
A semi-supervised deep learning algorithm for
abnormal EEG identification

Subhrajit Roy, Kiran Kate, and Martin Hirzel
IBM Research

roy.subhrajit20@gmail.com, kakate@us.ibm.com, hirzel@us.ibm.com

Abstract

Systems that can automatically analyze EEG signals can aid neurologists by reduc-
ing heavy workload and delays. However, such systems need to be first trained
using a labeled dataset. While large corpuses of EEG data exist, a fraction of them
are labeled. Hand-labeling data increases workload for the very neurologists we
try to aid. This paper proposes a semi-supervised learning workflow that can not
only extract meaningful information from large unlabeled EEG datasets but also
make predictions with minimal supervision, using labeled datasets as small as
5 examples.

unlabeled
EEG data to
train DMM

input-space
features to
train kNN

train

trainable
DMM

extract
labels

labels to
train kNN

latent-space
features to
train kNN

trainable
kNN

train
unlabeled
EEG data

to test

latent-space
features
to test

predicted
labels and

explanation

trained
DMM

transform

trained
kNN

transform predict

labeled
EEG data to

train kNN

prepare
features

input-space
features to
train DMM

prepare
features

input-space
features to

test

prepare
features

Figure 1: Proposed semi-supervised learning workflow for abnormal EEG identification.

1 Introduction

Brain-related disorders such as epilepsy can be diagnosed by analyzing electroencephalograms
(EEGs). However, manual analysis of EEG data is time-consuming due to the relatively low availabil-
ity of expert investigators. Hence, automatic EEG interpretation by machine-learning algorithms has
gained popularity recently1–3. However, typically such algorithms require a large labeled dataset to
train on. It is not always possible to obtain such a dataset, since there is a limited number of certified
EEG labelers. This paper tackles this problem by proposing a semi-supervised learning workflow
for classifying EEGs, comprising an unsupervised learning phase followed by supervised learning

Machine Learning for Health (ML4H) Workshop at NeurIPS 2019 – Extended Abstract

ar
X

iv
:1

90
3.

07
82

2v
2

 [
cs

.L
G

]
 6

 N
ov

 2
01

9

Dimension #1

Di
m

en
sio

n
#2

Dimension #1

Di
m

en
sio

n
#2

Figure 2: TSNE visualization of the input-space (left) and the latent-space features learned by the
DMM (right). Red dots correspond to normal EEGs and blue dots correspond to abnormal EEGs.

(similarly to Kingma et al.’s M1 workflow4). The unsupervised phase trains a Deep Markov Model
(DMM)5 to learn non-linear sequential dependencies in EEG signals from a large set of unlabeled
EEG data. The supervised phase uses the trained DMM and a small set of labeled EEG data to
obtain latent features for training a k-Nearest Neighbors (kNN) algorithm. Using kNN helps explain
predictions by returning similar cases. This paper concentrates on one of the first steps in interpreting
an EEG session: identifying whether the brain activity of a patient is abnormal or normal. To train and
evaluate the proposed system, we use the TUH EEG Abnormal Corpus dataset6, which consists of
1,488 abnormal and 1,529 normal labeled EEG sessions. The dataset was reorganized into a training
set (1,361 abnormal/1,379 normal) and a test set (127 abnormal/150 normal).

2 Methods

Figure 1 summarizes the complete training and evaluation process. Neurologists typically classify
an EEG session into either normal or abnormal by examining only its initial segment7. Hence, like
López et al.7, we extracted only the first minute of each EEG session from the training and test set.
Next, we converted the recorded raw EEG signal into the transverse central parietal (TCP)7 montage
system for accentuating spike activity. We extracted four standard features (power in the alpha, beta,
theta, and delta band) from each second of data. Figure 1 refers to these as input-space features. The
training dataset consists of a large unlabeled set and a small labeled set.

