the model

list itself is browsable by users, the main method of discovering

models is through the search and filter features, which allow for

querying or selecting multiple attributes that are based on prop-

erties in extracted model metadata. The model list view contains

a side panel with metadata attributes for filtering such as domain,

frameworks, and tags. Multiple attributes may be selected, enabling

the discovery of more specific models, for example, to find Com-

puter Vision-related TensorFlow models, the filter of “Computer

Vision” in Domain and the “TensorFlow” filter in Framework would

be selected. The top of the model list view contains a search feature

4https://ai-model-catalog-msr.us-south.cf.appdomain.cloud/

88

89

metadata, for example, perhaps inferring input and/or output data

schemas or hyperparameters from provided Python code. For the

exploratory reproducibility analysis, we have not evaluated our

findings by manually reproducing AI models.

6 RELATEDWORK

6.1 Software and AI Development

Artificial intelligence (AI) development as an engineering practice

has many intersections with software engineering practices, includ-

ing mining software repositories. Kim et al. [20] interviewed the

emerging role of data scientists on software development teams,

identifying five working styles that data scientists take on in these

teams, from insight providers, to team leads, and more relevant to

our work, model-building specialists whose models get integrated

into software applications. Bangash et al. [8] identified machine

learning-related questions asked on Stack Overflow, finding that

questions fell into broad categories of: framework, implementa-

tion, sub-domain, and algorithms. Our work also infers information

related to these broad categories, such as the AI framework, code ar-

tifacts, domain, and paper references for each models. It is our hope

that our extracted metadata enables similar quantitative analyses

across AI models rather than Stack Overflow questions. Software

engineering concepts have also been applied to machine learning

(ML) and AI systems, such as work by Sculley et al. [29] examin-

ing hidden technical debt in real-world ML systems. Relevant to

our work, they highlight the importance of strong abstractions for

ML systems and managing ML-specific artifacts such as datasets

and configurations. Amershi et al. [7] identify through interviews

fundamental differences between ML and non-ML software devel-

opment: the complexity of dealing with data, model customization

and reuse require unique skills, and components are difficult to

modularize due to often being “entangled.” Our work is motivated

by the insight that these important entangled components such as

datasets are often not directly observable (echoed in other papers

such as [10, 38]) from software repositories. Wan et al. [38] also

use interviews to focus on the differences between ML and non-ML

in many phases of software development such as requirements,

design, and testing. They find that the reliance on data and inherent

uncertainty in the development process create unique challenges

for ML systems. Our work assists in documenting some of the im-

portant ML-specific choices made in the development process such

as dataset and method selection. Our work also builds upon exist-

ing work on reproducibility in both software and AI development.

Pimentel et al. [26] quantitatively studied the reproducibility of

Jupyter notebooks which are popular with data scientists. Relevant

to our work, they found that the most common causes of failure

to reproduce were missing dependencies, hidden states, and data

accessibility. Gundersen et al. [17] found that AI research papers

tend to be poorly documented for method, data, and experiment

reproducibility. We borrow the concepts of AI method and data

reproducibility for our exploratory reproducibility study.

6.2 Model Metadata Mining and Inference

Machine learning has had a close and long relationship with data

mining [39], so it is natural that data mining techniques are ap-

plied to machine learning and AI models to analyze and enhance

them. Sethi et al. [30] extracted network topologies from certain

diagrams in academic papers about deep learning models. Vaziri

et al. [37] extracted conversational agents from web API specifi-

cations. Machine learning experiment management tools [34, 36]

often semi-automatically extract model metadata by requiring users

to instrument their model code with framework-specific instrumen-

tation libraries. Our software repository-based approach is also

similar to the experiment tracking MLFlow service [6]. However,

AIMMX is concerned more with extracting high-level contextual

information to reuse models such as papers, datasets, and domains

rather than automatically tracking the outcomes of experiments.

There are also many examples of machine learning being applied to

mining, such as automatic classification of software artifacts [21].

Projects like ML-Schema [28], an ontology for machine learning

algorithms, datasets, and experiments, have identified a gap of the

lack of interoperability between machine learning platforms. Our

solution was to extract standardized model metadata that focuses

on a high-level and contextual view of AI models. This is in contrast

to similar efforts such as ONNX [5], PMML [16], or PFA [27] which

focus on specifically defining the model’s computational network.

For example, for the same model, our metadata would describe the

domain of the model, references to relevant papers (e.g. [32]), de-

scriptions about where and what the model code and definitions are

(which may be ONNX, PMML, PFA, etc.), and descriptions of where

and what the training dataset is. A network definition representa-

tion of the same model would describe in detail the neural network

layers and its parameters. In this way, the metadata we extract is

complementary with other network representation formats.

6.3 Model Catalogs

Related work has also identified a need to catalog and manage AI

models and their associated pipelines and artifacts. The catalog tool

in our tool suite is a type of model management tool: it stores, tracks,

and indexes AI models. A similar tool of this type is ModelDB [36]

which automatically tracks Scikit-learn, Spark, and R models by

instrumenting code and allows users to view and compare models.

