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Abstract

Machine learning in practice often involves complex pipelines
for data cleansing, feature engineering, preprocessing, and
prediction. These pipelines are composed of operators, which
have to be correctly connected and whose hyperparameters
must be correctly configured. Unfortunately, it is quite com-
mon for certain combinations of datasets, operators, or hy-
perparameters to cause failures. Diagnosing and fixing those
failures is tedious and error-prone and can seriously derail a
data scientist’s workflow. This paper describes an approach
for automatically debugging an ML pipeline, explaining the
failures, and producing a remediation. We implemented our
approach, which builds on a combination of AutoML and
SMT, in a tool called Maro. Maro works seamlessly with the
familiar data science ecosystem including Python, Jupyter
notebooks, scikit-learn, and AutoML tools such as Hyperopt.
We empirically evaluate our tool and find that for most cases,
a single remediation automatically fixes errors, produces no
additional faults, and does not significantly impact optimal
accuracy nor time to convergence.
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1 Introduction

Artificial Intelligence (AI) is an exciting rising paradigm of
software development that however also comes with many
new challenges for developers. Challenges range from sys-
temic issues such as a lack of education and training [1] and
difficulty in reproducibility [13] to hidden technical debt [28]
to a need for fairness and controlling for bias [7]. Individual
AI developers developing software that trains machine learn-
ing (ML) models face tasks covering a wide range from data
collection and cleaning to feature selection to training and
evaluating models. These tasks are often highly entangled,
where errors in earlier tasks often have serious or insidious
cross-cutting consequences [16]. Consequences of errors
span a wide range depending on the components that they
affect, from hard faults to data corruption to incorrect or
unintended functionality in the AI system [19]. Similarly,
the potential causes of errors are numerous, from the dataset
used, derived features, hyperparameters, operators, etc. This
complexity in reasoning and tracking errors in AI systems
makes them difficult for AI developers to debug.
This paper focuses on the task of debugging a set of pos-

sible ML pipelines for a given dataset. Following the termi-
nology of scikit-learn [26], a popular ML framework, we
define an ML pipeline as a graph of operators and their hy-
perparameters. Once trained, an ML pipeline becomes an
ML model that supports evaluation using metrics and pre-
dictions on new unseen data. For this work, we consider
planned pipelines, which specify a graph of ML operators
and schemas for hyperparameters, but leave some choices
open, such as concrete hyperparameter settings, or picking
one of a choice of multiple operators at a given pipeline
step. Given a planned pipeline, a pipeline instance fills in
all the choices, by picking operators from the set of avail-
able options and hyperparameter values from the domain of
the corresponding schema. It is common practice to use an
automated machine learning (AutoML) tool to explore the
search space of choices in a planned pipeline to find the best
pipeline instance for a given dataset. A pipeline instance is
trainable, and can thus be turned into a model and evalu-
ated against metrics for a given dataset. An AutoML search
generates and evaluates multiple pipeline instances.
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We focus on debugging these planned pipelines because
errors in them often propagate to the derived models. Addi-
tionally, the automated search often tries erroneous combi-
nations of operators and hyperparameters, which is wasteful.
Debugging the failures of a particular ML pipeline is difficult
and time-consuming due to the experimental nature of AI
development along with the multitude of possible failure
causes [3]. Often, the lack of transparency and explainability
in AI development results in developers treating pipelines as
łblack boxes,ž forcing a trial-and-error approach of testing
by running models repeatedly [16]. This is combined with
a difficulty of localizing the error due to entanglement or
hidden feedback loops [28]. Rather than reason about the
development process as a whole with all of its complexities
when debugging, our tool embraces the iterative nature of
AI development to more efficiently find and remediate bugs.

Our approach combines automated machine learning (Au-
toML) with a satisfiability modulo theories (SMT) solver to
generate, analyze, and remediate instances of a planned ML
pipeline for a given task. The complexity and sheer amount
of possible causes of failure makes manual debugging dif-
ficult [25]. With AutoML, the amount of experiments to
reason across when debugging only increases. Our system
eases this burden on the AI developer by viewing debugging
as a search for constraints over a given space of operators
and their hyperparameters, which is a natural fit for an SMT
solver. Thus, our system attempts to automatically determine
which constraints of operators or hyperparameters prevent
certain failures. By using these constraints and the origi-
nal planned ML pipeline, we generate a remediated planned
pipeline that avoids (a generalization of) these failures.
This paper presents a tool named Maro (ML Automated

