
No Bit Left Behind:
The Limits of Heap Data Compression ∗

Jennifer B. Sartor
The University of Texas at Austin

jbsartor@cs.utexas.edu

Martin Hirzel
IBM Watson Research Center

hirzel@us.ibm.com

Kathryn S. McKinley
The University of Texas at Austin

mckinley@cs.utexas.edu

Abstract
On one hand, the high cost of memory continues to drive demand
for memory efficiency on embedded and general purpose comput-
ers. On the other hand, programmers are increasingly turning to
managed languages like Java for their functionality, programma-
bility, and reliability. Managed languages, however, are not known
for their memory efficiency, creating a tension between productiv-
ity and performance. This paper examines the sources and types of
memory inefficiencies in a set of Java benchmarks. Although prior
work has proposed specific heap data compression techniques, they
are typically restricted to one model of inefficiency. This paper gen-
eralizes and quantitatively compares previously proposed memory-
saving approaches and idealized heap compaction. It evaluates a
variety of models based on strict and deep object equality, field
value equality, removing bytes that are zero, and compressing fields
and arrays with a limited number and range of values. The results
show that substantial memory reductions are possible in the Java
heap. For example, removing bytes that are zero from arrays is par-
ticularly effective, reducing the application’s memory footprint by
41% on average. We are the first to combine multiple savings mod-
els on the heap, which very effectively reduces the application by
up to 86%, on average 58%. These results demonstrate that future
work should be able to combine a high productivity programming
language with memory efficiency.
Categories and Subject Descriptors D.3.4 [Programming Languages]:
Processors—Memory management (garbage collection); Optimization
General Terms Experimentation, Languages, Performance, Measurement
Keywords Heap, Compression

1. Introduction
Two consequences of Moore’s law are (1) an increasing number
of transistors in the same area, which server, desktop, and laptop
form factors are now using for multicore processors, and (2) con-
stant processing power on smaller and smaller devices, which is en-
abling more functionality in the embedded space. Since cache and
memory consume a disproportionate amount of area and are ex-
pensive [21], the demand for memory efficiency is likely to remain

∗ This work was supported by NSF CCF-0429859, NSF CCR-0311829,
NSF EIA-0303609, DARPA F33615-03-C-4106, and IBM. Any opinions,
findings and conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’08, June 7–8, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-60558-134-7/08/06. . . $5.00

constant or increase. To program all these devices, developers are
increasingly turning to managed languages, such as Java [25], due
to their productivity benefits, which include reduced errors through
memory management, reliability due to pointer disciplines, and
portability. Java, however, is not known for its memory efficiency
and is therefore in conflict with hardware trends.

Researchers have characterized Java memory usage patterns [5,
11, 18], but do not study memory savings opportunities. A num-
ber of researchers propose and measure specific compression ap-
proaches [2, 4, 7, 8, 9, 14, 17, 19, 22, 23, 30]. For example,
Ananian and Rinard use profiling and static analysis to imple-
ment approaches such as constant field elision and bit-width reduc-
tion [2]. Others explore approaches for making other programming
languages more memory efficient [3, 10, 12, 24, 26, 27, 28, 29].
For example, Appel and Gonçalves share memory between equiv-
alent SML objects using the garbage collector [3]. All the prior
approaches consider and compare only a few proposals at a time.
This paper compares a wide variety of compression techniques to
provide a deeper understanding of memory efficiency and its limits.

This paper includes a comprehensive quantitative and qualita-
tive comparison of heap data compression techniques. Our models
of inefficiencies include strict and deep object and array equality,
calculating dominant field values and field equivalence, removing
zero-bytes, and compressing field values or array elements that use
a small number and/or range of values. Our methodology period-
ically snapshots all heap objects and arrays by performing heap
dumps during full heap garbage collections. We post-process these
heap dumps to analyze memory inefficiencies and calculate mem-
ory savings per model. The contributions of this paper are:

1. Heap data compressibility analysis: A methodology for evaluat-
ing the memory savings limits of heap compression techniques.

2. Survey and models of compression techniques: Descriptions of
over a dozen techniques with memory savings formulas.

3. Empirical evaluation, including combinations: Apples-to-apples
comparison of individual as well as novel hybrid techniques.

Our experiments use the DaCapo Java benchmarks [5] and a variant
of SPECjbb2000 called pseudojbb. We find that zero-based array
compression saves the most memory (on average 17% of the heap
including virtual machine objects, or 41% of the application). To-
gether, deep-equal object and array sharing effectively reduce the
total heap on average by 11%, and by 14% for applications. Over-
all we see that arrays take up the majority of space in the heap
and can yield larger compression opportunities, so optimization ef-
forts should be focused here. Experiments with Lempel-Ziv com-
pression indicate that there is a large amount of redundancy in the
heap (75 to 90% on average). Performing novel hybrid compres-
sion analysis with many savings models, we can get closer to this
idealized compression, saving on average 34% of the heap, or 58%

1

Program run Heap dump
series

Analysis
representation

t

∑ψ⊕ξ
Model 1

ξ–∑ψ
Model n

…
s

Limit savings

Figure 1. Heap data compressibility analysis.

for the application. We believe that presented compression tech-
niques including new combined hybrids can reduce rampant heap
bloat, making memory more efficient. This paper provides a foun-
dation for the research community to make progress in heap data
compression.

2. Heap data compressibility analysis
Figure 1 shows our analysis steps for measuring the potential of
heap compression. We consider a conventional representation for
dynamically allocated objects in a program. The heap contains two
kinds of objects: class instances with fields and arrays with ele-
ments. Each object occupies a contiguous chunk of memory that
consists of its fields or elements plus a header. We assume a con-
ventional two-word object header with type information, garbage
collector (GC) bits, and bookkeeping information for locking and
hashing. Arrays have a third header word to store the length.
Since we perform experiments with a Java-in-Java virtual machine
(JVM), the heap contains both application and JVM objects.

Usually, the garbage collector loses some heap memory to frag-
mentation. We ignore fragmentation for two reasons: (1) the actual
amount of fragmentation depends on the particular garbage collec-
tor in the runtime system; and (2) saving memory matters most at
the peak memory usage, where it makes or breaks the ability to run
in a given amount of memory. At peak utilization, the collector will
likely apply defragmentation rather than crashing the program with
an out-of-memory error. We only consider live objects in our analy-
sis because we assume the garbage collector reclaims dead objects
rather than compressing them.
From program run to heap dump series. Since a program’s heap
changes over time, its memory efficiency is also a function of time.
A perfectly accurate heap analysis would compute savings on all
live objects after every write and object allocation, but this analysis
is prohibitively expensive. Instead, our analysis takes periodic heap
snapshots during program execution (“Heap dump series” in Fig-
ure 1). It therefore over-approximates heap compression because,
for example, a field value may be zero at every heap snapshot, but
take on non-zero values between snapshots. We modify the garbage
collector to print out a heap dump during live object traversal. In
addition to its usual work, during a heap dump the garbage col-
lector also prints object data (excluding bookkeeping information
from the header) as it visits each live object on every collection.
For each object, the GC prints the class identifier, the size in bytes,
the address, whether the object was created by the JVM (JZZ) or
the application (AZZ), the class name, and the list of fields or array
elements, including their types and values. Here are two example
objects from the heap dump, one class instance and one array:

T41 24 0x581e7454 JZZ Ljava/lang/String; \
f0: object 0x581e746c f1: int 9 f2: int 0x4c856879 f3: int 0

T26 28 0x581e7444 JZZ [Ljava/lang/Object; \
reference array [object 0x581e746c,null,null,0x570ab004,]

Since heap dumps require a lot of I/O, they take a lot of storage
and time to generate. More heap dumps yield more accurate com-
pression measurements, but require more time and space. We em-
pirically selected 25 as our target number of heap dumps. We exe-
cute the benchmarks with two times their minimum heap size us-
ing a mark-sweep collector, and print around 25 heap dumps at

regularly-spaced intervals during normal collections. Our bench-
marks perform between four and three hundred garbage collections
at this heap size. For those benchmarks with fewer than 25 col-
lections, we force more frequent collections in order to obtain the
desired number of heap dumps.