We trained a DMM5 on the unlabeled training dataset to model the dynamics of the EEG features
over time. DMM is a high-dimensional, non-conjugate model designed to be fit to large data sets.
The number of latent variables in a sequence depends on the input data. Compared to a Markov
model, a DMM is flexible enough to capture highly non-linear dynamics. This is because in a DMM,
the transition probabilities that govern the dynamics of the latent variables as well as the emission
probabilities governing how the observations are generated by the latent dynamics are parameterized
by deep neural networks (hence the name Deep Markov Model). This makes a DMM particularly
well-suited for modeling EEG data. We used Krishnan et al.’s DMM architecture for modeling
temporal dependencies5. Figure 2 shows the t-distributed stochastic neighbor embedding (TSNE)
visualization of the input space and the features learned by the DMM, where blue and red dots
correspond to normal and abnormal EEG, respectively. The latter qualitatively depicts that the DMM
learns more discriminative features in the latent space as compared to the input space.

Figure 3 shows the the DMM architecture, comprising a generative and an inference model. The
generative model takes a sequence ~z of latents and generates the corresponding observations ~x. The
model’s transition and emission functions are modeled by multi-layered perceptrons (MLPs). The
transition module uses a gated transition function without being conditioned by the observations,
similar to the Markovian properties of the latents. The inference network serves as a variational
guide8, 9, taking an observation sequence ~x to propose corresponding latents ~z. The guide is structured
upon the factorization of the posterior latent distribution. The factorization is followed by using a
backward (right to left) recurrent neural network (RNN), which outputs a hidden unit hi for each
time step i. A combiner function uses hi and zi−1 to propose the approximate latent zi.

2

Legend:
• latent

probabilistic
variable

• nonlinearity
(neural
network)

• latent
deterministic
variable

• observed
probabilistic
variablex2

rnn

h2

comb

z2

2 2

x1

rnn

h1

comb

z1

1 1

x3

rnn

h3

comb

z3

3 3

x2

z2

x1

z1

x3

z3

mlpt mlpt

mlpe mlpe

mlpt

mlpe

…
…

…
tr

an
si

ti
on

em
is

si
on

co
m

b
in

er
b

ac
k

w
ar

d

DMM (generative model) DMM (inference network)

n

zi

xi

yi

Figure 3: Deep Markov Model (DMM) graphical model and guide.

0.2 0.6 2 6 20 100
Labeled EEG data (% of full training dataset) [log-scale]

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

k-NN
k-NN+DMM

5 16 54 164 548 2740
Labeled EEG data (Number of samples) [log-scale]

(a)

0.2 0.6 2 6 20 100
Labeled EEG data (% of full training dataset) [log-scale]

0.5

0.6

0.7

0.8

0.9

1.0
A

U
R

O
C

k-NN
k-NN+DMM

5 16 54 164 548 2740
Labeled EEG data (Number of samples) [log-scale]

(b)

0.2 0.6 2 6 20 100
Labeled EEG data (% of full training dataset) [log-scale]

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

input-space
latent-space
k-NN+DMM

5 16 54 164 548 2740
Labeled EEG data (Number of samples) [log-scale]

(c)

Figure 4: Test accuracy (a, c) and AUROC (b) vs. size of labeled dataset (top horizontal axis: number
of samples, bottom axis: percentage of full training data). Each data point shows the average and
standard deviation obtained across 5 runs. (c) is the comparison of best classification performance
among 11 classifiers on input-space features and latent-space features to our approach (k-NN+DMM).

We trained the DMM for 50 epochs with a batch size of 32 and learning rate of 0.001. We used the
stochastic variational inference strategy and ADAM optimization algorithm. Our implementation is
based on the auto-gradient computation framework of the Pyro library10. Once the DMM is trained,
we use the labeled training samples and extract their corresponding latent-space features from the
trained DMM. Next, these latent features are used to train the k-Nearest Neighbors (kNN) algorithm
for identifying abnormal EEG sessions. We used the scikit-learn implementation11 of the kNN
algorithm. We chose the kNN algorithm since it offers a certain level of interpretability by explaining
its classification decisions to neurologists via examples.

During evaluation, we first pass the test set through the trained DMM and obtain the features from
the latent space. Next, we use the trained kNN algorithm to obtain the predictions. If requested
by neurologists, the model can also return the nearest neighbors from the labeled training data as
explanation. Given an unlabeled sample, the kneighbors method from the scikit-learn implementation
of kNN returns the indices of the k labeled samples that are nearest to it in latent space. Using those
indices, we can retrieve the corresponding labeled points in input space as a visual explanation for
the prediction. We used the Hyperopt library12 to explore and optimize the hyperparameters of kNN.