Remediation Oracle) that automatically debugs ML pipelines
and generates remediated pipelines based on AutoML experi-
ment results. We build on top of a Python-based open source
AutoML interface named Lale [5, 6] that supports composing
operators from popular ML libraries such as scikit-learn [26]
into pipelines and then running AutoML optimizers such
as Hyperopt [8] across these pipelines. Given a user’s ML
pipeline and their initial AutoML-generated experiments, if
some of the experiments have failed, then Maro automati-
cally returns a remediated pipeline. Our tool also provides
explanations for the automated remediations for the given
ML pipeline through rendering the constraints found by the
solver in natural language, as well as displaying the differ-
ences between the original and remediated pipelines. We
evaluate Maro on 20 planned pipelines that cover a diverse
set of ML operators, failure causes, and remediation require-
ments. We compare Maro against approaches from the Bug-
Doc pipeline debugger [23]. Since BugDoc does not provide
remediation, we extend it with this feature to enable better
experimental comparison. To the best of our knowledge, our
tool is the first to provide a full debugging and remediation
round-trip.

The contributions of Maro are as follows:

1. An approach for automated fault localization in ML pipe-
lines based on AutoML and SMT solvers.

2. Automated remediation for ML pipelines, by applying
constraints found by the localizer to the original pipeline.

3. Explanation of remediations via natural language as well
as via differencing the original and remediated pipeline.

2 Overview and Examples

This section uses examples to give a high-level description
of our tool. The target persona is Dante, a data scientist.
Dante uses popular Python machine-learning libraries from
a Jupyter notebook to build predictive models.

2.1 Detailed Example

Our first example starts when Dante has already inspected
the data and found that it has some missing values, categor-
ical features, and discrete target labels. So he assembles a
planned pipeline with three steps: a SimpleImputer for filling in
missing values, a OneHotEncoder for transforming categoricals
into numbers, and a LogisticRegression classifier for predicting
target labels. The pipe combinator (>>) connects operators
with dataflow edges, creating a pipeline.

one_hot_encoder = OneHotEncoder(handle_unknown="ignore")

planned = SimpleImputer >> one_hot_encoder >> LogisticRegression

Dante’s day-to-dayworkflow involves trial-and-error with
different pipelines to find the best-performing one. Rather
than doing all experiments by hand, Dante uses AutoML
tools to automate some of that search. In the example, both
SimpleImputer and LogisticRegression have hyperparameters that
Dante deliberately left unspecified. Instead, he uses Hyperopt [8]
to search possible configurations for them, based on hyper-
parameter schemas specified in the library. Each evaluation
picks a pipeline instance (a pipeline where all hyperparam-
eters are bound to values drawn from their schema) and
evaluates it using cross-validation.

hyperopt_trainable = Hyperopt(estimator=planned, max_evals=20)

hyperopt_trained = hyperopt_trainable.fit(train_X, train_y)

Please wait ...

Done, 15 out of 20 evaluations failed, call summary() for details.

Unfortunately, most evaluations failed, i.e., the correspond-
ing pipeline instance raised an exception. Dante wonders
what he should do now. He is tempted to just ignore the
failures and move on, but what if there are root causes that
he should understand to build a better pipeline? Given how
many evaluations failed, the search may be less effective, as
it covered less ground. Moreover, the failures do not come for
free: they may have wasted computational resources before
raising their exceptions. So rather than give in to the tempta-
tion, he decides to poke around a bit. But that prospect fills
him with dread: it can become a time drain, since comparing
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even a moderate number of pipeline instances (like 20 in this
example) is tedious. For now, Dante decides to at least call
the summary() method as suggested by the error message.

hyperopt_trained.summary()

Each evaluation in the summary has a name, ID, loss (in
this case accuracy, negated to make it a minimization prob-
lem), log-loss, and status. Dante decides to retrieve one of
the failing instances and pretty-print it as Python code.

hyperopt_trained.get_pipeline("p0").pretty_print()

simple_imputer = SimpleImputer(strategy="median")

one_hot_encoder = OneHotEncoder(handle_unknown="ignore")

logistic_regression = LogisticRegression(

dual=True,

fit_intercept=False,

intercept_scaling=0.48518719297596336,

max_iter=326,

solver="liblinear",

tol=0.006373368408152854,

)

pipeline = simple_imputer >> one_hot_encoder >> logistic_regression

As expected, Hyperopt chose concrete hyperparameters. But
what went wrong? Dante could now look at all the other
pipeline instances to find out which choices cause failures. Or
he could try to train them and wade through their exception
back-traces. Instead, Dante asks Maro, the tool introduced
by this paper, for guidance. Maro has three parts: a fault
localizer, a remediator, and an explainer. The auto_remediate()

function first calls the fault localizer and the remediator,
taking the original planned pipeline and the evaluations from
the Hyperopt run (pipeline instances and their status) and
returning a new remediated pipeline. The remediated pipeline is
as similar as possible to the original planned pipeline while
ruling out all failures observed in earlier evaluations. Lastly,
the explainer returns a natural language explanation of the
suggested remediation.