We modified Jikes RVM, a Java-in-Java virtual machine [1] for
our experiments. Jikes is unusual because it allocates both JVM
and application objects in the heap. We differentiate between JVM
and application object allocations by adding a small amount of in-
strumentation and stealing one unused bit from the object header.
At allocation time, the JVM sets the bit to one to indicate that the
JVM created the object, or zero for application objects. For most
objects, their static class name reveals that they are a JVM object.
For example, objects whose class prefix includes “jikesrvm” are
JVM objects and objects whose class prefix includes “DaCapo” are
application objects. However some cases are ambiguous because
the JVM and application share the standard Java libraries, for ex-
ample, java/lang/String, or the object’s class is unspecified because
they are primitive arrays. For these special cases, we classify ob-
jects as follows: a) We instrument each method call site that calls
from a non-library method in to the class libraries. The JVM stores
whether the caller is the JVM or the application in a thread-local
variable. If the library performs allocation, the JVM queries the
thread’s local variable to tag the object with its proper status. b)
For primitive arrays and other cases where the class is unknown,
we walk the stack at allocation time to find the first non-library
method descriptor, and tag the object accordingly [16].
From heap dump series to analysis representation. Given a se-
ries of heap dumps, a post-processing step applies analytical mod-
els that compute potential compression opportunities. The post-
processor iterates over the heap dump, entering each object in-
stance’s data into a large hash table (“Analysis representation” in
Figure 1). We compute memory savings per unique class. We do
not further divide objects by their allocation site or data structure,
which may be an interesting avenue for future work. The hash table
stores every value for every field of each class at each collection.
The table also stores the field’s class information. The key to the
hash table is a combination of the unique class identifier, the field
number, a value for this field, and the collection number. The data
for a given hash key is the number of object instances of this class
during this collection with the same value for the field.

We enter arrays into the hash table as well, but since arrays of
a particular type are not all the same length, all array entries are
entered in the same “field” and also store the array element class.
We compute most compression models after processing an entire
heap dump into the hash table. Because we collapse all arrays of
a type into one field, we accumulate per-instance savings as we
process each array entry in the heap dump.
Helper functions. Many of our savings models require helper
functions. Function sizeof (T) returns the size of a primitive type
in bytes. Some compression techniques require a hash table at run-
time, for example, to find equivalent objects. Their models sub-
tract the size of the hash table from the raw savings. Function
hashTableSize(n, entrySize) estimates the size of a hash table
with n entries of size entrySize each. We assume a hash table
with open addressing, since they have no memory overheads for
boxes or pointer chains for overflowing elements. We also assume
that 2

3
of the hash table is occupied. This assumption is conser-

vative; for example, the Java library writers use a load factor of
3
4

before doubling their size, although they use chaining instead
of open-addressing. The helper function works as follows, where
arrayHeaderSize is 12 bytes and keySize is 4 bytes:

hashTableSize(numberOfEntries, entrySize) =
arrayHeaderSize

+
⌈

3
2
· numberOfEntries · (entrySize + keySize)

⌉
2

Compression technique Cls Arr Reference GC/Run
Lempel-Ziv compression 3.1.2 GC
Strictly-equal object sharing 3.2.1 3.2.2 GC
Deep-equal object sharing 3.2.3 3.2.3 [3, 17] GC
Zero-based object compression 3.2.4 3.2.4 [9] GC
Trailing zero array trimming 3.4.1 [9] GC
Constant field elision 3.3.1 [2, 24] Run
Bit-width reduction 3.3.2 3.4.2 [2, 24, 30] GC&Run
Dominant-value field hashing 3.3.3 [2] GC
Dominant-value field elision 3.3.4 [7] Run
Value set indirection 3.3.5 3.4.3 [10, 26] GC
Value set caching 3.3.6 3.4.4 GC
Lazy invariant computation 3.3.7 GC

Table 1. Compression techniques modeled. Columns “Cls” and
“Arr” refer to the subsections with the model for class instances or
arrays, where applicable. Column “Reference” cites prior work that
explored heap data space savings from this compression technique,
if any. Column “GC/Run” says whether this model is calculated per
collection or over all collections.

From analysis representation to limit savings. We then apply a
variety of compression models to compute potential compression
opportunities. Each model calculates the memory savings from a
particular heap compression technique (“Limit savings” in Fig-
ure 1). Section 3 describes and presents formulas for all consid-
ered techniques. For many models, we calculate potential memory
savings after examining each heap dump, i.e., after each collection.
However, some models require the analysis to examine the data
from the whole run of the benchmark. For example, if a particular
field is constant throughout the entire run, then instead of allocat-
ing the same value in each instance, the JVM could eliminate the
field from each instance and instead store the single value in a static
class variable. To capture these diverse optimizations, our analysis
applies compression models both per-collection on each heap snap-
shot, and over all the heap snapshots for a benchmark. For each
snapshot, we count the number of object and application instances
and bytes seen in order to calculate savings percentages.

3. Memory Compression Models
A compression model is a formula that computes how many bytes
of heap data that technique can save at an instance in time. Table 1
overviews all the models considered in this paper. Most models
are formulated for one class at a time. Some are formulated for
one field at a time, or one instance for arrays. To obtain the total
savings of a model, we compute the savings for each of the classes
(or fields/instances) and then sum them up over all classes (or
fields/instances).

3.1 Holistic heap data size and information content
Models in this section quantify the size of all the data in the heap.
Because the heap contains redundancies, the actual information
content is smaller than its conventional representation.

3.1.1 Total heap size
We measure the total heap size by summing all objects, fields, ob-
ject headers, and array elements in the heap, assuming a conven-
tional representation, and excluding fragmentation, static objects,
and the stack. The below models compute savings from this base-
line.

3.1.2 Lempel-Ziv compression
We first consider the memory savings achieved by simply zipping
the contents of all heap objects. The size given by “bzip2” is a
rough estimate of the true “information content” of the heap. We
expect this savings to be larger than for any of the more realistic
models below. Like the other models, Lempel-Ziv compression is

Total Application
Bnchmrk GCs min max avg min max avg

antlr 25 74 75 74 93 96 94
bloat 34 74 76 75 83 88 84
chart 24 74 75 74 82 92 91

eclipse 25 73 79 74 85 94 87
fop 20 74 75 74 89 99 95

fopfreq 283 74 75 74 89 99 96
hsqldb 24 75 83 81 83 96 85
jython 23 74 74 74 89 89 89

luindex 23 74 75 74 82 94 90
lusearch 26 74 81 80 92 96 96

pmd 22 74 79 75 83 94 95
xalan 22 78 79 79 94 95 91

pseudojbb 21 73 74 73 72 99 75
average 74 77 75 86 95 90

Table 2. Lempel-Ziv percent savings using “bzip2”.

non-lossy, in other words, the original data can be fully recovered
by decompression. Unlike the data representations for most of the
other models, Lempel-Ziv compressed data does not permit random
access, let alone in-place update. To compute this model as accu-
rately as possible, we perform online compression on the actual
heap in the JVM at garbage collection time. We perform compres-
sion with the same frequency as the heap dumps. As the collector
traverses the object graph, it appends to a heap object stream an
exact copy of all the bytes of each object and array, including their
headers. To measure their differences, we put application objects in
one stream, and all objects (both JVM and application) in another.
We use native code to process the object streams so they do not pol-
lute the Java heap or affect the frequency of garbage collections. At
the end of the collection, we print the size of the full stream, i.e.,
all live data in the heap. We then apply Lempel-Ziv compression
to the stream and report the compressed size as a percentage of the
uncompressed size.