3 Results and discussion

To analyze the performance of our proposed workflow, we conduct two experiments, both using
the train/test split discussed in Section 1. We use the full training set without labels to train the
DMM. Then, we pick a random stratified subset of the training set for the supervised phase. We vary
the amount of data used in the supervised phase for training the classifier and obtain classification
performance on the test dataset.

Our first experiment reports classification accuracies and AUROC on the test dataset when kNN
is used as a classifier as proposed in our system. These results, reported in Figure 4(a) and 4(b),
show that our system can achieve reasonable performance even at low amounts of labeled EEG

3

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

% labeled data = 0.6, # samples = 16

k-NN
k-NN+DMM

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

% labeled data = 2, # samples = 54

k-NN
k-NN+DMM

(b)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

% labeled data = 20, # samples = 543

k-NN
k-NN+DMM

(c)

Figure 5: ROC curves of 5 runs for different sizes of the labeled dataset.

1 from lale.lib.sklearn import GaussianNB, GradientBoostingClassifier as GradBoost, KNeighborsClassifier as KNN, \
2 RandomForestClassifier as RF, ExtraTreesClassifier, QuadraticDiscriminantAnalysis as QDA, \
3 PassiveAggressiveClassifier as PAC, DecisionTreeClassifier as DT, LogisticRegression as LR
4 from lale.lib.xgboost import XGBClassifier as XGB
5 from lale.lib.lightgbm import LGBMClassifier as LGBM
6 from lale.lib.lale import HyperoptClassifier
7 planned_pipeline = GaussianNB | GradBoost | KNN | RF | ExtraTreesClassifier | QDA | PAC | DT | LR | XGB | LGBM
8 clf = HyperoptClassifier(planned_pipeline, cv = 3, max_evals = 150)
9 trained_clf = clf.fit(X_train, y_train)

10 predictions = trained_clf.predict(X_test)
11 accuracy = accuracy_score(y_test, predictions)

Figure 6: Code for CASH experiment discussed in Section 3.

data and the performance gets better with more labels. At 20% labeled data, our model reaches a
similar classification accuracy to that reported by López et al.7, who used the same dataset, a similar
preprocessing technique, and trained on 100% of the data. Moreover, Figure 4 shows that if, instead
of training the kNN on the latent features extracted from the trained DMM, we directly train it on the
input space, it performs worse. This shows that the DMM is learning meaningful representations
during the unsupervised training process. To further demonstrate the advantages of the proposed
method, we dive deeper and show the ROC curves obtained at different levels of the size of the labeled
dataset for the 5 runs in Figure 5. The ROC curves confirm the AUROC results and demonstrate that
our method performs better across the spectrum of true/false positive trade-offs.

Our second experiment tests the suitability of kNN as a classifier. While kNN is an important
choice for explainability, we would want to make sure that classification performance is not affected
negatively. We performed combined algorithm selection and hyperparameter tuning (CASH) on 11
popular classifiers: 9 from scikit-learn11 along with the XGBoost Classifier13 and the LightGBM
Classifier14 as shown in Figure 6. We used a Python library Lale15 that simplifies CASH using
Hyperopt. We used the same CASH budget of 150 Hyperopt trials as the previous experiment.
Figure 6 shows a code snippet of this experiment. Figure 4(c) shows that for low amounts of
labeled EEG data, our proposed approach still outperforms even the best classifier trained on input-
space features. Even in the case with 100% labeled data, we gain interpretability at slightly worse
performance. Interestingly, kNN on the latent space performs better than the best classifier for the
latent space found using CASH. While kNN was among the 11 classifiers used, with limited budget
and other classifiers in the mix, Hyperopt could not tune it to the same extent as in the first experiment.

4 Conclusion

We propose a semi-supervised learning workflow for automated abnormal EEG identification. In
hospitals, while large volumes of EEG data exist, typically they are not used to design machine
learning systems due to the absence of annotations. Since this data can only be reviewed by certified
investigators, the amount of annotated data is bounded by the time these clinicians have. Our solution
addresses this issue by using less annotated data while also extracting relevant features from the entire
unlabeled corpus. We envision that the proposed workflow might be applicable to other time-series
datasets which we will explore in future.