remediated = auto_remediate(planned, hyperopt_trained,

explanation=True)

Try setting argument 'strategy' in operator SimpleImputer to 'most_frequent'

The explanation pinpoints the cause of failure: SimpleImputer
should use the "most_frequent" strategy. This makes sense,
since the dataset is categorical, and other imputation strate-
gies (such as "median") require numeric data. Dante is relieved
that Maro guided him to a solution, and decides to try out
the remediated pipeline. The remediated pipeline is again a
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Figure 1. Iterative ML development with Maro.

planned pipeline for which Hyperopt tries pipeline instances
by searching the remaining hyperparameters.

hyperopt_trainable = Hyperopt(estimator=remediated, max_evals=20)

hyperopt_trained = hyperopt_trainable.fit(train_X, train_y)

Please wait ...

Done, all evaluations succeeded.

This time, all 20 out of 20 evaluations succeeded. So Dante
can get back to his work of finding the best pipeline for the
dataset. He can evaluate the pipeline on test data, or perhaps
use AutoML to search different classifier choices.

2.2 Tool Overview

Figure 1 gives an overview of how a data scientist such
as Dante can use our tool Maro. The workflow starts with
the data scientist, shown in the center, creating a planned
pipeline (1). They can then feed this pipeline to an AutoML
tool, such as grid-search, Hyperopt, or any other backends
that Lale supports (2). The automated search yields a set of
pipeline instances along with their status, which can be łokž
or łfailž (3).WithoutMaro, the data scientist would have little
choice but to manually inspect these results (4). But a better
option is to send the results on to Maro’s fault localizer com-
ponent (5). The localizer uses an SMT solver to find a root
cause of the failures (6). This root cause, along with the orig-
inal planned pipeline, forms the input to Maro’s remediator
component (7). The result is a remediated pipeline (8), which
the data scientist can inspect directly if they so wish (9). Al-
ternatively, to make the fix easier to understand, the data
scientist can send the remediated pipeline and the original
pipeline to Maro’s explainer component (10). This explains
the remediation to the data scientist by rendering it in natu-
ral language (11). And finally, as the remediated pipeline is
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itself a planned pipeline, the data scientist can use it as input
to the AutoML tool (12), thus completing the circle.

2.3 Additional Use Cases

Maro can handle a diverse set of ML pipelines and associated
failures. This paper experiments with a set of 20 planned
pipelines. We initially chose a set of pipelines based on inter-
viewing ML practitioners and analyzing publicly-available
pipelines. Then, we grew that set as we implemented and
tested Maro to exercise challenging corner cases. All planned
pipelines use common ML operators, mostly from scikit-
learn [26], such as LogisticRegression, or OneHotEncoder, but also
operators from other scikit-learn compatible libraries, such
as a bias mitigator from AIF360 [7] and gradient-boosted
trees from LightGBM [21]. The full list of pipelines is avail-
able in the extended version of this paper [10].
The pipelines failed for a variety of reasons, including

characteristics of the input data; incompatible operators; in-
compatible hyperparameters; or some combination of the
above. Some pipelines failed fast, others only after expen-
sive training of a prefix. Sometimes, even hyperparameters
within a single operator can be incompatible with each other.
This is known as a conditional hyperparameter constraint,
and some AutoML tools prune invalid combinations from
the search space based on manual specification, e.g., auto-
sklearn [11] or Lale [6]. However, other AutoML tools do
not come with comprehensive conditional hyperparameter
constraint specifications, e.g., scikit-learn’s GridSearchCV.
Maro repairs each planned pipeline in our set to prune

failing instances from the search space. Remediations may
involve removing operators from choice for AutoML algo-
rithm selection; limiting categorical hyperparameters to a
set of values (such as the complement of removing a value
from an enum); placing upper or lower bounds on contin-
uous hyperparameters; or some combination of the above.
While data is sometimes but not always part of the problem,
remediation is always in the pipeline, not in the data. This
is because in practice, data scientists must work with the
data at hand. Thankfully, often, the purpose of an operator
is to transform the data you have into the data you need, so
picking and configuring operators in a pipeline can also fix
data problems.

3 Algorithms and Tool Design

As shown in Figure 1, Maro has three main components:

1. A localizer that, given a set of evaluations, computes a root
cause of failures, i.e., operator choices and hyperparameter
settings that correlate with pipeline instances that failed.

