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Abstract
This paper shows how to reduce cache and TLB misses by changing
the order in which a parallel garbage collector copies heap objects.
Reducing cache and TLB misses improves program run time. Par-
allel garbage collection improves scaling on multi-processor ma-
chines. Technology trends indicate that both memory locality and
multi-processor scaling increase in importance. Our new algorithm
is based on the earlier single-threaded “hierarchical decomposi-
tion” algorithm by Wilson, Lam, and Moher. This paper presents a
thorough evaluation of parallel hierarchical copying, showing that
it improves spatial locality, reduces cache and TLB misses, and
speeds up 14 out of 26 benchmarks.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Memory management (garbage
collection)

General Terms Languages, Performance, Experimentation, Al-
gorithms

Keywords parallel, generational, cache locality

1. Introduction
Programs spend a lot of time stalled in cache and TLB misses,
because computation tends to be faster than memory access. For
example, Adl-Tabatabai et al. report that the SPECjbb2000 bench-
mark spends 45% of its time stalled in misses on an Itanium pro-
cessor [1]. Better locality reduces misses, and thus improves per-
formance. For example, techniques like prefetching or cache-aware
memory allocation improve locality, and speedups such as 14% [1],
25% [21], and 21% [29] have been measured.

Locality is in part determined by the order of heap objects in
memory. If two objects reside on the same cache line or page, then
an access to one causes the system to fetch this cache line or page.
A subsequent access to the other object is fast. Copying garbage
collection (GC) can change the order of objects in memory. To im-
prove locality, copying GC should strive to colocate related objects
on the same cache line or page. This paper presents and evaluates a
GC algorithm that improves locality by colocating related objects.
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Figure 1. Breadth first copy order.
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Figure 2. Depth first copy order.

Copying GC traverses the graph of heap objects, copies objects
when it reaches them, and recyles memory of unreachable objects
afterwards. Consider copying a binary tree of objects, where each
cache line can hold three objects. When the traversal uses a FIFO
queue, the order is breadth-first and results in the cache line layout
in Figure 1. When the traversal uses a LIFO stack, the order is
depth-first and results in the cache line layout in Figure 2. In both
cases, most cache lines hold unconnected objects. For example,
breadth-first order colocates o10 and o11 with o12, even though o12

will usually not be accessed together with o10 or o11.
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Figure 3. Hierarchical copy order.
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Intuitively, it is better if an object occupies the same cache
line as its siblings, parents, or children. Hierarchical copy order
achieves this (Figure 3). Moon invented a hierarchical GC in 1984,
and Wilson, Lam, and Moher improved it in 1991 [31], calling
it “hierarchical decomposition”. The algorithms by Moon and by
Wilson, Lam, and Moher use only a single GC thread. Using mul-
tiple parallel GC threads reduces GC cost, and most product GCs
today are parallel.

Despite the fact that hierarchical GC is well known (Jones
discusses it in the GC book [22]), to our knowledge, no GC for
Java uses it today. We speculate that this is because it has been
unclear how to achieve hierarchical order in a parallel GC, and how
beneficial it is. This paper answers both questions.

This paper presents parallel hierarchical copying GC, a new par-
allel copying GC algorithm that achieves hierarchical copy order.
The algorithm is non-trivial, but its implementation is simple, and
needs no online profiling or compilation. This paper presents exper-
imental results for using generational parallel hierarchical copying
GC for 26 Java programs running in a product Java virtual ma-
chine on IA32 hardware. Besides wall-clock time, the results in-
clude cache and TLB miss counts, as well as a metric for spatial
locality, all measured at various heap sizes. Of the 26 programs, 14
speed up, 4 are unaffected, and 8 slow down.

Section 2 sets the stage, Section 3 presents the algorithm, Sec-
tion 4 provides experimental results, Section 5 discusses related
work, and Section 6 concludes.

2. Background
Section 2.1 describes Cheney’s copying GC. Cheney’s algorithm
copies in breadth-first order; Sections 2.2 and 2.3 describe algo-
rithms based on Cheney that copy in hierarchical order instead. Hi-
erarchical order improves locality, and thus reduces memory stalls
in the mutator. Cheney’s algorithm (as well as its hierarchical vari-
ants) are sequential; Sections 2.4 and 2.5 describe parallel GC al-
gorithms based on Cheney. Parallelism multiplies GC throughput.

2.1 Cheney’s copying GC
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Figure 4. Cheney’s copying GC.

Figure 4 illustrates Cheney’s copying GC algorithm [6]. Mem-
ory has two semi-spaces, from-space and to-space. At GC start,
all heap objects are in from-space, and all of to-space is empty .
GC first scans the program variables for pointers to heap objects,
and copies their target objects from from-space to to-space. Copied
objects are gray, and a “free” pointer keeps track of the boundary
between gray objects and the empty part of to-space . Next,
GC scans copied objects for pointers to from-space, and copies
their target objects to to-space. Scanned objects are black, and a
“scan” pointer keeps track of the boundary between black objects
and gray objects . When the scan pointer catches up to the free
pointer, GC has copied all heap objects that are transitively reach-
able from the program variables. From-space is discarded, and the
program continues, using the objects in to-space.

The previous paragraph introduced terminology for the rest of
this paper: black means copied and scanned, gray means
copied but not yet scanned, and empty means free available
memory. (We avoid referring to as white, since white has a
different meaning in the GC literature [12]).

Cheney’s algorithm copies in breadth-first order (see Figure 1),
because it scans gray objects first-in-first-out. One advantage of
Cheney’s algorithm is that it requires no separate stack or queue to
keep track of its progress, saving space and keeping the implemen-
tation simple. Cheney published his GC in 1970 for Lisp [6] with-
out offering performance results. Cheney’s algorithm uses only one
thread for garbage collection, it is not parallel.

2.2 Moon’s hierarchical copying GC
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Figure 5. Moon’s hierarchical copying GC.

Moon modified Cheney’s algorithm to improve locality by
copying in hierarchical order instead of breadth-first. Figure 5
illustrates Moon’s algorithm [27]. To-space is now divided into
blocks. As before, objects are copied by bumping the free pointer,
which separates gray objects from empty space . But instead of
just one scan pointer, Moon maintains two scan pointers. The pri-
mary scan pointer is always in the same block as the free pointer.
For example, in Figure 5, both the primary scan pointer and the
free pointer point into block D.