We show the Lempel-Ziv compression in Table 2 to illustrate
the potential for heap reductions. The table shows each benchmark,
the number of garbage collections (GC), and the minimum, maxi-
mum, and average over all snapshots for the total heap and appli-
cation only savings. One line of the table, “fopfreq”, is for a run
with frequently forced heap dumps - over 280. When comparing
this with the regular run of only 20 heap dumps, we see consistent
results, showing that the timing of collections is not biased. Total
heap compression is fairly consistent, reducing the heap between
73 and 83%. For only application objects we see larger compres-
sion opportunity, up to 99% for fop and pseudojbb. However, we
do not expect this much compression in practice.
3.2 Object compression
This section presents object compression techniques that operate
on entire objects, as compared to later sections, which describe
compression techniques for individual fields and array instances.

3.2.1 Strictly-equal object sharing
Two objects are strictly-equal if they have the same class and all
fields have the same value. Equality is strict because even pointer
fields must be identical. Section 3.2.3 describes additional com-
pression opportunities for objects with deep equality in which the
pointer values are different, but the objects to which they point are
equal [3, 17]. When objects are strictly equal, they can share all
their memory. The JVM may allocate only one instance and then
point all references of strictly-equal objects to the same instance.

In principle, two objects can not be shared if they are used
for pointer comparison or as an identity hash code in the future.
In addition, the period of time for sharing may be limited if the

3

program modifies a strictly-equal object later. Our analysis ignores
these cases for the purpose of this limit study. If class C has N
objects, out of which D are distinct, then the memory savings are
(N − D) · sizeof (C). With strict equality, finding the number of
distinct objects (D) from a heap snapshot is linear in time and
space. We simply iterate over all objects in class C and enter them
in a hash table and do not store duplicates. We use the value of
all fields as the hash key. In the end, the number of entries in the
hash table is D. Online implementations of object sharing use a
hash table at runtime as well. This model provides the following
net savings:

(N − D) · sizeof (C) − hashTableSize(D, pointerSize)

3.2.2 Strictly-equal array sharing
Array sharing is similar to sharing of non-array objects, except that
the array length must match [17]. Since different length arrays have
different sizes, we iterate over all arrays to add up their sizes before
compression, construct the hash table, and then iterate over all D
distinct arrays to find the unique size. The model must also subtract
the memory used for the hash table itself. The resulting savings
model for array type T [] is:∑

a∈T []∧a6∈D

sizeof (a) − hashTableSize(D, pointerSize)

3.2.3 Deep-equal object and array sharing
Two objects can share memory even if they differ in a pointer field,
as long as the targets of the pointers are equivalent [3, 17]. Every
strictly-equal object pair is also deep-equal. Because there are more
deep-equal object pairs than strictly-equal ones, deep-equal sharing
yields additional compression opportunities.

In the absence of cycles, deep equality can use a bottom-up
traversal of the object graph, for example, by piggybacking on
GC reachability traversal by adding a post-order breadth-first visi-
tor [3]. This traversal computes sharing for all the leaves first, then
computes sharing for the next level of the object graph, and so on.
It thus guarantees that when visiting an object, it has already cal-
culated the sharing of all the objects to which it points. Therefore,
we simply compare objects at the current level and one level deeper
using a hash table. Thus, for the entire heap, deep-equal acyclic ob-
ject sharing takes time O(e), where e is the number of pointers in
reachable heap objects.

Cycles complicate deep equality comparison. A naive algorithm
would just propagate sharing opportunities from objects to their
predecessors until reaching a fixed point. We are using this ap-
proach, but the fixed-point iteration is slow for some benchmarks.
Marinov and O’Callahan point out that determining deep equality
is a special case of the graph partitioning problem [17] and recom-
mend Cardon and Crochemore’s graph partitioning algorithm that
takes O(e log n) [6].

The savings model for a class C with N instances out of which
D are distinct is the same as in strictly-equal sharing, except that
D is smaller. There are fewer distinct objects than in strictly-equal
sharing, since deep equality exposes more sharing opportunities:

(N − D) · sizeof (C) − hashTableSize(D, pointerSize)

or, for arrays of type T []:∑
a∈T []∧a6∈D

sizeof (a) − hashTableSize(D, pointerSize)

3.2.4 Zero-based object and array compression
Zero-based object compression reduces object size by removing
bytes that are zero. We assume an implementation that uses a per-

object bit-map to indicate which bytes in the original object are
entirely zero [9]. The compressed object representation consists of
the header, the bit map, and the values of all non-zero bytes. The
size of the bit map is the number of non-header bytes in the original
object. The bit-map for object o occupies dtotalBytes(o)/8e bytes.
The savings for all objects in the heap are therefore:∑

o∈Objects

(
zeroBytes(o) −

⌈
totalBytes(o)

8

⌉)
Note that this compression scheme can be applied to both array
and non-array objects, and to both primitive and reference fields.
We compute memory savings per instance, and then add them up
for each class.

3.3 Field compression
Field compression techniques operate on the fields of class in-
stances, which excludes static fields and array elements.

3.3.1 Constant field elision
Constant field elision saves memory by eliding a field if it is
constant for all instances of that type. If all instances of class C have
the same value for instance field f , that field can be static [2, 24].
For N objects, that saves:

(N − 1) · sizeof (f)

We compute constant field elision savings by accumulating infor-
mation over all heap dumps of an experimental run.

3.3.2 Field bit-width reduction
Field bit-width reduction saves memory by allotting fewer bytes
for the field than the type takes. If all objects of class C have small
values in instance field f , then they can all be represented with a
smaller bit-width [2, 24]. For N objects, that saves:

N ·
(
originalBitWidth(f) − reducedBitWidth(f)

)
We measure field bit-width reduction both per heap dump and

over all heap dumps in the run. Field bit-width reduction over all
heap dumps takes all seen field values into account and therefore
more accurately reflects true memory savings potential.

3.3.3 Dominant-value field hashing
Dominant-value field hashing compresses objects by eliding fields
with one dominant value, storing this value as a static class mem-
ber [2]. The JVM can store aberrant values of instance field f of
class C in a hash table using the object ID as the hash key. We only
store aberrant values in the hash table; therefore, if the object ID
does not exist in the hash table, the program will access the field
statically.

We assume that class C has N instances, and that D instances
have the dominant value in the field. For example, consider N =
1000 instances and D = 990 of them have the dominant value. The
other N − D = 10 instances have hash table entries. The savings
are:

N · sizeof (f) − hashTableSize
(
N − D, sizeof (f)

)
For the example, dominant-value field hashing would save 31,448
bytes = 1000 ∗ 32 − (3/2 ∗ 10 ∗ (32 + 4) + 12). Clearly, there
is a cross-over point where the savings become negative. If the
computed savings is negative, we assume zero savings as we would
not apply the optimization. Because this technique relies on an
object ID, actual savings may be lower if the JVM has to use
additional memory on ID tracking, for example, if it uses a moving
collector.

4

For the special case of a boolean field, the presence or absence
in the hash table is enough to indicate the value without having to
store an entry, so the savings are:

N · sizeof (f) − hashTableSize
(
N − D, 0

)
3.3.4 Dominant-value field elision
Chen, Kandemir, and Irwin introduced dominant-value field eli-
sion [7]. Their approach targets the same inefficiencies as dominant-
value field hashing, but their implementation uses offline profiling
and then makes dynamic per-instance decisions to deal with mis-
takes. In addition, they make per-class decisions, rather than per-
field decisions, that consider all the fields in each class together.