2. A remediator that, given the original planned pipeline and
the root cause of failures, constructs a new pipeline that
excludes known failures while allowing other settings.

one_hot_encoder = OneHotEncoder(handle_unknown='ignore')

ordinal_encoder = OrdinalEncoder(handle_unknown='ignore')

encoder_choice = one_hot_encoder | ordinal_encoder

planned = (project_categoricals >> encoder_choice

>> StandardScaler >> LogisticRegression)

Figure 2. Example pipeline (k).

if Hp (StandardScaler.with_mean) = False

then True

else Hp (OrdinalEncoder.handle_unknown) = "ignore"

Figure 3. Localizer-generated constraint for pipeline (k).

3. An explainer that, given the original planned pipeline and
the root cause of failures, computes an explanation that
makes the remediation easier to understand.

We start with some preliminaries and defining Maro’s inter-
faces, then present how the three main components work.

3.1 Preliminaries

The input to Maro consists of a set of evaluations, which are
pipeline instances along with their status and the original
planned pipeline.

Definition 3.1 (Pipeline). A planned pipeline P is a set of
steps S0, . . . , Sn , which are operators or operator choices.

Definition 3.2 (Pipeline instance). A pipeline instance p is
a pipeline along with a Boolean result rp denoting success or
failure and a mapping Hp from hyperparameters to values.

To simplify the discussion, we model operator choice for
algorithm selection by the presence of a hyperparameter
that identifies the chosen operator.

Constraints. Maro uses an interface of constraints to com-
municate between the fault localizer and the remediator: the
localizer computes constraints that capture successful runs,
and the remediator alters the initial planned pipeline to rule
out pipeline instances that violate those constraints.
There are two kinds of constraints, atomic and multiple.

An atomic constraint compares a hyperparameter against a
constant (e.g., Hp (SimpleImputer.strategy) , "median") or against
another hyperparameter or checks if a hyperparameter is
present. A multiple constraint arranges other constraints in
an if-then-else tree. To make this concrete, consider Figure 3,
which shows the constraints our solver found for example
pipeline (k), shown in Figure 2. The if-part represents the top
of the tree, checking whether StandardScaler.with_mean is False.
The then-clause is simply True, indicating that the pipeline is
valid. The else-clause says that otherwise, the pipeline is valid
if OrdinalEncoder.ignore_unknown is present and set to "ignore", im-
plying that the operator choice picked OrdinalEncoder.

3.2 Fault Localization

Maro receives a set of pipeline instances P, p1, . . . ,pn , and
computes hyperparameter constraints C in the format of
Section 3.1 that determine if a pipeline instance fails. To allow
the most flexibility in determining the constraints while
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also ensuring that remediation is feasible, our approach uses
templates of constraints we can handle but these templates
are made flexible with symbolic variables that control the
specific constraints.

To do this,Maro uses the solver-aided language Rosette [30].
Solver-aided languages allow programming with symbolic
values. Intuitively, symbolic values can be used for any pro-
gram value (of a supported type), and the result of running
such a program is a logical formula that, when solved, yields
concrete values for the given symbolic ones such that the
program succeeds. This allows us to write logic that checks
whether a given constraint explains all failures, leaving the
actual constraint symbolic so that the solver fills it in.

Atomic Constraint. To see how this works, consider the
example from Section 2.1, where SimpleImputer with hyperpa-
rameter strategy set to "median" breaks on non-numeric data.
This is an atomic constraint that invalidates pipelines, which
is the simplest case. If we somehow knew the constraint to
use, we could write the following:

E(P) ≡ ∀p∈P

(

rp ⇐⇒

Hp (SimpleImputer.strategy) , "median"

)

This formula states that a pipeline instance from P suc-
ceeds if and only if it does not bind SimpleImputer.strategy to
"median". If we think of E as instrumenting execution of Au-
toML, so it sees all attempted pipelines and their outcomes,
it will be true for the example from Section 2.1, since those
pipelines indeed fail in precisely that case. This would be sim-
ple to do; however, we do not, in general, know in advance
what hyperparameter to check. But symbolic variablesÐ
denoted by @ in RosetteÐallow us to leave the actual con-
straint unspecified and have the solver fill it in. We can write
that as follows:

S1 (P) ≡ ∀p∈P

(

rp ⇐⇒ Hp (@hparam) = @value
)

The process of abstractly executing the symbolic program
plays the role of the instrumentation mentioned above: the
solver at the end finds a binding of the symbolic variables
that make execution valid, if such there be. Thus it binds
the symbolic variables @hparam and @value to concrete
values that make the assertion true. This will find any hyper-
parameter setting that correlates exactly with pipelines that
fail. In fact, this simple logic suffices for any failure caused
by a single value of a single hyperparameter. The symbolic
variables can be read directly from the solution to generate
atomic constraints as described in Section 3.1.
There are several categories of error that similar con-

straints can capture (discussed in more detail in [10]). They
are the following (S2, S3, and S4):