If there are gray objects at the primary scan pointer, Moon scans
them. If the free pointer reaches the next block (for example E),
Moon advances the primary scan pointer to the start of that block,
even though there may still be gray objects in the previous block
(for example D). The secondary scan pointer keeps track of the
earliest gray objects (for example, in block B). If the primary scan
pointer catches up with the free pointer, Moon scans from the
secondary scan pointer, until the primary scan pointer points to gray
objects again. If the secondary scan pointer catches up with the free
pointer as well, GC is complete.

Moon’s algorithm copies objects in hierarchical order. For ex-
ample, in Figure 3, Moon’s algorithm first copies o1 and its chil-
dren, o2 and o3, into the same block. Next, it copies o4 (the first
child of o2) into a different block. At this point, the block with o4

has a gray object at the primary scan pointer, so Moon proceeds to
copy the children of o4 into the same block as o4. Only when it is
done with that block does it continue from the primary scan pointer,
which still points into o2.

The mutator is the part of an executing program that is not part
of the GC: the user program, and run time system components such
as the JIT compiler. Moon’s GC is concurrent to the mutator, but
there is only one active GC thread at a time, no parallel GC threads.

One problem with Moon’s algorithm is that it scans objects
twice when the secondary scan pointer advances through already
black objects (for example in block C in Figure 5). Moon pub-
lished his GC in 1984 for Lisp [27]. Moon’s paper evaluates per-
formance of two Lisp benchmarks on a Lisp machine.

2.3 Wilson, Lam, and Moher’s hierarchical copying GC
Wilson, Lam, and Moher improve Moon’s algorithm by avoiding
re-scanning of black objects. Figure 6 illustrates Wilson, Lam,
and Moher’s algorithm [31]. It keeps track of the scan pointers in
all partially scanned blocks. When the block with the free pointer
contains gray objects (for example block D), scanning proceeds in
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Figure 6. Wilson, Lam, and Moher’s hierarchical copying GC.

that block; otherwise, it proceeds from the earliest block with gray
objects (for example block B). The copy order of Wilson, Lam,
and Moher’s algorithm is identical to that of Moon’s algorithm
(see Figure 3). It was published in 1992, and evaluated by collecting
page access traces for three Lisp programs, and using those traces
to drive a paging simulator. The hierarchical copying GC algorithm
by Wilson, Lam, and Moher is neither parallel nor concurrent.

2.4 Halstead’s parallel copying GC
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Figure 7. Parallel GC.

In 1985, Halstead published the first parallel GC algorithm [16].
It is based on Baker’s GC [3], which is an incremental variant
of Cheney’s GC [6]. The incremental aspect is not relevant for
this paper. Halstead’s GC works on shared-memory multiprocessor
machines with uniform access time to the shared memory. The
garbage collector works in SIMD (single instruction, multiple data)
style: each worker thread performs the same GC loop on different
parts of the heap. The mutator may be SIMD or MIMD (multiple
instruction, multiple data). As illustrated in Figure 7, at any given
point in time, either GC threads are running or mutator threads are
running, but not both. The GC is parallel, but not concurrent.

From-space To-space

Thread 1

scan1 free1

Thread 2

scan2 free2

Figure 8. Halstead’s parallel copying GC.

Halstead’s algorithm partitions to-space into n equally sized
parts on an n-processor machine. Figure 8 illustrates the heap
organization for n = 2. Worker thread i has a scan pointer scani

and a free pointer freei, which point to gray objects and empty
space in their respective parts of to-space. Termination detection
is simple: when scani = freei for all i, then there are no more gray
objects to scan anywhere. Since each thread has its own private
part of to-space, the threads do not need to synchronize when

scanning objects in to-space or allocating memory in to-space. But
they do need to synchronize on individual objects in from-space: if
two worker threads simultaneously encounter pointers to the same
object in from-space, only one of them should copy it and install a
forwarding pointer.

Like Cheney, Halstead has the advantage of requiring no sep-
arate queue or stack to keep track of gray objects, because within
the part of to-space that belongs to a thread, the objects themselves
are layed out contiguously and form an implicit FIFO queue. The
algorithm therefore copies in breadth-first order (Figure 1). Unfor-
tunately, the static partitioning of to-space into n parts for n proces-
sors leads to work imbalance. This imbalance causes two problems:
overflow and idleness. Overflow occurs when a worker thread runs
out of empty space to copy objects into. Halstead solves this
problem by providing additional empty space to worker threads
on demand. Idleness occurs when one thread runs out of gray ob-
jects to scan while other threads are still busy. Halstead does not
address the idleness problem caused by work imbalance [16].

2.5 Imai and Tick’s parallel copying GC
In 1993, Imai and Tick published the first parallel GC algorithm
with load balancing [20]. Their algorithm extends Halstead’s algo-
rithm by overpartitioning: on an n-processor machine, it partitions
to-space into m blocks, where m > n.
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Figure 9. Imai and Tick’s parallel copying GC.

Figure 9 illustrates Imai and Tick’s GC. Each GC worker thread
has one scan block with gray objects to scan, and one copy block
with empty space to copy objects into. These blocks may be
separate (A and E in Thread 1) or aliased (D in Thread 2). A shared
work pool holds blocks currently unused by any thread. When a
copy block has no more empty space, it is completely gray or
black and gray . The thread puts the copy block into the work
pool for future scanning, replacing it with a new empty block .
When the scan block has no more gray objects, it is completely
black , and thus done for this garbage collection: the thread gets
rid of it. Then, the thread checks whether its private copy block
has any gray objects (coloring or ). If yes, it aliases the copy
block as scan block. Otherwise, it obtains a new scan block from
the shared work pool. In addition to having to synchronize on from-
space objects like Halstead’s algorithm, the algorithm by Imai and
Tick also has to synchronize operations on the shared work pool.