Chen et al. identify the frequent value for each field per class
after a particular benchmark run. In an offline pass, they use the
frequent field value count to choose particular fields as good candi-
dates for optimization in a separate benchmark run. If most object
instances of a class hold the same dominant value for a particular
field, the dominant value fields can be shared by many instances,
thereby saving memory. They separate dominant values into two
kinds: zero and non-zero. Fields with a dominant value of zero (in-
cluding null, in the case of pointers) can be elided entirely and no
storage need be used for them, whereas non-zero (strictly-equal, in
the case of pointers) dominant fields must be stored and pointed to
by instances that use them.

For a class C, Z fields are zero-dominant. Similarly, NZ is the
subset of fields that are dominant with non-zero values. Because of
their object layout, Chen et al. only achieve savings for an object
instance if all fields in Z remain zero. Similarly, if all fields in NZ
retain their dominant values, they achieve compression. If any field
in Z or NZ does not retain its dominant value, those subsets of
the object cannot be elided, and their implementation will allocate
memory for all (dominant and non-dominant) fields in the object.
Determining dominant field sets: To select groups of fields in
class C to place in Z and NZ , we define domInstances(C, f) as
the number of instances of class C which have the dominant value
for field f . We define domSortedFields as a list of fields in class
C in descending order of domInstances(C, f). Then, we define

quality(i) = i · domInstances(C, domSortedFields[i])

This product multiplies the number of fields i by the number of
instances domInstances(C, domSortedFields[i]) for which those
fields could be saved. Chen et al. determine the m that maximizes
quality(m). The first m elements of the list domSortedFields go
into Z for zero fields, or NZ for non-zero fields1.

For example, say class C has 3 fields, f1, f2, and f3. Given 20
instances of class C, say domInstances(C, f1) = 16 which means
that 16 of the 20 instances share a dominant value for f1. Let’s
say domInstances(C, f2) = 18 and domInstances(C, f3) = 10.
Since domSortedFields is sorted by descending domInstances ,
we have domSortedFields = [f2, f1, f3]. Then we take the max
of the following quality values:

quality(1)= 1 · domInstances(C, f2)= 1 · 18= 18
quality(2)= 2 · domInstances(C, f1)= 2 · 16= 32
quality(3)= 3 · domInstances(C, f3)= 3 · 10= 30

Since quality(2) is largest, we know that we should optimize fields
1 and 2 in this class, not field 3. We thus consider two fields for zero
or non-zero field elision based on their dominant value.

Following the methodology of Chen et al., we compute the
candidate fields for dominant-value field elision using data from all

1 Chen et al. sum up the domInstances(C, f) over the set of all classes
that are C or a subclass of C. We do not for simplicity.

snapshots of a run of the benchmark. We then compute the memory
savings per instance by processing all heap dumps a second time.
Dominant zero field elision: Given an object of class C, if all
the fields in Z are zero or null, the implementation sets a bit in
the object header to record that information and does not store the
fields in the object. If at least one of the fields in Z is non-zero or
non-null, we clear the bit and hijack the class pointer in the header
of the object to point to a secondary object. The secondary object
stores the values of the fields in Z.

Assume class C has N instances, and M instances require a
secondary object because at least one of the fields in Z is non-
zero or non-null. For N − M objects, we save sizeof (Z) each.
We assume the extra bit per object, whether compressed or not, is
stolen from the object header. For each of the remaining M objects,
we have the overhead of a secondary object header, and of course,
we don’t save sizeof (Z). So the total memory savings for class C
are:

(N − M) · sizeof (Z) − M · headerSize

Dominant non-zero field elision: For the first instance of class C
that has all fields in NZ that match dominant values, we assume
a secondary object holding those dominant values is allocated. We
assume part of the original object header points to the secondary
object. The secondary object adds the cost of its header. However,
for subsequent instances that have all fields in NZ with dominant
values, we simply use a bit in the object header to indicate this
instance shares a secondary object and point it to the previously
created secondary object. For this instance, we save sizeof(NZ)
memory. If an instance of class C has even one field of NZ that
holds a non-dominant value, we cannot save memory and this
instance has to allocate its own secondary object.

We assume class C has N instances, and M instances require a
secondary object because at least one of the fields in NZ does not
hold its dominant non-zero value. Memory savings are similar to
dominant zero field elision; however, we have to reserve memory
for one secondary object, including a header, to hold NZ ’s domi-
nant values. So the total memory savings for class C are:

(N − M − 1) · sizeof (NZ) − (M + 1) · headerSize

3.3.5 Field value set indirection
Field value set indirection saves memory by holding a “dictionary”
of values for a field separately from object instances, enabling
instance fields to hold a smaller index into the dictionary. If the
field f of class C has only a few distinct values over all instances
of C, then instead of storing those values directly, it stores the
dictionary index, and the dictionary stores the actual values [10,
26]. Specifically, if field f stores at most K < 256 different values,
then instead of storing the values directly, store an 8-bit index into
a K-entry dictionary. If class C has N instances, the savings are:

N ·
(
sizeof (f) − 1

)
−

(
arrayHeaderSize + K · sizeof (f)

)
Field value set indirection makes no assumptions about the type

of field f : it applies equally well to char, int, float, pointer, etc.
Where bit-width reduction requires all field values to be small,
value set indirection only makes requirements on the number of
field values. Set indirection applies more generally than bit-width
reduction. It also reduces field width, but requires extra space for
the dictionary.

3.3.6 Field value set caching
Field value set caching is similar to field value set indirection, but is
performed only on fields with K >= 256 values, and thus requires
some extra separate storage. In the object instance, the field is just

5

an index into a dictionary as in field value set indirection. The most
frequent 255 values are “cached” in the dictionary (to allow an 8-
bit index). For the other K − 255 values, the 256th entry in the
dictionary is reserved to indicate that the value is not cached. In
that case, the field is stored in a hash table indexed by the object
ID. To compute the savings, assume the class has N objects, and
M objects have a value in field f that is not among the 255 most
frequent values for that field. In practice, if the field values are
skewed, M is small. The memory savings are:

N ·
(
sizeof (f) − 1

)
− arrayHeaderSize − 255 · sizeof (f)
− hashTableSize(M, sizeof (f))

Field value set caching also makes no assumptions about the type
of field f : it applies equally well to char, int, float, pointer, etc.

3.3.7 Lazy invariant computation
Assume class C has two fields, f1 and f2, and they are always
identical. Then we only need to store one of them, and save the
memory for the other one. As another example, assume class C has
three fields, f1 f2 f3, and it is always the case that f1 = f2 + f3.
Then, we do not need to store f1, since we can always compute
it from f2 and f3. In the most general case, if there is a way to
compute a field f from other fields of the same object, we can elide
the field.

We cannot possibly check for all possible field invariants that
translate into memory savings. In our experiments, we only explore
the case where two fields are always identical. However, a tool like
Daikon or DIDUCE tool [13, 15] could provide invariants which is
a possibility for future work. Assume it takes I bytes to encode the
invariant. If we eliminate field f in N instances, the savings are

N · sizeof (f) − I

For our experiments, we can elide the duplicate field entirely, and
expect to statically store information of size I = sizeof (f) that
says which field to look up instead. For this special case, savings
come out the same as constant field elision even though the field is
not constant over all instances.

3.4 Array object compression
Array compression techniques operate on array instances. We com-
pute overall compression by accumulating savings for all instances
of all classes.