• presence of a hyperparameter, regardless of value
• numerical restriction to be more or less than a given value
• numerical constraints between hyperparameters

Multiple Constraints. While in some cases a single atom-
ic constraint suffices, that is not always the case. Consider the

example pipeline (k), in which the combination of with_mean
for StandardScaler and handle_unknown for OneHotEncoder breaks for
this dataset. Either is allowed, but they cannot be used to-
gether. To handle this, we stack these constraints such that
one constraint controls which other constraint applies; the
superscripts on S indicate that the three uses of S generate
distinct symbolic variables, so there are three independent
constraints:

S5 ≡ ∀p∈P

(

rp ⇐⇒

if S1any({p}) then S2any({p}) else S
3
any({p})

)

This is a tree structure of the constraints, and the values for
all the constraints can be read directly from the variables
produced by the solver. This only illustrates two levels, but
clearly they can be stacked as deeply as needed. The localizer
communicates its results to the remediator by providing the
symbolic constraint Ci of each S i in the format described in
Section 3.1, as exemplified in Figure 3.

3.3 Remediation

The remediator computes a remediated planned pipeline
corresponding to the formula origPipe ∧C , describing a set
of possible pipeline instances for AutoML to sample from.
Here, origPipe is a formula that describes the original planned
pipeline. It characterizes a (usually unbounded) set of pos-
sible pipeline instances from which the initial AutoML run
sampled a finite set of instances. AndC is a formula returned
by the localizer that rules out a generalization of the concrete
failed instances, abstracted to be brief and broadly applicable.
As discussed in Section 3.1, the C formula can involve

if-then-else, expressible via negation, conjunction, and dis-
junction. Hence, one approach would be to perform reme-
diation in a purely logical representation and then, only at
the end, convert back to a pipeline representation suitable
for AutoML tools. Unfortunately, this would make the result
of remediation inscrutable for data scientists, since it may
look nothing like origPipe. Therefore, for the sake of better
explainability, Maro’s remediation algorithm takes a bottom-
up approach of directly constructing a remediated pipeline
that resembles origPipe.

Figure 4 showsMaro’s remediation algorithm. As described
in Section 3.1, the solver returns constraints arranged as a
tree, encoding conditionals where the parent is an if-clause
and subtrees represent then and else clauses. Lines 2ś5 han-
dle this case by recursive remediation calls for the left and
right subtree. The makeChoice function combines the results
via Lale’s choice combinator (|). When the algorithm reaches
a leaf, it faces a conjunction constraint, handled by Lines 6ś8
via recursive calls to remediate conjuncts one by one.

The base case of the recursion, in Figure 4 Line 9, is a
(possibly negated) atomic constraint. Lines 10ś13 determine
which operators are included in the remediated pipeline. If a
constraint notes that an operator’s hyperparameter must be
present or cannot be absent and the corresponding operator
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1 algorithm process(origPipe, C):

2 case C ≡ (if C1 then C2 else C3):

3 thenPipe = process(origPipe, C1 ∧C2)

4 elsePipe = process(origPipe, ¬C1 ∧C3)

5 return makeChoice(thenPipe, elsePipe)

6 case C ≡ C1 ∧C2:

7 leftPipe = process(origPipe, C1)

8 return process(leftPipe, C2)

9 case isAtomicConstraint(C):

10 if affectsPresenceOfOperators(C):

11 tmpPipe = restrictChoice(origPipe, C)

12 else:

13 tmpPipe = origPipe

14 if comparesMultipleHyperparameters(C):

15 return makeComparison(tmpPipe, C)

16 else:

17 return customizeSchemas(tmpPipe, C)

Figure 4. Pseudo-code for Maro’s remediation algorithm.

pca = PCA.customize_schema(n_components=features_schema)

select_k_best = SelectKBest.customize_schema(k=features_schema)

planned = pca >> select_k_best >> LogisticRegression

Figure 5. Example pipeline (g).

is part of a choice, restrictChoice removes that choice from
the pipeline in favor of the required operator.
Line 14 detects whether the constraint involves multiple

hyperparameters (possibly from multiple operators), such as
in pipeline (g) in Figure 5, where PCA.n_components must be less
than SelectKBest.k because otherwise too few columns would
be piped to SelectKBest. In these cases, because schemas are
modularized per-operator, and because JSON schema cannot
express a less-than constraint involving two hyperparame-
ters, function makeComparison in Line 15 proxies this constraint
by splitting the possible values for the non-dependent hy-
perparameter into a number of ranges (our default is five).
For example, if k can range from 5..55, then five versions of
the SelectKBest operator are created where k may range from
5..15, 16..25, ..., 46..55. Then, the dependent hyperparameter
is also split such that it complies to the constraint. For ex-
ample, if n_components originally ranged from 1..40, then five
versions of PCA are created where n_components may range from
1..4, 1..15, ..., 1..40, thus guaranteeing that it is less than the
corresponding k range. Finally, makeComparison combines these
pairs via Lale’s choice combinator (|).