The aliasing between copy and scan blocks avoids a possible
deadlock where the only blocks with gray objects also have empty
space. In addition, it reduces contention on the shared work queue
when there are many GC threads. Imai and Tick’s GC only checks
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for an aliasing opportunity when it needs a new scan block because
the old scan block is completely black. Imai and Tick evaluated
their algorithm on 14 programs written in a logic language. They
report parallel speedups of 4.1× to 7.8× on an 8-processor ma-
chine. Their metric for speedup is not based on wall-clock time,
but rather on GC “work” (number of cells copied plus number of
cells scanned); it thus does not capture synchronization overhead
or locality effects.

3. Algorithm
This section contains the first main contribution of this paper: a new
GC algorithm that achieves hierarchical copy order with parallel
GC threads. The following description assumes that the reader is
familiar with the background from Section 2.

3.1 Baseline garbage collector
Our implementation of parallel hierarchical copying GC is based
on the generational GC [22] implemented in IBM’s J9 JVM. It
uses parallel copying for the young generation and concurrent
mark-sweep with occasional stop-the-world compaction for the old
generation. This is a popular design point in products throughout
the industry. The baseline GC has exactly two generations, and
young objects remain in the young generation for a number of
birthdays that is adapted online based on measured survival rates.
We are only concerned with copying of objects within the young
generation or from the young generation to the old generation.

The baseline GC uses Imai and Tick’s algorithm [20] for the
young generation. To accommodate tenuring, each worker thread
manages two copy blocks: one for objects that stay in the young
generation, and another for objects that get tenured into the old
generation. Either block may be aliased as scan block.

3.2 Parallel hierarchical GC
Parallel hierarchical GC achieves hierarchical copy order by alias-
ing the copy and scan blocks whenever possible. That way, it usu-
ally copies an object into the same block that contains an object that
points to it. This is the parallel generalization of the single-threaded
algorithm by Wilson, Lam, and Moher that uses the scan pointer
in the block with empty space whenever possible (Section 2.3).
Blocks serve both as the work unit for parallelism and as the de-
composition unit for hierarchical copying.

freelist copy

scan done

aliased

scanlist

Figure 10. Block states and transitions.

Figure 10 shows the possible states of a block in to-space
as circles. Transitions labels denote the possible coloring of the
block when a GC thread changes its state. Blocks in states freelist,
scanlist, and done belong to the shared work pool. No GC thread
scans them or copies into them, and thus, their coloring can not
change. Blocks in states copy, scan, and aliased belong to a GC
thread. These states have been described in Section 2.5.

For example, a copy block must have room to copy objects into;
therefore, all incoming transition labels to state copy are at least

partially empty . If the copy block has some gray objects and
some empty space, then it can serve both as copy block and as scan
block simultaneously, and the GC aliases it; therefore, the transi-
tion from state copy to state aliased is labeled with colorings that
include both gray and empty ( or ). The state machine in Fig-
ure 10 is non-deterministic: the state and coloring of a block alone
do not determine which transition it takes. Rather, the transitions
depend on the colorings of both the copy block and the scan block
of the worker thread.

copy scan scan scan
aliased or

or (no action) scan → scanlist scan → done
copy → aliased copy → aliased

or aliased → copy (no action) scan → done
scanlist → scan scanlist → scan

or aliased → scan copy → scanlist scan → done
freelist → copy freelist → copy copy → scan

freelist → copy
aliased → done (can’t happen) (can’t happen)
freelist → copy
scanlist → scan

Table 1. Transition logic in GC thread.

Table 1 shows the actions that the GC thread performs after
scanning a slot in an object. For example, if the copy block con-
tains both gray slots and empty space (row copy ∈ { , }), and
the scan block is already aliased with the copy block (column
scan = aliased), no action is necessary before the next scanning
operation. If copy ∈ { , }, and the scan block is not aliased, the
thread transitions the copy block to the aliased state, and either
puts the scan block back on the scanlist if it still has gray slots
(scan ∈ { , }), or transitions it to the done state if it is com-
pletely black (scan = ).

As described in Table 1, parallel hierarchical GC leads to in-
creased contention on the scanlist. To avoid this, our implemen-
tation caches up to one block from the scanlist with each thread.
Thus, if there is a cached block, the action scanlist → scan re-
ally obtains that cached block instead. Likewise, the transition
scan → scanlist really caches the scan block locally, possibly re-
turning the previously cached block to the scanlist in its stead.

3.3 Discussion
Like Cheney’s algorithm and the other Cheney-based algorithms in
Section 2, parallel hierarchical GC requires no separate mark stack
or queue of objects. Instead, the gray objects are consecutive in
each block, thus serving as a FIFO queue. On the other hand, like
Imai and Tick’s algorithm, our GC requires a shared work pool of
blocks to coordinate between GC threads. In addition, it requires
per-block data to keep track of its state and coloring.

After scanning a gray slot, parallel hierarchical GC checks im-
mediately whether it became possible to alias the copy block and
the scan block. Since this check happens on the innermost loop of
the GC algorithm, it must be fast. The immediacy of this check is
what leads to hierarchical order like in the algorithms by Moon and
by Wilson, Lam, and Moher.

The goal of hierarchical copy order is improved mutator local-
ity. But of course, it also affects GC locality and load balancing.
This effect can be positive or negative.

As mentioned earlier, in our implementation, each GC thread
actually manages two copy blocks, one each for young and old
objects. Only one of them can be aliased at a time.
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4. Results
This section contains the second main contribution of this paper:
a thorough evaluation of parallel hierarchical copying GC (PH),
compared to parallel breadth-first copying GC (BF). Section 4.1
describes the experimental setup. Section 4.2 shows how hierarchi-
cal copy order affects overall run time. Section 4.3 breaks down its
effects on mutator and garbage collection performance. Section 4.4
shows how the algorithm scales to different numbers of threads
and processors. Section 4.5 investigates time-space tradeoffs. Sec-
tion 4.6 shows cache and TLB misses, and Section 4.7 quantifies
colocation.

4.1 Experimental setup
All experiments for this paper were conducted with a modified
version of IBM J2SE 5.0 J9 GA Release (IBM’s product JVM),
running on real hardware in common desktop and server operating
systems. This section discusses the methodology.