A similar system with a different scope is ModelHub [23] which

focuses on managing results and versions of deep learning models.

Their system includes a discovery system with a model comparison

and ranking feature [24]. In contrast, OpenML [35] focuses on

cataloging datasets andmachine learning tasks with the intention of

promoting collaboration between data scientists. We also note that

every major deep learning framework has at least one model zoo, a

collection or catalog of example models (Table 1). The automatic

connections between domain, references, datasets, and repositories

in our extracted metadata is similar to the manual connections

made in the Papers With Code website [2]. We also use this website

as a source of ground truth data for our domain inference model.

7 CONCLUSIONS

This paper describes AIMMX which we intend as a step towards

furthering engineering support for AI development through provid-

ing standardized metadata for existing AI models. We envision that

generating analyzable metadata for disparate models is both the

first step towards managing models at scale and adapting existing

mining software repositories techniques to AI models.

90

REFERENCES
[1] [n.d.]. arXiv.org help - arXiv API. https://arxiv.org/help/api/index Accessed:

2020-03-13.
[2] [n.d.]. Papers With Code: the latest in machine learning. https://paperswithcode.

com Accessed: 2020-03-13.
[3] 1991. arXiv.org e-Print archive. https://arxiv.org/ Accessed: 2020-03-13.
[4] 2008. The world’s leading software development platform - GitHub. https:

//github.com/ Accessed: 2020-03-13.
[5] 2017. ONNX. https://onnx.ai/ Accessed: 2020-03-13.
[6] 2019. MLFlow - A platform for the machine learning lifecycle. https://mlflow.org/

Accessed: 2020-03-13.
[7] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,

Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software Engineering for Machine Learning: A Case Study. In International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
291–300. https://doi.org/10.1109/ICSE-SEIP.2019.00042

[8] Abdul Ali Bangash, Hareem Sahar, Shaiful Chowdhury, AlexanderWilliamWong,
Abram Hindle, and Karim Ali. 2019. What Do Developers Know about Machine
Learning: A Study of ML Discussions on StackOverflow. In Conference on Mining
Software Repositories (MSR). 260–264. https://doi.org/10.1109/MSR.2019.00052

[9] H Ben Braiek, F Khomh, and B Adams. 2018. The Open-Closed Principle of Mod-
ern Machine Learning Frameworks. In Conference on Mining Software Repositories
(MSR). 353–363.

[10] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin
Zinkevich. 2019. Data Validation for Machine Learning. In Conference on Systems
and Machine Learning (SysML).

[11] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and
Phillipp Koehn. 2013. One Billion Word Benchmark for Measuring Progress
in Statistical Language Modeling. CoRR abs/1312.3005 (2013). arXiv:1312.3005
http://arxiv.org/abs/1312.3005

[12] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Conference on Computer Supported Cooperative Work (CSCW). 1277–1286. https:
//doi.org/10.1145/2145204.2145396

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805 (2018).

[14] GitHub. 2016. GitHub API v3 | GitHub Developer Guide. https://developer.
github.com/v3/ Accessed: 2020-03-13.

[15] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. 2000. Predicting fault incidence
using software change history. IEEE Transactions on Software Engineering 26, 7
(July 2000), 653–661. https://doi.org/10.1109/32.859533

[16] Alex Guazzelli, Michael Zeller, Wen-Ching Lin, Graham Williams, et al. 2009.
PMML: An open standard for sharing models. The R Journal 1, 1 (2009), 60–65.

[17] Odd Erik Gundersen and Sigbjørn Kjensmo. 2017. State of the art: Reproducibility
in artificial intelligence. In Conference on Artificial Intelligence (AAAI).

[18] Charles Hill, Rachel Bellamy, Thomas Erickson, andMargaret Burnett. 2016. Trials
and tribulations of developers of intelligent systems: A field study. In Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). 162–170.

[19] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub.
In Conference on Mining Software Repositories (MSR). 92–101. https://doi.org/10.
1145/2597073.2597074

[20] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2016.
The Emerging Role of Data Scientists on Software Development Teams. In Inter-
national Conference on Software Engineering (ICSE). 96–107. http://doi.acm.org/
10.1145/2884781.2884783

[21] Y Ma, S Fakhoury, M Christensen, V Arnaoudova, W Zogaan, and M Mirakhorli.
2018. Automatic Classification of Software Artifacts in Open-Source Applications.
In Conference on Mining Software Repositories (MSR). 414–425.