Lastly, Line 17 handles the simplest andmost common case
of applying constraints to a single hyperparameter and oper-
ator. Constraints may either limit a hyperparameter to a set
of values or, if negated, exclude them from a given set of val-
ues. To apply such constraints, we use Lale’s customize_schema

feature, which returns a copy of an operator that specifies a
different schema for one of its hyperparameters. Recent work
shows how to make JSON Schema closed under conjunction
and negation [4], but since that work is not open-source, we
implemented our own. We translate a given constraint into
the corresponding schema, as in the example in Section 2.1
that restricts the strategy hyperparameter of the SimpleImputer

operator to the value "most_frequent".

Maro’s remediator is flexible enough to be used with other
localization algorithms so long as they output constraints in
a compatible format. We implemented alternative algorithms
and successfully used them with our remediator as part of
our evaluation, as described in more detail in Section 4.2.

3.4 Explanation

The final component of Maro is an explainer that assists
the user in understanding the suggested remediation found
by the solver via natural language. Similar to the remedia-
tor, Maro’s explanation features are flexible enough to be
used with other localization methods as long as they output
constraints in a compatible format.
Creating a natural language explanation uses a similar

algorithm as that for remediation in Figure 4. The main dif-
ference is that the helper functions makeChoice, restrictChoice,
makeComparison, and customizeSchema generate natural language
instead of Python code. For instance, makeChoice for explana-
tion simply joins constraints using the English word łORž
and newlines. The other difference is that Line 8, instead of
making a chained call on the output of the previous step,
uses the English word łand.ž For a full example, consider the
explanation for example pipeline (k):

Try setting argument 'with_mean' in operator StandardScaler to 'False'

OR

Try setting argument 'with_mean' in operator StandardScaler to 'True'

and try ensuring that argument 'handle_unknown' in operator OrdinalEncoder

is present for all runs (a Choice operator may need to be removed)

4 Evaluation

This section presents experiments for three research ques-
tions:

RQ1: How does Maro’s remediation affect correctness com-
pared to baseline approaches?

RQ2: How does Maro’s remediation affect accuracy?
RQ3: Does Maro’s remediation help converge to optimal

configurations more quickly?

We include the pipelines, results, and version of Maro used
in this evaluation as part of the replication kit1.

4.1 Baseline Localization Algorithms

We compare the correctness of Maro to other baseline ML
fault localization algorithms: modified versions of the Short-
cut and Stacked Shortcut methods from BugDoc [23]. These
algorithms only attempt to identify and report root causes
for failures as constraints and do not include remediation,
so we convert the reported root causes into a compatible
format for Maro’s remediator and explainer.

4.2 Correctness (RQ1)

Maro is inherently a correctness tool: given a set of evalua-
tions, some of which are incorrect, it locates the fault and
repairs the planned pipeline. However, when a new AutoML

1https://zenodo.org/record/6385800
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Table 1. Correctness evaluation per localization method.

Localization Successful Restrictive Unsuccessful

Maro 17 5 3
Shortcut 7 1 13
Stacked Shortcut 7 2 13

search is launched starting from the remediated planned
pipeline, it will almost certainly attempt new pipeline in-
stances that Maro has not seen before. There is no a priori
guarantee that those new instances do not fail in new ways.
Our evaluation set is the set of 20 pipeline use-cases de-

scribed in Section 2.3 which cover a wide variety of potential
failure cases. To create this set, we started with problematic
planned pipelines mined fromOpenML, plus data scientist in-
terviews mentioning common failure causes. After that, one
author created additional cases to challenge our tool, draw-
ing upon documented constraints, Python raise statements,
and reported issues. For each example pipeline, we report
whether each method was able to find a remediation and
whether failures occured after 20 more AutoML-generated
evaluations based on the remediation.
Table 1 summarizes the results. A remediation is con-

sidered successful if it generates no failures after 20 more
AutoML-generated evaluations based on the remediation.
Maro is able to successfully remediate all but three cases,
whereas the baseline methods are only able to successfully
determine root causes in seven cases each. (Four of these
successful remediations are due to examples that require
removing operators from choices which are part of our mod-
ifications. Without such modifications, the number of suc-
cesses would be lower.) In five examples, Maro suggests a
fix that is more restrictive but does not generate failures. A
restrictive remediation is one that may restrict the potential
search space for an AutoML pipeline more than a manual
remediation. This may be due to a limitation of this evalua-
tion method where Maro only has access to 20 automatically-
generated examples which may insufficiently cover the space
of expected fixes. For example, an ideal remediation for a
pipeline may be a constraint where n_neighbors≤15. With an
input of 20 evaluations, Maro suggested a constraint of ≤8,
which is more restrictive but technically correct. Increas-
ing the input to 50 evaluations increased the constraint to
≤13, which is closer to the ideal remediation. We expect that
both the restrictive and unsuccessful remediations might
be improved with additional input evaluations or a second
round of remediation. We note that because Maro supports a
full round-trip, we are able to perform successive automated
debugging on unsuccessful remediated pipelines.