The platform for Sections 4.2, 4.3, 4.5, and 4.6 was a dual-
processor IA32 SMT system running Linux. The machine has two
3.06 GHz Pentium 4 Xeon processors with hyperthreading. The
memory hierarchy consists of an 8 KB L1 data cache (4-way
associative, 64 Byte cache lines); a 512 KB combined L2 cache (8-
way associative, 64 Byte cache lines); a 64 entry data TLB (4 KB
pages); and 1 GB of main memory. The platforms for other sections
are described there.

Name Suite Description MB

SPECjbb2005 jbb05 business benchmark 149.3
antlr DaCapo parser generator 1.4
banshee other XML parser 84.6
batik DaCapo movie renderer 15.0
bloat DaCapo bytecode optimizer 11.5
chart DaCapo pdf graph plotter 25.0
compress jvm98 Lempel-Ziv compressor 8.8
db jvm98 in-memory database 13.6
eclipse other development environment 4.8
fop DaCapo XSL-FO to pfd converter 8.5
hsqldb DaCapo in-memory JDBC database 22.6
ipsixql Colorado in-memory XML database 2.5
jack jvm98 parser generator 1.5
javac jvm98 Java compiler 13.3
javalex other lexer generator 1.0
javasrc Ashes code cross-reference tool 61.3
jbytemark other bytecode-level benchmark 6.5
jess jvm98 expert shell system 2.3
jpat Ashes protein analysis tool 1.1
jython DaCapo Python interpreter 2.1
kawa other Scheme compiler 3.1
mpegaudio jvm98 audio file decompressor 1.0
mtrt jvm98 multi-threaded raytracer 10.4
pmd DaCapo source code analyzer 7.0
ps DaCapo postcript interpreter 229.3
soot DaCapo bytecode analyzer 33.0

Table 2. Benchmarks.

Table 2 shows the benchmark suite, consisting of 26 Java pro-
grams: SPECjbb20051, the 7 SPECjvm98 programs2, the 10 Da-
Capo benchmarks3, 2 Ashes benchmarks4, and 6 other big Java pro-
grams. Column “MB” gives the minimum heap size in which the

1 http://www.spec.org/jbb2005/
2 http://www.spec.org/osg/jvm98/
3 http://www-ali.cs.umass.edu/DaCapo/gcbm.html
4 http://www.sable.mcgill.ca/ashes/

program runs without throwing an OutOfMemoryError. The rest of
this paper reports heap sizes as n× this minimum heap size.

All timing numbers in this paper are relative, we avoid publish-
ing absolute numbers to protect IBM’s business interests.

To reduce the effect of noise on the results, all experiments con-
sist of at least 9 runs (JVM process invocations), and usually sev-
eral iterations (application invocations within one JVM process in-
vocation). For each SPECjvm98 benchmark, a run contains around
10 to 20 iterations at input size 100. Each run of a DaCapo bench-
mark contains two or more iterations on the largest input.

4.2 Speedups
This section shows the effect of hierarchical copying on run-
time for 25 Java programs. Section 4.4 studies a 26th program,
SPECjbb2005, in more detail.

Benchmark % Speedup (1- PH
BF ) at heap size C.I. # GCs

1.33× 2× 4× 10× (4×) (10×)

db +21.9 +22.9 +23.5 +20.5 0.6 40
javasrc 0 +3.5 0 +3.0 2.5 110
mtrt 0 0 0 +3.4 4.6 482
jbytemark +3.3 0 0 0 1.6 1,761
javac +2.8 +0.9 +1.6 +3.0 0.5 309
chart 0 +3.0 0 0 3.0 126
jpat 0 0 0 +2.6 0.7 14,737
banshee 0 +2.1 0 0 3.7 6
javalex +1.0 +1.0 +1.7 +1.6 0.6 201
jython 0 +1.3 0 0 2.3 893
eclipse 0 0 +1.2 0 1.0 9
mpegaudio 0 0 0 +1.0 0.9 15
compress 0 0 0 +1.0 1.8 142

fop 0 0 0 0 1.1 391
hsqldb 0 0 0 0 1.1 239
kawa 0 0 0 0 0.0 13
soot 0 0 0 0 1.1 237

batik 0 0 0 -1.4 0.7 89
jack 0 -1.4 -0.6 0 0.4 1,440
antlr -1.9 -1.3 -1.0 -1.1 0.9 3,070
jess -2.8 -2.4 -1.5 0 0.7 3,558
ps -3.0 -2.7 -2.2 -1.3 0.8 59
bloat 0 -1.7 0 -4.7 1.1 341
pmd -1.8 0 0 -5.1 3.3 775
ipsixql -6.0 -6.5 -8.7 -5.9 0.7 3,433

Table 3. Speedups for all benchmarks except SPECjbb2005.

The speedup columns of Table 3 show the percentage by which
parallel hierarchical copying (PH) speeds up (+) or slows down (-)
run time compared to the baseline parallel breadth-first copy-

ing (BF). They are computed as 1- PH
BF , where PH and BF are the

respective total run times. For example, at a heap size of 4× the
minimum, parallel hierarchical copying speeds up db’s run time by
23.5% compared to breadth-first. When the speedup or slowdown
is too small to be statistically significant (based on Student’s t-test
at 95% confidence), the table shows a “0”. Column “C.I.” shows
the confidence intervals for the 4× numbers as a percentage of
the mean run time. The confidence intervals at other heap sizes
are similar. Finally, Column “#GCs” shows the number of garbage
collections in the runs at heap size 10×; smaller heaps cause more
garbage collections.

None of the benchmarks experienced speedups at some heap
sizes and slowdowns at others. The benchmarks are sorted by their
maximum speedup or slowdown at any heap size. Out of these
25 programs, 13 speed up, 4 are unaffected, and 8 slow down.
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Section 4.4 will show that SPECjbb2005 also speeds up. While
speedups vary across heap sizes, we observed no pattern.

The program with the largest slowdown is ipsixql, which main-
tains a software LRU cache of objects. Because the objects in the
cache survive long enough to get tenured [18], but then die, ipsixql
requires many collections of the old generation. The program with
the largest speedup is db, which experiences similar speedups from
depth-first copy order [19]. Depth-first copy order requires a mark
stack, hence we do not consider it in this paper.