3.4.1 Trailing zero array trimming
Programs often over-provision the capacity of arrays used as
buffers, leading to unused trailing zeros [9]. These can be trimmed,
provided that the trimmed array remembers the nominal and true
length. Assuming it takes an additional 4 bytes to store both
lengths, the savings for array type T [] are:∑

a∈T []

(
trailingZeros(a) · sizeof (T) − 4

)
3.4.2 Array bit-width reduction
Array bit-width reduction computes savings per instance, com-
pressing array elements similarly to field bit-width reduction.
Boolean arrays: Per default, a Java virtual machine uses a byte
to represent a boolean, and hence, an array of L booleans occupies
3 words for the header plus L bytes for the elements. The trivial
optimization of representing an array of boolean by a bit vector
saves: ∑

a∈boolean[]

⌊
7

8
· a.length

⌋

Character arrays: Java represents characters using a 16-bit en-
coding for unicode. But English-language applications tend to use
mostly characters that require only the lower 8 bits. The accordion
arrays bit-width compression optimization represents each array
that consists entirely of 8-bit characters using a byte array [30] to
save: ∑

a∈char[]∧onlyUsesBits(a,8)

ba.lengthc

Other types: The above examples use boolean and char arrays,
but the array bit-width reduction also works for arrays of short, int,
or long [24]. In general, you can optimistically represent an array
of type T [] as a B-bit array provided all values need at most B bits
to save: ∑

a∈T []∧onlyUsesBits(a,B)

⌊
8 · sizeof (T) − B

8
· a.length

⌋

3.4.3 Array value set indirection
Array value set indirection is similar to field value set indirection. If
all elements of all arrays of a given class have elements drawn from
a small set of distinct values, then replace each instance element
with a small index into a dictionary that stores the actual value.
For example, if all instances of an array type T [] contain at most
K < 256 different values, array elements can store an 8-bit index
into a K-entry table of values of type T . The memory savings are:∑

a∈T []

a.length ·
(
sizeof (T) − 1

)
− arrayHeaderSize − K · sizeof (T)

This optimization makes no assumptions about the element type T .
It applies equally well for int, float, pointer, etc. This model does
reduce element size, but because it is more generally applicable
than array bit-width reduction, it incurs the overhead of storing the
dictionary.

3.4.4 Array value set caching
Array value set indirection can be generalized to the case where
there are a few aberrant values that do not fit in the primary dictio-
nary. Caching reserves one dictionary index (of 256) to indicate an
aberrant value, and stores the aberrant values into a secondary hash
table. We use a combination of the original array’s object ID and
the index of the array element for the secondary hash table’s key.
An array access a[i] in this case is as follows:

if a[i] == aberrant_indicator:
return secondary_hash.get(a, i)

else:
return dictionary[a[i]]

Let A be the total number of aberrant array elements in all arrays
of type T []. Then the savings are:∑

a∈T []

a.length ·
(
sizeof (T) − 1

)
− arrayHeaderSize − K · sizeof (T)

− hashTableSize ′
(
A, sizeof (T)

)
The hashTableSize ′ function assumes that keys are 8 bytes, be-
cause the key represents both an array and an index.

3.5 Hybrids
Hybrids combine multiple compression techniques to obtain more
savings than one technique alone.

6

3.5.1 Maximal hybrid
The maximal hybrid chooses the compression technique that saves
the maximum amount of memory for each piece of data. We first
compute the maximum for field techniques. For example, within
the same class C, one field may save most from bit-width reduction,
another field may save most from dominant-value hashing. The
maximal hybrid uses the technique that saves the maximum amount
of memory for each particular field f of class C. Savings are:

maxFieldSavings(C) =
∑

f∈Fields(C)

max
o∈FieldOpts

savings(C, f, o)

In other words, we sum the savings from each field f when us-
ing the optimization o with maximum savings for that field. The
set FieldOpts contains constant field elision (per snapshot), bit-
width reduction, dominant-value hashing, value set indirection or
caching, and lazy invariant computation2.

Besides field optimizations, the maximal hybrid also considers
optimizations that apply to entire objects of a class rather than
individual fields. Again, the idea is to pick, for each class, the
optimization that yields the highest savings:
maxClassSavings =∑
C∈Classes

max

{
maxFieldSavings(C), max

o∈ClassOpts
savings(C, o)

}
Note that maxClassSavings considers maxFieldSavings(C) as
one alternative for each class, along with the class optimization
techniques in ClassOpts , which are zero-based object compression
and strictly-equal object sharing3.

For arrays, the maximal hybrid starts by choosing the maximal
array instance compression techniques:

maxArrayISavings(T []) = max
o∈ArrayIOpts

∑
i∈T []

savings(T [], i, o)

The set of array instance optimizations ArrayIOpts contains trail-
ing zero trimming, bit-width reduction, and zero-based compres-
sion. Next, just like for classes, the maximal hybrid picks the best
optimizations for each array type T []:
maxArrayTSavings =∑
T []∈Arrays

max

{
maxArrayISavings(T []), max

o∈ArrayTOpts
savings(T [], o)

}
The set of array type optimizations ArrayTOpts contains strictly-
equal array sharing, value set indirection, and value set caching.

In total, the maximal hybrid saves the sum of the maximal
savings of class and array type optimizations:

maxClassSavings + maxArrayTSavings

3.5.2 Combined hybrid
In some cases, after applying an optimization o1 to a piece of data,
it is possible to apply o2 as well on the same data to obtain addi-
tional savings. For example, we can have perform “trailing zero ar-
ray trimming”=o1 first and then do “array bit-width reduction”=o2,
achieving more savings with the hybrid o1 ◦o2 than either o1 or o2.

We calculate combined-hybrid heap compression by applying
multiple models in sequence. We first find maxFieldSavings(C)
for each class C. In other words, each field is optimized with the
best optimization in FieldOpts for that field. Next, we check
if each instance can benefit further from the optimizations in

2 Due to the offline analysis required in dominant value elision, we exclude
it from this hybrid calculation.
3 Due to implementation limitations, we exclude deep-equal object sharing
from this hybrid calculation.

ClassOpts: zero object compression and strictly-equal object
sharing. To correctly compute these compression models, the
previously-applied field optimizations modify the analysis repre-
sentation as required, for example, by changing field and object
sizes, and by re-populating the hash table for strictly-equal object
sharing. We then simply add up each type’s savings to achieve a
global combinedClassSavings , which is the total savings from
applying all non-array optimizations in sequence.

We compute hybrid array savings similarly. For the maximum
potential savings, per array instance, we apply the optimizations
from ArrayIOpts in the following order: (1) trailing zero trim-
ming, (2) bit-width reduction, and (3) zero-based compression.
Throughout these calculations, we keep track of changes to the
array length, array size, element size, and number of zero entries
to feed into later optimizations. Similar to combined object sav-
ings, we follow the instance optimizations by type optimizations
in ArrayTOpts to explore further compression. Even if instance
optimizations have been performed to reduce the array footprint,
strictly-equal array sharing, array value set indirection, and caching
could realize further savings. However, we do not need to recal-
culate the array sharing hash table, as instance optimizations only
elide zeros and do not change element values. After we calculate
combined savings for each array type, we add them to compute the
total combinedArrayTSavings .

We then sum combined-hybrid class and array type savings to
obtain total combined-hybrid savings:

combinedClassSavings + combinedArrayTSavings

4. Results
This section evaluates and compares the compression models.

4.1 Methodology
We added heap data compressibility analysis to Jikes RVM [1] ver-
sion 2.9.1. We used the “FastAdaptiveMarkSweep” configuration,
which optimizes the boot image (“Fast”) and uses a mark-sweep
GC. We disabled the optimizing compiler during the application
run to reduce compiler objects in the heap. Since Jikes RVM it-
self is written in Java, it allocates JVM objects in the Java heap
alongside application objects; we show both total and application-
only results. Our benchmark suite consists of the DaCapo bench-
marks [5] version “dacapo-2006-10-MR1”, and of pseudojbb, a
variant of SPECjbb2000 (see www.spec.org/osg/jbb2000/).
We used Ubuntu Linux 2.6.20.3.