The baseline methods insufficiently find root causes for a
number of reasons. One reason is that they are simply not ex-
pressive enough to successfully remediate the pipeline. One
example is example pipeline (k) as seen in Figure 2, where
with_mean only has a constraint depending on the encoder se-
lected. The baseline methods only express simple equality or

inequality constraints. Simply reporting a single constraint
or even a union of constraints is insufficient to describe this
remediation. Another reason is that the baseline methods
assume that hyperparameters are independent and can be
freely swapped without additional consequences. However,
hyperparameters are sometimes dependent on each other
even across operators, such as in pipeline (g) in Figure 5,
where k must be ≤n_components. Lastly, the baseline methods
each only consider a single failing pipeline instance whereas
Maro considers all failing instances. Although we did not
implement the Debugging Decision Tree method from Bug-
Doc [23], we expect that if we modified it in similar ways to
the Shortcut method and augmented it with our automated
remediation, it would fail to find remediations for many of
the cases for similar reasons. It is also highly expensive (ex-
ponential time) to run for a realistic ML pipeline so we chose
not to reimplement it, especially given that we expect similar
performance to Shortcut.

4.3 Accuracy (RQ2) and Convergence (RQ3)

AlthoughMaro focuses on correctness, that must be balanced
with predictive performance on the given dataset. SinceMaro
is designed to work with AutoML tools, it is possible that the
remediation may remove too much of the potential search
space in order to guarantee a correct pipeline. Wewould then
expect new AutoML searches on this remediated pipeline
to also perform poorly. We compare the AutoML predictive
performance of the original pipeline to that of the remediated
pipeline provided by Maro in terms of test set accuracy and
number of iterations.
For the accuracy evaluations, we run two AutoML jobs:

the original pipeline and the remediated pipeline returned by
Maro after 20 evaluations of the first job. We use a train+test
split of 80%+20% for the given dataset and run each AutoML
job for 1,000 iterations for both the original and remediated
pipeline using Hyperopt [8]. Let łoptimalž accuracy refer to
the best test set accuracy discovered in 1,000 iterations [2].
We run each job five times and report the average optimal
accuracy discovered by the five identical AutoML jobs and
the average number of iterations taken to reach it.
Remediated pipelines have better optimal accuracy in

8 out of 20 cases and the same optimal accuracy in an addi-
tional 7 out of 20 cases, while the original pipeline has better
accuracy in the remaining five cases. For the cases with dif-
fering accuracies, the average difference is relatively small
at 0.0049, and a paired t-test suggests that original and reme-
diated optimal accuracies do not vary significantly (p=0.149).
For RQ2, this suggests that the remediations created by Maro
on average do not reduce accuracy and therefore are not re-
moving potentially beneficial sections of the search space.

We also examine the number of iterations to reach optimal
accuracy, specifically for the 15 cases where the remediated
pipeline discovers a better or equal optimal accuracy than
the original. We focus on these cases to have a similar point
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of comparison in terms of iterations needed. We compare
the average number of iterations needed for the remediated
pipeline to match or surpass the average optimal accuracy
of the original. In these cases, more remediated pipelines
reach the original pipeline’s optimum accuracy faster (10
out of 15). The original pipeline is faster in four cases while
in one case both reach the optimal accuracy in the same
average number of iterations. However, a paired t-test sug-
gests that the average iterations for original and remediated
pipelines to discover the original optimal accuracy do not
vary significantly (p=0.935). For RQ3, this suggests that re-
mediations created by Maro on average also do not change
time to convergence compared to original pipelines.

5 Threats to Validity

The biggest limitation might appear to be that we only show
remediations based on the five formulae S1 to S5 in Section 3.
However, these formulae turn out to be sufficient for all 20
planned pipelines used in the evaluation. These formulae are
much more expressive than similar tools which are unable to
cover all example pipelines. We also note that these formulae
could easily be extended for Maro. Another limitation is that
our tool does not guarantee finding minimal root causes
for all possible instances of a given planned pipeline but
only finds a root cause for a set of given instances, usually
generated by an AutoML job. However, our experiments
(RQ1) suggest that a relatively modest number of instances
(20) is enough correctly remediate a pipeline in most cases.
In the evaluation of Maro, we did not perform a human user
study to examine usability. Althoughwe do consider usability
valuable, our central claims of correctness, accuracy, and
convergence do not rely on human studies for evaluation.