Parallel hierarchical copy order speeds up the majority of the
benchmarks compared to breadth-first copy order, but slows some
down. It may be possible to avoid the slowdowns by deciding the
copy order based on runtime feedback; this is future work.

4.3 Mutator vs. collector behavior
Parallel hierarchical copying GC tries to speed up the mutator by
improving locality. Section 4.2 showed that most programs speed
up, but some slow down. This section explores how mutator and
garbage collection contribute to the overall performance.

Benchmark Mutator Collector
Time TLB misses Time TLB misses

1- PH
BF BF PH 1- PH

BF BF PH

db +24.3 7.0 5.5 (-) -37.6 0.6 0.6 (0)
javasrc 0 1.0 1.0 (0) 0 0.6 0.5 (-)
mtrt 0 2.4 2.5 (0) -15.4 0.6 0.5 (-)
jbytemark 0 0.3 0.3 (+) +9.4 0.6 0.6 (0)
javac +2.0 1.6 1.5 (-) 0 0.6 0.5 (-)
chart 0 0.8 0.8 (0) 0 0.7 0.6 (0)
jpat 0 2.6 2.7 (0) 0 0.8 0.8 (0)
banshee 0 0.4 0.4 (0) -3.3 1.0 1.0 (0)
javalex +1.7 0.7 1.2 (+) 0 0.5 0.5 (0)
jython 0 1.5 1.5 (0) -9.0 0.7 0.7 (-)
eclipse +3.1 0.9 0.8 (-) 0 0.7 0.5 (-)
mpegaudio 0 0.4 0.4 (0) -5.7 0.8 0.7 (-)
compress 0 1.2 1.1 (0) 0 1.0 1.0 (0)

fop +1.3 1.4 1.2 (0) 0 0.5 0.4 (-)
hsqldb 0 1.2 1.1 (-) 0 0.5 0.5 (0)
kawa +0.4 1.3 1.3 (0) -9.6 0.6 0.5 (-)
soot 0 1.7 1.7 (0) -3.9 0.5 0.5 (0)

batik 0 0.8 0.8 (0) 0 0.6 0.6 (0)
jack 0 1.2 1.2 (0) -9.2 0.6 0.4 (-)
antlr 0 0.8 0.8 (0) -6.5 0.6 0.6 (0)
jess 0 2.1 2.1 (0) -7.2 0.5 0.4 (-)
ps 0 1.3 1.7 (+) -25.6 0.5 0.4 (-)
bloat 0 1.2 1.1 (0) -2.7 0.6 0.5 (-)
pmd 0 1.6 1.7 (0) -13.5 0.6 0.5 (-)
ipsixql -2.9 0.8 0.8 (0) -13.2 0.5 0.4 (-)

Table 4. Mutator and collector behavior at heap size 4×.

Table 4 breaks down the results of running in 4× the minimum
heap size into mutator and collector. The “Time” columns show im-
provement percentages of parallel hierarchical copying (PH) com-
pared to breadth-first (BF); higher numbers are better, negative
numbers indicate degradation. The “TLB misses” columns show
miss rates per retired instruction, in percent (lower is better; Sec-
tion 4.6 will explore TLB and other hardware characteristics in
more detail). A (+) indicates that PH has a higher miss rate than
BF, a (-) indicates that it has a lower miss rate, and a (0) indicates
that there is no statistically significant difference. The benchmarks
are ordered by the total speedup from Table 3.

When there is a measurable change, with few exceptions, the
mutator speeds up and the collector slows down. Even fop and

kawa, which experienced no overall speedup, experience a small
mutator speedup. Usually, TLB miss rates decrease both in the mu-
tator and in the GC. For the mutator, this explains the speedup; for
the GC, this does not prevent the slowdown caused by executing
more instructions to achieve hierarchical order. The large reduction
in mutator TLB misses for db (from 7% to 5.5%) leads to an overall
speedup despite having the largest GC slowdown (of 37.6%). Hi-
erarchical copying only slows down collections of the young gen-
eration, but since most objects in db die young, collections of the
young generation dominate GC cost.

To conclude, parallel hierarchical copying trades GC slowdown
for mutator speedup. This is a reasonable tradeoff as long as GC
scaling on multiprocessors is not impacted.

4.4 Scaling on multi-processor systems
This paper shows how to achieve hierarchical copy order in a paral-
lel GC. The goal of parallel GC is to scale well in multi-processor
systems by using all CPUs for collecting garbage. This is neces-
sary to keep up with the mutator, since it uses all CPUs for allocat-
ing memory and generating garbage. This section investigates how
well parallel hierarchical copying GC scales.
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Figure 11. GC scaling for SPECjbb2005 on 4 IA32 SMT Proces-
sors running Windows.

Figure 11 shows how the collector scales for SPECjbb2005.
SPECjbb2005, the SPEC Java business benchmark, models a server
that uses multiple parallel mutator threads to service transactions
against a database. For this experiment, the number of mutator
threads is fixed at 8, and when the mutator threads are stopped
for collection, the GC uses between 1 and 8 threads. The platform
is an IA32 Windows system with four 1.6GHz Pentium 4 Xeon
processors with hyperthreading (i.e. 8 logical CPUs), 256KB of L2
cache, 1MB of L3 cache, and 2GB of RAM. The heap size is 1GB,
out of which the young generation uses 384MB.

All numbers in Figure 11 are mutator transactions per GC time.
Higher numbers indicate that the mutator gets more mileage out of
each second spent in GC, indicating better GC scaling. There are
curves for parallel breadth-first (BF) copying, parallel hierarchical
(PH) copying, and PH with no cached block (PHNCB). All num-
bers are normalized to BF at 1 thread. The error bars show 95%
confidence intervals. With 8 GC worker threads, both BF and PH
run around 3 times faster than with 1 thread. Without the cached
block optimization from Section 3.2, PH would not scale: it would
run 46% slower with 8 threads than with only 1 thread (PHNCB).