Bnchmrk GC # Types Size [KB] Size [Instances]
Cls Arr Total Arr App Total Arr App

antlr 14 529 69 49,811 70% 5% 785,561 33% 0.5%
bloat 122 593 79 56,724 67% 16% 967,360 32% 17%
chart 23 675 85 56,616 68% 8% 970,070 33% 3%
eclipse 44 1,136 175 87,799 68% 25% 1,534,580 35% 18%
fop 22 784 73 52,184 70% 4% 830,111 34% 0.6%
hsqldb 13 538 78 201,375 43% 76% 7,231,418 21% 89%
jython 218 892 78 63,706 67% 9% 1,067,359 33% 6%
luindex 11 533 70 50,185 70% 7% 794,633 33% 2%
lusearch 26 536 73 70,994 78% 34% 850,828 33% 8%
pmd 71 644 72 59,220 67% 9% 992,510 34% 6%
xalan 125 711 88 71,148 76% 27% 940,201 36% 9%
pseudojbb 18 495 72 74,180 73% 35% 1062,901 36% 25%

Table 3. Benchmark and heap dump characterization.

Due to space constraints, we pick one representative heap dump
mid-way through the approximately 20 we gather. For more com-
prehensive results, see the companion technical report [20]. Sec-
tion 4.5 validates the generalizability of one heap dump for an
example benchmark, comparing savings over many dumps. Even
though savings are for one dump, some models consider constraints

7

from all dumps, see Table 1. Table 2 shows the number of heap
dumps. Table 3 characterizes our benchmark suite, including the
number of GCs, the number of class and array types represented in
the measured heap dump, and the size of the measured heap dump.
For all benchmarks, arrays occupy more bytes but have fewer in-
stances than classes. The application occupies between 4% and
76% of the amount of bytes occupied by Jikes RVM. Subsequent
sections and tables represent total memory savings as a percentage
of total KB, and represent application memory savings as a percent-
age of application KB. We were not able to compute application-
specific savings for models that require analysis over all dumps.

4.2 Object compression
Bnchmrk Total Application

Equal sharing Zero- Equal sharing Zero-
Strictly Deep based Strictly Deep based

Cls Arr Cls Arr Cls Arr Cls Arr Cls Arr Cls Arr
antlr 2 4 4 5 6 14 0 12 0.2 12 0.2 48
bloat 1 8 7 8 6 14 0 6 3 7 8 25
chart 2 4 4 5 6 13 2 2 3 2 2 41
eclipse 1 4 2 4 6 14 0.2 2 0.5 2 5 25
fop 2 4 4 5 6 16 0 14 0.1 15 0.3 57
hsqldb 0.5 3 1 3 8 12 0 3 0 3 9 11
jython 1 6 5 7 6 13 0 8 0.6 10 3 28
luindex 2 5 4 5 6 15 0.4 27 0.9 27 2 58
lusearch 2 4 4 4 4 32 2 4 4 5 1 72
pmd 1 7 6 7 7 14 0.1 9 2 9 8 33
xalan 1 21 3 22 5 29 0.7 58 2 59 1 66
pseudojbb 1 4 4 5 5 20 0 4 0 4 4 33
average 1 6 4 7 6 17 0.5 12 1 13 4 41

Table 4. Percent memory savings from object compression.
Table 4 shows memory savings from the object compression

techniques in Section 3.2. As expected, deep-equal sharing results
in more savings than strictly-equal sharing. Whereas deep equality
is essential for saving class-instance memory, strict equality suf-
fices for arrays, because most arrays are primitive. Xalan in par-
ticular benefits greatly from deep-equal array sharing, saving 22%
of the total heap and 59% of the application heap. Also, zero-
based compression gets some good savings ranging from 4 to 8%
for classes and 12 to 32% for arrays. Application-specific zero-
based compression savings greatly depend on the benchmark. Ap-
plication numbers vary more widely than total numbers, showing
that the JVM is fairly consistent. Overall zero-based compression
achieves the highest individual savings (with objects and arrays
36%), but at the cost of having to decompress individual object
instances before use.
4.3 Field compression
Table 5 shows memory savings from the field compression tech-
niques in Section 3.3. A field can be constant-elided only if it is
constant over the whole run. Our benchmarks have a significant
number of elidable constant fields. The “Bitw” columns refer to
field bitwidth reduction, either based on whether the field obeyed
its bitwidth over all heap dumps (“Run”) or just the selected heap
dump (“GC”). In both cases, reducing field bit-width can save be-
tween 4 and 7% of the heap size. This similarity implies that the
range of all field values is fairly accurately represented in one heap
dump. As discussed in Section 3.3.4, dominant-value field elision
requires two passes over all heap dumps, one to compute candidate
fields and another to consider all instances for savings. Zero eli-
sion is effective for fields, for example, it reduces bloat by 12%.
Fewer fields can be elided due to a non-zero dominant value as ex-
pected, but it saves up to 6% on eclipse. However, both dominant
elision techniques require ahead of time profiling to achieve sav-
ings. Dominant-value hashing and value set indirection each can
save 4 to 9% of the heap. So our benchmarks have many fields with

one dominant value, and have many fields with fewer than 256 val-
ues that can benefit from a “dictionary”. Our benchmarks do not see
a lot of benefit from value-set caching, meaning they do not have
many fields with more than 256 values. Similarly, few pairs of fields
are equal over all instances of a class, so lazy invariants do not com-
press the heap much. Overall, the field optimizations yield smaller
savings than object compression. For field compression, bit-width
reduction, dominant-value hashing, and value set indirection yield
the greatest savings. If it is easy to have an offline pass of the run,
then dominant zero elision affords good compression too.
4.4 Array compression
Bnchmrk Total Application

Trl Bitwidth Value set Trl Bitwidth Value set
Zro Ch GC Run Indr Cch Zro Ch GC Indr Cch

antlr 3 4 8 0.2 0.3 5 3 2 2 2 0
bloat 3 5 8 0.4 0.5 6 3 9 10 10 0
chart 3 4 8 0.2 0.3 5 11 2 4 0 2
eclipse 2 6 9 0.1 0.2 6 0.9 13 13 0.1 13
fop 6 4 7 0.2 0.5 5 0.1 0.1 0.4 0.5 0
hsqldb 1 0.9 2 0 0.1 1 0.4 0 0.3 0 0.3
jython 2 5 8 0.2 0.4 6 2 3 4 0.2 5
luindex 5 4 8 0.2 0.3 5 25 0.9 1 0.9 0.2
lusearch 2 5 7 0.1 0.2 5 0.9 5 6 6 0
pmd 3 5 9 0.2 0.5 6 8 5 6 5 1
xalan 18 4 10 0.2 2 7 49 6 17 13 24
pseudojbb 3 14 18 0.1 0.4 14 4 32 34 32 0
average 4 5 9 0.1 0.4 6 9 7 8 6 4