4

References

[1] Meysam Golmohammadi, Saeedeh Ziyabari, Vinit Shah, Silvia Lopez de Diego, Iyad Obeid,
and Joseph Picone. Deep architectures for automated seizure detection in scalp EEGs, 2017.
http://arxiv.org/abs/1712.09776.

[2] Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer, Martin
Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard,
and Tonio Ball. Deep learning with convolutional neural networks for brain mapping and
decoding of movement-related information from the human EEG, 2017. http://arxiv.org/
abs/1703.05051.

[3] Subhrajit Roy, Isabell Kiral-Kornek, and Stefan Harrer. ChronoNet: A deep recurrent neural
network for abnormal EEG identification. In Conference on Artificial Intelligence in Medicine
(AIME), pages 47–56, 2019. https://doi.org/10.1007/978-3-030-21642-9_8.

[4] Diederik P. Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-
supervised learning with deep generative models. In Conference on Neural Information
Processing Systems (NIPS), pages 3581–3589, 2014. http://papers.nips.cc/paper/
5352-semi-supervised-learning-with-deep-generative-models.

[5] Rahul G. Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear
state space models. In Conference on Artificial Intelligence (AAAI), pages 2101–2109, 2017.
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14215.

[6] Temple University EEG corpus, 2015. https://www.isip.piconepress.com/projects/
tuh_eeg/ (Retrieved Sept, 2019).

[7] Silvia López de Diego. Automated interpretation of abnormal adult electroencephalo-
grams. Master’s thesis, Temple University, 2017. https://www.isip.piconepress.com/
publications/ms_theses/2017/abnormal/.

[8] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112:859–877, 2017. https:
//arxiv.org/abs/1601.00670.

[9] Guillaume Baudart, Martin Hirzel, and Louis Mandel. Deep probabilistic programming lan-
guages: A qualitative study, April 2018. https://arxiv.org/abs/1804.06458.

[10] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep
universal probabilistic programming. Journal of Machine Learning Research (JMLR), 20:1–6,
2019. http://www.jmlr.org/papers/volume20/18-403/18-403.pdf.

[11] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton,
Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine
learning software: Experiences from the scikit-learn project, 2013. https://arxiv.org/
abs/1309.0238.

[12] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D. Cox. Hyperopt: a
Python library for model selection and hyperparameter optimization. Computational Science &
Discovery, 8(1), 2015. http://dx.doi.org/10.1088/1749-4699/8/1/014008.

[13] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Conference
on Knowledge Discovery and Data Mining (KDD), pages 785–794, 2016. http://doi.acm.
org/10.1145/2939672.2939785.

[14] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. LightGBM: A highly efficient gradient boosting decision tree. In Conference on Neural
Information Processing Systems (NIPS), pages 3146–3154, 2017. http://papers.nips.cc/
paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.

[15] Martin Hirzel, Kiran Kate, Avraham Shinnar, Subhrajit Roy, and Parikshit Ram. Type-driven
automated learning with Lale, May 2019. https://arxiv.org/abs/1906.03957.

5

http://arxiv.org/abs/1712.09776
http://arxiv.org/abs/1703.05051
http://arxiv.org/abs/1703.05051
https://doi.org/10.1007/978-3-030-21642-9_8
http://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models
http://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14215
https://www.isip.piconepress.com/projects/tuh_eeg/
https://www.isip.piconepress.com/projects/tuh_eeg/
https://www.isip.piconepress.com/publications/ms_theses/2017/abnormal/
https://www.isip.piconepress.com/publications/ms_theses/2017/abnormal/
https://arxiv.org/abs/1601.00670
https://arxiv.org/abs/1601.00670
https://arxiv.org/abs/1804.06458
http://www.jmlr.org/papers/volume20/18-403/18-403.pdf
https://arxiv.org/abs/1309.0238
https://arxiv.org/abs/1309.0238
http://dx.doi.org/10.1088/1749-4699/8/1/014008
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://arxiv.org/abs/1906.03957

	1 Introduction
	2 Methods
	3 Results and discussion
	4 Conclusion