Whereas Figure 11 shows how SPECjbb2005’s GC time scales,
Figure 12 shows how its total throughput scales on three hardware
platforms. SPECjbb2005 measures throughput as transactions per
second, which should increase with the number of parallel mutator
threads (“warehouses”). The three platforms are:
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Figure 12. Throughput for SPECjbb2005.
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Figure 13. GC scaling on 4 IA32 SMT Processors, Windows.

a. A 2-processor EM64T system running Linux. The machine has
two 3.4GHz Pentium 4 Xeon processors with hyperthreading,
with 1MB of L2 cache and 4GB of RAM. On this machine,
SPECjbb2005 used a 1GB heap with a 384MB young genera-
tion.

b. The 4-processor IA32 Windows system from Figure 11.

c. An 8-processor Power system running AIX. The machine has
eight 1.5GHz Power 5 processors with hyperthreading, with
a total of 144MB of L3 cache and 16GB of RAM. On this
machine, we ran SPECjbb2005 in a 3.75GB heap with a 2.5GB
young generation.

In each of the graphs 12a-c, the x-axis shows the number of
warehouses (parallel mutator threads), and the y-axis shows the

throughput (transactions per second) relative to the BF throughput
with 1 warehouse. Higher is better in thes graphs, because it means
that more transactions complete per second.

On all three platforms, throughput increases until the number
of warehouses reaches the number of logical CPUs, which is twice
the number of physical CPUs due to hyperthreading. At that point,
parallel hierarchical GC has a 3%, 8%, and 5% higher throughput
than the baseline GC. Increasing the number of threads further does
not increase the throughput, since there are no additional hardware
resources to exploit. But hierarchical GC sustains its lead over the
baseline GC even as threads are increased beyond the peak.

Figure 13 shows GC scaling for the SPECjvm98 benchmarks
except mpegaudio (which does very little GC). The platform is
the same as for Figure 11, and the heap size is 64MB. Except for
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Figure 14. Time for SPECjvm98 db and javac.

mtrt, all of these programs are single-threaded. Since the amount of
mutator work is constant between the different collectors, Figure 13
measures parallel GC scaling as the inverse of GC time, normalized
to GC throughput for BF with 1 thead. For most SPECjvm98
benchmarks, neither PH nor BF scale well. This is in part due to
their small memory usage compared to SPECjbb2005: there is not
enough work to distribute on the parallel GC worker threads. As for
SPECjbb2005, PH with no cached block (PHNCB) scales worse
than either PH or BF.

To conclude, parallel hierarchical copying GC scales no worse
with increasing load caused by parallel applications than parallel
breadth-first copying GC. A single-threaded GC, on the other hand,
would have a hard time keeping up with the memory demands of
several parallel mutators.

4.5 Time-space tradeoffs
In a small heap, GC has to run more often, because the application
exhausts memory more quickly. This increases the cumulative cost
of GC. On the other hand, in a small heap, objects are closer
together, which should intuitively improve locality. This section
investigates how these competing influences play out.

Figure 14 shows the run times of two representative bench-
marks, SPECjvm98 db and javac, at 6 different heap sizes from
1.33× to 10× (occupancy 75% to 10%). The x-axis shows the heap
size; each graph carries labels for absolute heap size at the top and
labels for relative heap size at the bottom. The y-axis shows run
time relative to the best data point in the graph. In these graphs,
lower is better, since it indicates faster run time. There are three
graphs for each benchmark, one each for total time, mutator time,
and GC time. While the y-axis for total and mutator time goes
to 1.5, the y-axis for GC time goes to 3.

Figures 14a+d show that parallel hierarchical copying (PH)
speeds up the mutator for both db and javac. Figures 14b+e show
that, as expected, total GC cost is higher in smaller heaps. But this
effect is more significant for javac than for db, because javac has

a higher nursery survival rate [18]. That is also the reason why
PH slows down the collector for db, while causing no significant
change in collector time for javac. The overall behavior of db is
dominated by the mutator speedup caused by PH (Figure 14c),
whereas the overall behavior of javac is dominated by the decrease
of GC cost in larger heaps (Figure 14f).

This confirms the conclusions from Section 4.2: parallel hierar-
chical GC performs well in both small and large heaps.

4.6 Cache and TLB misses
The goal of hierarchical copying is to reduce cache and TLB misses
by colocating objects on the same cache line or page. This section
uses hardware performance counters to measure the impact of
hierarchical copying on misses at different levels of the memory
subsystem.

Pentium processors expose hardware performance counters
through machine specific registers (MSRs), and many Linux dis-
tributions provide a character device, /dev/cpu/*/msr, to access
them. Doing modprobe msr ensures the presence of this device;
for experiments in user mode, the files must be readable and write-
able for users. The JVM sets up the registers for collecting the
desired hardware events at the beginning of the run, and reads them
at the beginning and end of GC, accumulating them separately for
the mutator and the GC.

Figure 15 shows the results. The x-axis shows the heap size;
each graph carries labels for absolute heap size at the top and labels
for relative heap size at the bottom. The y-axis shows the hardware
metric; each graph carries labels for relative miss rate at the left and
labels for absolute miss rate at the right. In these graphs, lower is
better, since it indicates fewer misses. The denominator of all ratios
is retired instructions. See Table 4 for statistical confidence on the
TLB miss rates; there are some variations due to noise. The “Bus
cycles” event measures for how many cycles the bus between the
L2 cache and main memory was active. This indicates L2 misses,
for which Pentium 4 does not provide a reliable direct counter. Note
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Figure 15. Cache and TLB misses for SPECjvm98 db and javac.

that bus clock speeds are usually an order of magnitude slower than
processor clock speeds.

Parallel hierarchical copying reduces mutator misses on all mea-
sured levels of the memory subsystem: L1 data cache, combined
L2 cache, and TLB. It reduces misses for both db and javac, at all
heap sizes. As expected, the reduction in TLB misses is the most
significant, because the hierarchical GC uses 4KB blocks as the de-
composition unit, which coincide with the page size. With BF, db
has high L1 and TLB miss rates, and PH reduces the miss rates sig-
nificantly. That explains the large speedup that Sections 4.2 and 4.5
report for db.