Table 6. Percent memory savings from array compression.
Table 6 shows memory savings from the array compression

techniques in Section 3.4, which are overall greater than for ob-
jects. Many benchmarks have a significant amount of arrays allo-
cated with padding that can benefit from trailing zero trimming.
Xalan, with a large part of its heap being arrays, can save 18% by
trimming zeros. For just application arrays, this model helps most
for chart, luindex, and xalan. Our benchmarks spend very little
space on boolean arrays, hence we do not show a separate column
for bit-width compressing them; the numbers were all zero. How-
ever, many character arrays benefit from bit-width reduction – up to
14% with pseudojbb. Eclipse and pseudojbb application character
arrays are prime candidates for savings. Although application sav-
ings vary per benchmark, similar to Zilles’ results which were com-
puted with different methodology, we see up to 32% compression
possibility [30]. Interestingly, arrays of types other than character
can also benefit significantly from bitwidth reduction, with savings
between 2 and 18%. Value set indirection helps little for arrays, be-
cause it is too strict: at least some arrays exceed the allotted dictio-
nary. However, using the dictionary as a cache and placing aberrant
values in a secondary hash increases the opportunities significantly,
and so value set caching saves more memory. In particular, pseudo-
jbb can compress the heap by 14% with value-set caching. Overall,
the array optimizations in this section yield smaller savings than
zero-based object compression for arrays, but value caching and
bit-width reduction are competitve with deep-equal sharing.
4.5 Compressibility over time
Most of the results in this section are for one mid-run heap dump
only. We investigated whether one heap dump can be representative
for the entire run by plotting a compressibility time series for
one benchmark, fop in Figure 2. We forced frequent heap dumps
every 512KB of allocation, collecting 148 heap dumps. Each curve
is one compression technique, the x-axis is time, and the y-axis
is the percent memory savings. The lines are mostly horizontal,
validating that compressibility changes little from heap dump to
heap dump. More variation is seen at startup and shutdown as
expected, but the middle of the run is fairly stable. This shows
our per collection savings for classes and arrays at a middle heap

8

Bnchmrk Total Per Run Total Application
Const Bitw Dom elision Bitw Dom Value set Lazy Bitw Dom Value set Lazy

Elision Run Zero !Zero GC Hash Indir Cache Invar GC Hash Indir Cache Invar
antlr 4 5 5 1 4 5 5 1 1 0.2 0.1 0.2 0 0
bloat 4 7 12 1 5 6 5 1 1 6 7 8 0.2 0.4
chart 4 5 4 0.8 5 6 5 1 1 1 0.8 2 0.2 0.1
eclipse 5 6 9 6 5 6 6 1 1 5 6 7 0.4 0.8
fop 6 7 6 1 4 5 5 1 1 0.3 0.1 0.1 0 0
hsqldb 4 7 4 3 7 9 7 0.2 0.2 7 10 7 0 0
jython 4 5 5 0.9 5 6 5 1 0.9 3 3 4 0 0.1
luindex 4 5 5 1 5 5 5 1 1 2 1 2 0 0.3
lusearch 3 4 3 0.7 4 4 4 1 0.7 1 0.8 1 0.7 0
pmd 6 8 8 2 5 6 6 0.9 1 10 9 9 0 4
xalan 3 4 5 1 4 4 4 0.7 0.9 1 1 1 0 0.5
pseudojbb 3 4 4 1 4 5 4 1 0.7 3 4 5 0 0.2
average 4 6 6 2 5 6 5 0.9 0.8 3 4 4 0.1 0.5

Table 5. Percent memory savings from field compression.

0%

5%

10%

15%

20%

25%

combArr
maxArr
zeroArr
combCls
maxCls
bitwArr
zeroCls
hashFld
indirFld
cacheArr
strEqArr
bitwFld
charArr
trailArr
strEqCls
lazyFld
cacheFld
indirArr
boolArr

Figure 2. Compressibility of fop over time.

dump should be representative. We also gathered savings for the
per run models with frequent heap dumps which were very similar
to savings for 20 heap dumps, showing that there is little collection
bias.
4.6 Hybrid object compression

Benchmark Total Application
Maximal Combined Maximal Combined

Cls Arr Cls Arr Cls Arr Cls Arr
antlr 9 16 9 20 0.3 48 0.3 50
bloat 10 17 10 21 12 28 13 38
chart 9 16 9 19 4 43 3 46
eclipse 9 17 10 22 10 28 10 41
fop 9 18 9 22 0.3 58 0.3 60
hsqldb 12 12 12 13 12 12 12 12
jython 9 16 10 21 5 30 5 35
luindex 9 17 9 21 3 61 3 66
lusearch 7 34 7 39 3 73 3 80
pmd 10 16 10 22 14 34 14 37
xalan 7 33 7 38 2 78 2 84
pseudojbb 8 24 9 37 7 42 7 74
average 9 20 9 25 6 45 6 52

Table 7. Percent memory savings from hybrid compression.
Table 7 shows memory savings from the hybrid compression

techniques in Section 3.5. The savings from the maximal hybrid ex-
ceed the savings of any individual optimization, because it picks the
best compression technique for each individual piece of data. The
savings from the combined hybrid exceed those from the maximal
hybrid, because each piece of data may be optimized by multiple
techniques. But the additional savings of combined over maximal
are low for non-arrays. Arrays afford much greater savings in gen-
eral. These results suggest that JVM developers should focus com-
pression optimizations more on arrays. Using models presented in

this paper, we see that the combined hybrid for arrays is able to
compress the heap by up to 39%. Adding the savings for both ob-
jects and arrays, we see we savings up to 46% of all memory, and
86% for application data. These results show that there is a lot of
bloat and redundancy currently in the Java heap that could be ex-
ploited. Although we cannot reach the 83% (or 99% for applica-
tions) compression that bzip can achieve, we can achieve over half
of the savings while still being able to access and update individual
objects.

Overall, we see the most potential for space optimization with
arrays. For our benchmarks, the majority of the heap size is taken
up by arrays (43 to 78%), and our models show the greatest po-
tential compression with arrays. Removing bytes that are zero is
particularly effective, saving on average 45% of the heap and up
to 73% for applications. Although previous researchers have ana-
lyzed many compression techniques, we are the first to apply many
models successively to each piece of data in the heap. For applica-
tion classes and arrays, on average we can compress the heap by
58% with our combined hybrid model. Our hybrid analysis shows
great potential to reduce the heap bloat causing Java memory inef-
ficiency.

5. Related work
Previous work either characterizes heap data without specifically
studying compression, or focuses on specific compression tech-
niques without attempting to be comprehensive.
Modeling and characterization. Mitchell and Sevitsky catego-
rize fields by the role they play in an object (header, pointer, null,
primitive), and categorize objects by the role they play in a data
structure (head, array, entry, contained) [18]. These measures to-
gether with scaling formulas predict the heap data reductions of
manual program changes. Whereas Mitchell and Sevitsky focus on
providing human heap understanding, we focus on heap compres-
sion that can be performed in the JVM.

Dieckmann and Hölzle study object lifetimes, size, type, and
reference density for the SPECjvm98 benchmarks [11]. In addition
to these measures, Blackburn et al. study time varying heap, alloca-
tion, and lifetime behaviors of the SPECjvm98, SPECjbb2000, and
DaCapo benchmarks [5]. They show that DaCapo is significantly
richer in code and data resource utilization than SPEC, which is
why we use DaCapo here. While these studies provide general in-
sights on heap memory composition, we measure specific limits of
heap data compression.
Compression techniques. This section offers an incomplete sur-
vey of compression techniques for executable images, object head-
ers, code, and the virtual execution engine itself. Stephenson et al.
use static analysis to perform bit-width compression on C programs
before compiling those C programs to FPGAs [24]. Cooprider and

9

Regehr [10], Titzer [27], and Titzer and Palsberg [28] compress
executable images for embedded chips. They apply bit-width com-
pression and field value set indirection on pre-allocated static data,
but not on dynamically allocated heap data. Bacon et al. [4] com-
press header “fields” (type, hash, lock, GC bits) with some of the
techniques that our paper explores for non-header data. Ernst et
al. [12], Evans and Fraser [14], and Pugh [19] compress executable
code and class files. Titzer et al. reduce the footprint of a Java vir-
tual machine [26].
Heap data compression. The following research implements spe-
cific heap data compression techniques. Ananian and Rinard use
static analysis and an offline profiling run for constant field elision,
field bit-width reduction, and dominant-value field hashing [2]. Ap-
pel and Gonçalves use generational garbage collection for deep-
equal acyclic object sharing [3]. Chen et al. use compacting garbage
collection for zero-based object compression and speculative trail-
ing zero array trimming [9]. Shankar et al. use online program
analysis to create a specializer that exploits heap constants in in-
terpreters [23]. Zhang and Gupta use static analysis and an offline
profiling run for field bit-width reduction [29]. Zilles uses specula-
tive narrow allocation for character array bit-width reduction [30].