6 Related Work

AI development and AutoML. Systems with AI com-
ponents come with unique challenges for the engineering
process and individual developers. Debugging in particu-
lar is challenging due to errors hiding in data rather than
code [17, 31] and the sheer amount of effort involved in
manual evaluation due to the potentially millions of param-
eters to inspect [3, 16, 19]. To reduce this burden of manu-
ally exploring ML models, automated machine learning (Au-
toML) tools such as auto-sklearn [11] and AutoKeras [20] use
Bayesian optimizers to automatically construct ML pipelines
and their hyperparameters. We position our work among
tools that expand the capabilities of AutoML rather than im-
prove the search or optimization performance. One such tool
is Lale [5, 6], which is a library of Python interfaces around
ML operators designed to provide a consistent method of
specifying pipelines for AutoML. Maro takes advantage of
Lale’s ability to precisely specify the search space for the
pipeline’s operators and hyperparameters. Another such tool
is AMS [9], which automatically łstrengthensž weak pipeline

specifications for AutoML by providing alternative operators
and suggested hyperparameter spaces to search via learning
over an existing corpus of AI software.

Data and AI debugging tools. We position our work
among other tools that assist in debugging and troubleshoot-
ing data-centric and AI software. Data-centric tools such
as Panda [18] and PerfDebug [29] use data provenance to
aid in debugging data-centric pipelines and post-mortem
performance issues respectively. BigSift [12] automatically
generates a minimum set of inputs that reproduce a test fail-
ure when given an Apache Spark program, test oracle, and
input dataset. Dagger [27] is an end-to-end system for debug-
ging data-centric errors in pipelines where users manually
instrument their Python code for later logging and querying.
AI debugging tools such as LEMON [32] and Haq et al. [15]
automatically generate test suites for deep learning frame-
works and KP-DNNs respectively. Nushi et al. [25] describe
a human-in-the-loop methodology for troubleshooting AI
systems which uses crowd-sourcing to simulate potential
fixes to components. DialTest [22] is a tool for automatically
detecting faults in RNN-driven dialogue systems using trans-
formations guided by Gini impurity. Habib et al. use JSON
subschema checks to find bugs in ML pipelines [14]. Though
not AI-related, our tool is also related to constraint-based
automated program repair tools such as SemFix [24].
The tool closest to our work is BugDoc [23], which auto-

matically infers root causes of failures in ML pipelines based
on previous executions. This is similar in concept to Maro’s
localizer component. BugDoc does not attempt to remediate
nor further explain root causes unlike Maro. To our knowl-
edge, Maro is the first tool to implement automated remedia-
tion and natural language and visual constraint explanation
components in the context of debugging ML pipelines. Our
tool’s localizer component also differs from BugDoc in that
it is designed for planned pipelines that work with AutoML
and is also more expressive. Debugging support for such
pipelines is more complex than normal ML pipelines in that
each pipeline is a search space where operators and param-
eters may vary. To our knowledge, Maro is the first tool of
its kind to express complex constraints between hyperpa-
rameters, operators, and other constraints. This is reflected
in the evaluation in Section 4.2 where baselines based on
BugDoc algorithms are unable to identify root causes in most
cases whereas Maro is able to. The aforementioned section
details the differences between BugDoc and Maro’s localizer
component as they relate to our empirical evaluation.

We note that among all of the related automated (i.e. [12,
15, 22, 23]) or end-to-end (i.e. [27]) debugging tools, Maro
is unique in that it not only automatically identifies bugs
but remediates them as well rather than only identifying
root causes or generating test cases. This round-trip from
actionable ML pipeline to remediated actionable ML pipeline
is, to our knowledge, unique to Maro.

67



Automatically Debugging AutoML Pipelines using Maro: ML Automated Remediation Oracle MAPS ’22, June 13, 2022, San Diego, CA, USA

7 Broader Impacts

Automated machine learning (AutoML) in general encour-
ages computationally-heavy approaches to common data
science tasks which raise CO2 emissions. We believe that our
tool encourages less computational waste by enabling data
scientists to more efficiently use AutoML by not wasting
resources on failing combinations of operators and hyperpa-
rameters. We also hope that Maro enables data scientists to
fix errors faster and run less AutoML jobs overall. However,
it is also possible that helping data scientists more easily
debug AutoML pipelines may encourage further usage of
automated techiniques which may overall raise CO2 emis-
sions. Future work may explore techniques to reduce the
amount of initial AutoML iterations necessary to remedi-
ate pipelines in order to encourage less wasteful automated
machine learning.
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