To conclude, parallel hierarchical copying GC reduces TLB
misses most, while also reducing L1 and L2 cache misses signif-
icantly. These reduced miss rates translate into reduced run time.

4.7 Pointer distances
Section 4.6 already demonstrated that hierarchical copying reduces
cache and TLB misses. This section validates that it achieves that
by colocating objects on the same cache line or page.

For this experiment, the GC records the distance between the
address of a pointer and the address of the object it points to just
after a copying or forwarding operation. Pointers with an absolute
distance under 64B are classified as “Line”, and pointers with an
absolute distance between 64B and 4KB are classified as “Page”.
The numbers only consider pointers from objects in the young
generation to other objects in the young generation, and from newly
tenured objects in the old generation to other newly tenured objects
in the old generation. Among other things, this disregards pointers
between young and old objects; those have longer distances, but are
rare, and hierarchical copying can not colocate them on the same
page.

Table 5 shows pointer distances. For example, db with breadth-
first copying yields 9.4% pointers that are longer than 64 bytes but
under 4KB, whereas parallel hierarchical copying improves that to

Benchmark BF PH
Line Page Line Page

db 0.0 9.4 23.6 65.1
SPECjbb2005 0.0 0.5 6.8 72.4
javasrc 0.3 20.8 17.6 32.2
mtrt 2.2 28.5 24.1 46.7
jbytemark 0.1 4.0 11.2 11.6
javac 1.2 33.9 33.1 29.1
chart 0.1 4.9 58.0 5.6
jpat 0.1 7.2 46.3 5.3
banshee 0.6 28.1 15.9 46.8
javalex 1.6 19.6 21.9 17.2
jython 0.2 11.1 4.5 35.6
eclipse 1.9 25.9 28.6 37.3
mpegaudio 0.9 33.0 16.7 50.8
compress 5.4 33.2 23.2 40.1

fop 0.2 32.8 11.9 52.0
hsqldb 0.1 28.9 20.3 64.9
kawa 3.0 28.0 23.4 32.1
soot 6.8 30.1 21.5 38.1

batik 1.4 32.9 20.5 45.5
jack 0.4 35.5 26.4 49.4
antlr 2.0 32.8 20.1 44.4
jess 0.3 6.7 8.0 6.5
ps 0.1 24.1 32.2 33.9
bloat 4.0 24.5 34.5 26.5
pmd 1.7 28.5 27.4 29.0
ipsixql 1.0 20.2 32.6 21.1

Table 5. Pointer distances.
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65.1%. Except for SPECjbb2005, all runs used heaps of 4× the
minimum size.

These numbers show that parallel hierarchical copying succeeds
in colocating objects on the same 4KB page for the majority of the
pointers. This explains the reduction in TLB misses observed in
Table 4. Also, parallel hierarchical copying colocates objects on the
same 64 byte cache line much more often than the baseline garbage
collector. This explains the noticeable reduction in L1 and L2 cache
misses observed in Section 4.6.

While hierarchical copying is tremendously successful at im-
proving spatial locality of connected objects, wall-clock numbers
from a real system (Table 3) paint a more sober picture. This dis-
crepancy underlines three points: (i) Hierarchical copying trades
GC slowdown for mutator speedup. The result of this tradeoff is de-
termined by the concrete benchmark, GC implementation, and plat-
form. (ii) Hierachical copying aims at decreasing TLB and cache
miss rates. When the application working set is small compared to
the memory hierarchy of the machine, miss rates are already so low
that decreasing them further helps little. (iii) Hierarchical copying
optimizes for the “hierarchical hypothesis” that connectivity pre-
dicts affinity. In other words, it assumes that objects with connec-
tivity (parents or siblings in the object graph) also have affinity (the
application accesses them together). Not all applications satisfy the
hierarchical hypothesis.

5. Related work
Section 5.1 discusses related work on using GC to improve mutator
locality, Section 5.2 discusses related work on parallel GC, and
Section 5.3 discusses other locality optimizations.

5.1 Locality optimization with copying garbage collection
This section reviews, in chronological order, papers on how GC can
automatically improve mutator locality.

Section 2.2 describes Moon’s hierarchical copying GC [27].
Moon’s GC is incremental, and relies on a read barrier that copies
objects before the mutator accesses them, so the mutator can never
see objects in from-space, only in to-space. Special-purpose Lisp
hardware makes this read barrier efficient. Courts used Moon’s GC
to improve locality further by letting the mutator drive the copy
order [11]. To do this, Courts first enables the read barrier, then
allows the mutator to trigger copies for a while, and only then starts
scanning objects from the GC.

Section 2.3 describes how Wilson, Lam, and Moher extend
Moon’s hierarchical copying GC to avoid rescanning black ob-
jects [31]. That paper also advocates that even when the runtime
system stores roots in a hash table, GC should scan roots in decla-
ration order. If GC were to scan roots in order of their hash keys,
object layout would get randomized, leading to poor locality.

Chilimbi and Larus [10] use a software read barrier to exhaus-
tively profile memory accesses in Cecil. They construct an affinity
graph, where nodes are objects, and edge weights denote co-access
frequency. At beginning of GC, Chilimbi and Larus greedily pre-
copy the affinity graph (in order of decreasing affinity).

Kistler and Franz reorder fields inside an object to group the
hottest fields on the same cache line [23]. They perform this as an
online feedback-directed optimization in an Oberon system [24].
To support field reordering, the compiler either has to generate
code that accesses object fields via a level of indirection, or must
invalidate compiled code when field offsets change. Our algorithm,
as well as all the other algorithms in this section, use online object
reordering rather than field reordering.

Shuf et al. copy objects close together if they were already close
together before the garbage collection, and vice versa [29]. Thus,
they preserve the locality of the allocator. Shuf et al. implemented
their algorithm in Jikes RVM, but disabled parallel GC, so their

algorithm is sequential. The same paper also presents a technique
for improving locality at object allocation time (see Section 5.3).