[22] T. Menzies and T. Zimmermann. 2013. Software Analytics: So What? IEEE
Software 30, 4 (July 2013), 31–37. https://doi.org/10.1109/MS.2013.86

[23] HuiMiao, Ang Li, Larry S. Davis, and Amol Deshpande. 2016. ModelHub: Towards
Unified Data and Lifecycle Management for Deep Learning. CoRR abs/1611.06224
(2016). https://arxiv.org/abs/1611.06224

[24] Hui Miao, Ang Li, Larry S Davis, and Amol Deshpande. 2017. OnModel Discovery
For Hosted Data Science Projects. In Workshop on Data Management for End-
to-End Machine Learning (DEEM’17). 6:1—-6:4. https://doi.org/10.1145/3076246.
3076252

[25] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. 2005. Predicting the location and num-
ber of faults in large software systems. IEEE Transactions on Software Engineering
31, 4 (April 2005), 340–355. https://doi.org/10.1109/TSE.2005.49

[26] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A Large-Scale Study about Quality and Reproducibility of Jupyter Note-
books. In Conference on Mining Software Repositories (MSR). 507–517. https:
//doi.org/10.1109/MSR.2019.00077

[27] Jim Pivarski, Collin Bennett, and Robert L. Grossman. 2016. Deploying Analyt-
ics with the Portable Format for Analytics (PFA). In Conference on Knowledge
Discovery and Data Mining (KDD) (San Francisco, California, USA). 579–588.
https://doi.org/10.1145/2939672.2939731

[28] Gustavo Correa Publio, Diego Esteves, Agnieszka ÅĄawrynowicz, PanÄŊe Panov,
Larisa Soldatova, Tommaso Soru, Joaquin Vanschoren, and Hamid Zafar. 2018.
ML Schema: Exposing the Semantics of Machine Learning with Schemas and
Ontologies. In Reproducibility in Machine Learning Workshop (RML). https:
//openreview.net/forum?id=B1e8MrXVxQ

[29] D Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, and Dan Denni-
son. 2015. Hidden Technical Debt in Machine Learning Systems. In Conference
on Neural Information Processing Systems (NIPS). 2503–2511.

[30] Akshay Sethi, Anush Sankaran, Naveen Panwar, Shreya Khare, and Senthil Mani.
2018. DLPaper2Code: Auto-generation of Code from Deep Learning Research
Papers. In Conference on Artificial Intelligence (AAAI). 7339–7346. https://www.
aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17100

[31] Neel Shah. [n.d.]. ARXIV data from 24,000+ papers Version 2. https://www.
kaggle.com/neelshah18/arxivdataset/home Accessed: 2019-01-15.

[32] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
2017. Inception-v4, Inception-ResNet and the Impact of Residual Connections on
Learning. In Conference on Artificial Intelligence (AAAI).

[33] Erik H. Trainer, Chalalai Chaihirunkarn, Arun Kalyanasundaram, and James D.
Herbsleb. 2015. From Personal Tool to Community Resource: What’s the Extra
Work and Who Will Do It?. In Conference on Computer Supported Cooperative
Work (CSCW). 417–430. http://doi.acm.org/10.1145/2675133.2675172

[34] Jason Tsay, Todd Mummert, Norman Bobroff, Alan Braz, and Martin Hirzel. 2018.
Runway: Machine Learning Model Experiment Management Tool. In Conference
on Systems and Machine Learning (SysML).

[35] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2014. OpenML:
Networked Science in Machine Learning. SIGKDD Explorations Newsletter 15, 2
(June 2014), 49–60. http://doi.acm.org/10.1145/2641190.2641198

[36] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,
Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. 2016. ModelDB: A System
for Machine Learning Model Management. InWorkshop on Human-In-the-Loop
Data Analytics (HILDA). 14:1–14:3. http://doi.acm.org/10.1145/2939502.2939516

[37] Mandana Vaziri, Louis Mandel, Avraham Shinnar, Jérôme Siméon, and Martin
Hirzel. 2017. Generating Chat Bots from Web API Specifications. In Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software
(Onward!). 44–57. http://doi.acm.org/10.1145/3133850.3133864

[38] Z Wan, X Xia, D Lo, and G C Murphy. 2019. How does Machine Learning Change
Software Development Practices? IEEE Transactions on Software Engineering
(2019), 1. https://doi.org/10.1109/TSE.2019.2937083

[39] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016. Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann.

A APPENDIX: TOOL AVAILABILITY

AIMMX as described in this paper is available at the time of writing

as an open source library under Apache License 2.05. The evalua-

tion dataset and individual model evaluation sample datasets are

available as part of a replication set6. Instructions on installing and

using the AIMMX library are included in the replication set.

B LIST OF DOMAINS AND TASKS INFERRED

• Computer Vision

– Face Detection

– Face Verification

– Image Classification

– Image Denoising

– Image Generation

– Image-to-Image Translation

– Object Detection

– Object Localization

– Person Re-Identification

– Pose Estimation

– Scene Text Detection

5https://github.com/ibm/aimmx
6https://zenodo.org/record/3609308

91

– Semantic Segmentation

– Visual Question Answering

– Vision Other

• Natural Language Processing

– Dependency Parsing

– Language Modelling

– Machine Translation

– Named Entity Recognition (NER)

– Natural Language Inference

– Part-Of-Speech Tagging

– Question Answering

– Sentiment Analysis

– Text Classification

– Text Generation

– NLP Other

• Other Domains

– Graphs

– Medical

– Playing Games

– Speech

– Miscellaneous

• Unknown

92