These approaches expose some of the real-world implementa-
tion challenges for compression. For example, relying on offline
profiling and static analysis reduces applicability to languages like
Java with dynamic class loading, reflection, and native code. Some
techniques target only specialized domains, such as interpreters,
English-language characters, or acyclic data. Speculative optimiza-
tions require a back-out mechanism when compressed data prop-
erties are violated and this mechanism must be thread-safe. These
challenges and runtime overheads expose space-time tradeoffs that
are particular to the application setting. We leave to future work the
space-time tradeoff of particular compression implementations. We
address here the limits of memory efficiency by measuring the im-
pact and applicability of compression on a large number of bench-
marks, thus enabling apples-to-apples comparisons.
Towards heap data compression. Whereas the above research
overcomes some real-world challenges of heap data compression,
the others propose optimizations without evaluating full imple-
mentations. Chen et al. simulate dominant-value field elision [7].
Shaham et al. hand-optimize benchmarks with object-level life-
time optimizations [22], and Chen et al. hand-optimize benchmarks
with field-level lifetime optimizations [8]. Marinov and O’Callahan
hand-optimize benchmarks with deep-equal object sharing [17].
We also explore the limits of compression techniques, but we go
a step further by empirically comparing a wider variety and combi-
nations of techniques.

6. Conclusion
Memory is expensive, yet Java applications often squander it.
Based on Lempel-Ziv compression, we estimate that at least 73%
of heap data is redundant and compressible. Previous work has sug-
gested a variety of compression techniques to harness some of this
redundancy in the form of space savings. We developed a method-
ology for evaluating the limits of such compression techniques. It
consists of a heap data compressibility analysis along with over a
dozen models for the savings potential of individual optimizations.
Thus, we are the first to offer an apples-to-apples comparison of
a large number of different heap data compression techniques. We
show that significant space savings are possible, especially with
array compression and combined hybrid techniques. We hope that
optimizing this discovered heap bloat can make Java a space effi-
cient, high productivity programming language.
Acknowledgments We would like to acknowledge the help of
Steve Blackburn with experimental implementation, Maria Jump
for assistance with heap dump generation, and Mike Bond and

reviewers for helpful feedback on the writing of this paper. We
would also like to thank Nick Mitchell and Gary Sevitsky for
fruitful discussions on the problem of heap bloat.

References
[1] B. Alpern, et al. The Jalapeño virtual machine. IBM Systems Journal,

39(1):211–238, 2000.
[2] C. S. Ananian and M. Rinard. Data size optimizations for Java programs. In

Languages, Compiler, and Tool Support for Embedded Systems, 2003.
[3] A. W. Appel and M. J. R. Gonçalves. Hash-consing garbage collection.

Technical Report CS-TR-412-93, Princeton University, 1993.
[4] D. Bacon, S. Fink, and D. Grove. Space- and time-efficient implementation

of the Java object model. In European Conference for Object-Oriented
Programming, 2002.

[5] S. M. Blackburn, et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In Object-Oriented Programming, Systems,
Languages, and Applications, 2006.

[6] A. Cardon and M. Crochemore. Partitioning a graph in o(|a| log2 |v|).
Theoretical Computer Science, 1982.

[7] G. Chen, M. Kandemir, and M. J. Irwin. Exploiting frequent field values in
Java objects for reducing heap memory reqirements. In Virtual Execution
Environments (VEE), 2005.

[8] G. Chen, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Field level analysis
for heap space optimization in embedded Java environments. In International
Symposium on Memory Management, 2004.

[9] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, B. Mathiske, and
M. Wolczko. Heap compression for memory-constrained Java environments. In
Object-Oriented Programming, Systems, Languages, and Applications, 2003.

[10] N. D. Cooprider and J. D. Regehr. Offline compression for on-chip RAM. In
Programming Language Design and Implementation, 2007.

[11] S. Dieckmann and U. Hölzle. A study of allocation behavior of the SPECjvm98
Java benchmarks. In European Conference for Object-Oriented Programming,
1999.

[12] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A. Proebsting. Code
compression. In Programming Language Design and Implementation, 1997.

[13] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution. In
International Conference on Software Engineering (ICSE), 1999.

[14] W. S. Evans and C. W. Fraser. Bytecode compression via profiled grammar
rewriting. In Programming Language Design and Implementation, 2001.

[15] S. Hangal and M. S. Lam. Tracking Down Software Bugs Using Automatic
Anomaly Detection. In International Conference on Software Engineering,
2002.

[16] M. Hirzel, J. Henkel, A. Diwan, and M. Hind. Understanding the connectivity
of heap objects. In International Symposium on Memory Management, 2002.

[17] D. Marinov and R. O’Callahan. Object equality profiling. In Object-Oriented
Programming, Systems, Languages, and Applications, 2003.

[18] N. Mitchell and G. Sevitsky. The causes of bloat, the limits of health. In
Object-Oriented Programming, Systems, Languages, and Applications, 2007.

[19] W. Pugh. Compressing Java class files. In Programming Language Design and
Implementation, 1999.

[20] J. B. Sartor, M. Hirzel, and K. McKinley. No bit left behind: The limits of
heap data compression (extended version). Technical Report TR-08-17, The
University of Texas at Austin, 2008.

[21] Semiconductor Industry Association. SIA world semiconductor forcast 2007–
2010, Nov. 2007. http://www.sia-online.org/pre release.cfm?ID=455.

[22] R. Shaham, E. K. Kolodner, and M. Sagiv. Heap profiling for space-efficient
Java. In Programming Language Design and Implementation, 2001.

[23] A. Shankar, S. S. Sastry, R. Bodı́k, and J. E. Smith. Runtime specialization
with optimistic heap analysis. In Object-Oriented Programming, Systems,
Languages, and Applications, 2005.

[24] M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth analysis with
application to silicon compilation. In Programming Language Design and
Implementation, 2000.

[25] TIOBE Software. TIOBE programming community index, 2007. http://tiobe.-
com.tpci.html.

[26] B. Titzer, J. S. Auerbach, D. F. Bacon, and J. Palsberg. The ExoVM system for
automatic VM application reduction. In Programming Language Design and
Implementation, 2007.

[27] B. L. Titzer. Virgil: Objects on the head of a pin. In Object-Oriented
Programming, Systems, Languages, and Applications, 2006.

[28] B. L. Titzer and J. Palsberg. Vertical object layout and compression for fixed
heaps. In Compilers, Architectures, and Synthesis for Embedded Systems, 2007.

[29] Y. Zhang and R. Gupta. Compression transformations for dynamically allocated
data structures. In International Conference on Compiler Construction, 2002.

[30] C. Zilles. Accordion arrays: Selective compression of unicode arrays in Java.
In International Symposium on Memory Management, 2007.

10