Huang et al.’s GC scans the hottest pointer fields of an object
first, based on a low-overhead field heat profile [19]. Scanning the
hottest fields first increases the likelihood that the hot successor
objects are copied close to the scanned object. Besides scanning
hot fields first, Huang et al. also mention trying “partial depth-
first using the first two children (a hierarchical order)”. This partial
depth-first order copies the first two children of each node before
traversing the first child depth-first. That is hierarchical in the sense
that it increases the likelihood of colocating heap objects with their
parents, siblings, or children, even though it does not necessarily
achieve the copy order in Figure 3. Huang et al.’s results show that
partial depth-first order is not very effective. Our results indicate
that truly hierarchical order helps more.

Our GC algorithm is parallel, enabling it to keep up with the
memory demands of parallel mutator threads. Except for [19], all
algorithms discussed in this section use only a single GC worker
thread. Our technique requires no profiler, making it simple to
engineer and avoiding profiling overhead. Except for [27, 29, 31],
all algorithms in this section require online profilers.

5.2 Parallel garbage collection
This section reviews, in chronological order, papers on parallel GC
for shared memory multiprocessors (see Figure 7), with special
emphasis on load balancing.

Section 2.4 describes Halstead’s algorithm, the first parallel
GC [16]. Section 2.5 describes Imai and Tick’s algorithm, the
first parallel GC with load balancing [20]. Imai and Tick maintain
a shared pool of fixed-size blocks of to-space. Each GC worker
thread has a private copy block and a private scan block.

Endo, Taura, and Yonezawa introduce work stealing for parallel
GC [13]. Each GC worker thread provides a stealable queue of
pointers to gray objects. When a thread runs out of work, it attempts
to steal half of the stealable queue of one of its peers. Endo, Taura,
and Yonezawa achieve impressive scaling results: they report GC
speedups of 6.2× at 8 processors, 10.9× at 16 processors, 17.8×
at 32 processors, and 28.3× at 64 processors.

Flood et al. present a mechanism for handling overflow in the
meta-data required to maintain work-stealing queues [14].

Cheng and Blelloch present the first copying GC that is paral-
lel and incremental as well as concurrent, thus achieving both high
throughput and high responsiveness [7]. Cheng and Blelloch bal-
ance work using a shared pool, but unlike Imai and Tick, there is
no fixed work packet size; instead, variable sized chunks of work
are copied into and out of a shared array.

Attanasio et al. implemented and compared a variety of differ-
ent parallel GC algorithms, both copying and non-copying, gener-
ational and non-generational [2]. They balance work with a shared
pool of fixed-size work packets. Attanasio et al.’s copying GC is not
based on Cheney’s algorithm; thus, a work packet is just an array
of pointers to gray objects.

Ossia et al. present a non-copying GC that is parallel and incre-
mental as well as concurrent [28]. They use a similar approach to
load balancing as Attanasio et al. [2], but also discuss issues with
weak memory ordering.

A major distinction between the algorithms in this section is
whether they partition work into fixed-size [2, 20, 28] or variable-
size [7, 13, 14] units. Fixed-size work units tend to get used with
a shared pool, whereas variable-size work units tend to get used
with work stealing, though there are exceptions [7]. One advantage
of variable-sized work units is that the parallel GC can adapt more
flexibly when there is little work but many processors.

Unlike the algorithms discussed in this section, a main design
goal of our algorithm is to improve mutator locality.
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5.3 Other automatic software locality optimizations
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Figure 16. Automatic mutator locality optimizations.

This section reviews other software techniques for improving
locality; for hardware techniques, see VanderWiel and Lilja’s sur-
vey [30]. Figure 16 shows optimizations that are fully automatic,
requiring no user intervention such as performing a training run or
modifying application code. Automatic optimizations include im-
proving locality during garbage collection [10, 11, 19, 23, 24, 31],
automatically injecting prefetching code into the mutator [1, 9, 21],
using locality-aware memory allocation [25, 29], and using operat-
ing system support [5, 27]. Automatic locality optimizations have
been evaluated for C/C++, Java, Lisp, and other programming lan-
guages such as Oberon or Cecil. We have taken an educated guess
at the memory hierarchy level targetted by each optimization, but
this is debatable, and not intended to be authoritative. Indeed, those
papers that offer experimental results for this usually find improve-
ments on multiple levels.

Except for [27, 31], all automatic mutator locality optimizations
in Figure 16 are complicated to engineer and rely on profiling. Our
technique, on the other hand, is simple to engineer and needs no
profiling. Except for [1, 21], none of the optimizations have been
implemented or evaluated in a product JVM. We implemented our
technique in a product JVM, and compare it against the highly
tuned GC it ships with. Many of these techniques may be com-
plementary with our algorithm. Our algorithm occupies the coordi-
nates Java/MovingGC/TLB in Figure 16, though it also helps the
L1/L2 cache.

Some techniques are almost automatic, except for the fact that
they require an offline training run [4, 26, 32]. Some techniques
improve locality in the GC rather than the mutator, which is impor-
tant when memory is so constrained that GC dominates execution
time [8, 17]. Some techniques require more heavy user interven-
tion; for example, users can rewrite their application with cache-
oblivious algorithms [15].

6. Conclusions
This paper introduces a new algorithm: parallel hierarchical copy-
ing GC. It combines parallel GC, which is important for scaling on
multiprocessor machines, with hierarchical decomposition, which
is important for mutator locality. The key idea behind this new al-
gorithm is to use blocks both as the work unit for parallelism and as
the decomposition unit for hierarchical copying. This is facilitated
by the fact that in both cases, each block has its own scan pointer.
It turns out that the logic for hierarchical copying is non-trivial, but
simple to engineer once all cases have been figured out. The tech-
nique works in the real world, and requires no profiler.

While the new algorithm is the first contribution of this paper,
the second contribution is a thorough evaluation of its properties.

The single-threaded variant of hierarchical decomposition has been
known for decades, yet has not been adopted in product virtual
machines, since its concrete benefits have remained unclear. This
paper offers an evaluation on 26 Java programs, executing on a
product JVM on stock hardware. The results show that hierarchical
copying colocates pointers and their targets on the same page in the
majority of the cases, that it reduces TLB misses dramatically, and
that it also reduces L1 and L2 cache misses. For the majority of our
benchmarks, this translates into an overall run time improvement.
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