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ABSTRACT
Modern garbage collectors partition the set of heap objects
to achieve the best performance. For example, generational
garbage collectors partition objects by age and focus their
efforts on the youngest objects. Partitioning by age works
well for many programs because younger objects usually
have short lifetimes and thus garbage collection of young
objects is often able to free up many objects. However, gen-
erational garbage collectors are typically much less efficient
for longer-lived objects, and thus prior work has proposed
many enhancements to generational collection.

Our work explores whether the connectivity of objects
can yield useful partitions or improve existing partitioning
schemes. We look at both direct (e.g., object A points to
object B) and transitive (e.g., object A is reachable from
object B) connectivity. Our results indicate that connectiv-
ity correlates strongly with object lifetimes and deathtimes
and is therefore likely to be useful for partitioning objects.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors–Memory
management (garbage collection)

General Terms
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1. INTRODUCTION
Modern garbage collectors partition the set of heap ob-

jects to achieve the best performance. Ideally, a partition
has three properties: (i) objects that are often accessed at
the same time are grouped together in the same partition
(spatial locality) improving memory system performance;
(ii) objects in a partition can be garbage collected indepen-
dently of other partitions, which helps to avoid the overhead
and long pause times of full collections; and (iii) objects in a
partition die at the same time, which enables a garbage col-
lector to collect many objects at the same time. Although
age-based partitioning [39, 34], used in generational garbage
collectors, provides the above properties for the youngest
objects, these properties do not necessarily hold for the
older objects [21]. To alleviate some of the shortcomings
of age-based partitioning, researchers have proposed many
enhancements [4, 10, 11, 24, 43].

Our work explores whether the connectivity of objects can
yield new partitioning schemes or improve existing schemes.
We investigate both direct connectivity (e.g., object O1

points to object O2) and transitive connectivity (e.g., object
O1 is reachable from object O2). Using empirical evidence,
this paper studies the potential usefulness of partitioning by
connectivity; a collector that exploits partitioning for con-
nectivity is a subject for future work.

We conducted our research in the Jikes Research Virtual
Machine (RVM)1 [1] (compiler [6] and runtime system) to
collect lifetime and connectivity data for Java programs.
Our benchmarks include the SPECjvm98 suite, the Java-
Olden suite, and a number of other applications including a
web server. Broadly speaking, we investigated three kinds
of connectivity: (i) connectivity from the stack (ii) connec-
tivity from globals2, and (iii) connectivity in the heap.

Our results indicate that all three kinds of connectivity
correlate strongly with object lifetimes and deathtimes: (i)
objects that are reachable only from the stack are usually
shortlived [4]; (ii) objects that are reachable from globals
usually live for most of the program execution; (iii) heap ob-
jects with a pointer (or path of pointers) between them usu-
ally have the same deathtime. We also discuss an algorithm
for performing partial garbage collections based on connec-
tivity information. We defer implementation and evaluation
of the collector to future work.

The remainder of the paper is organized as follows: Sec-

1The Jikes RVM is an open source research virtual machine
for Java that was formerly called Jalapeño. It is available
at www.ibm.com/developerworks/oss/jikesrvm.
2We consider static fields of Java classes as global variables.
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tion 2 introduces terms that we use throughout the paper.
Section 3 explains how we conduct our measurements, and
Section 4 describes our benchmark programs. Section 5
presents our results. Section 6 distinguishes our contribu-
tions from prior work and Section 7 concludes.

2. BACKGROUND
From the point of view of a memory manager, a running

program creates new objects and modifies pointers in exist-
ing objects. A garbage collector traverses the heap start-
ing from the roots (stack and global pointers) to determine
which objects are unreachable and collects them. The heap
can be viewed as a directed graph, where each object is a
node and each pointer is a directed edge. In these terms,
the running program can be viewed as a mutator that adds
and removes edges and creates new nodes. The garbage col-
lector deletes nodes unreachable from the roots along with
their outgoing edges.

A global object graph (Gog) is a graph that has a node for
each object created in a program execution and a directed
edge for each association between two objects via a pointer
in a program execution. The Gog is the union of the object
graphs at all points in a program execution. Thus, if at one
time an object O1 points to object O2, and at another time
O1 points to object O3, then the Gog has edges from O1

to both O2 and O3. Associated with each node of the Gog

is a birthtime, the time at which the object was created,
and a deathtime, the time at which the object became un-
reachable. The lifetime of an object is the difference of its
deathtime and birthtime. We follow other garbage collection
researchers (e.g., [4]) in measuring time in bytes allocated
since the start of the program.

A strongly-connected component (Scc) in the Gog is a
maximal set of objects such that each object in the Scc is
reachable from all other objects in the Scc [13]. A weakly-
connected component (Wcc) in the Gog is a maximal set
of objects such that if one ignores the directions of edges,
each object in the Wcc is reachable from all other objects
in the Wcc. For example, a doubly-linked list is an Scc or
part of a larger Scc, and a tree is a Wcc or part of a larger
Wcc or Scc.

Blackburn et al. [4] classify objects by their lifetime and
deathtime into shortlived, longlived, and immortal objects.
We extend this definition by further classifying immortal
objects into quasi and truly immortal as follows:

• An object that dies at the termination of the program
is truly immortal .

• Else, if the time from the object’s deathtime to the
termination of the program is shorter than the object’s
lifetime, then the object is quasi immortal .

• Else, if the object’s lifetime is shorter than the thresh-
old Ta × high watermark, the object is shortlived (we
use Ta = 0.2). The high watermark is the maximum
number of bytes in reachable heap objects during the
program execution.

• Else, the object is longlived .

The motivation for the definition of shortlived as a frac-
tion of high watermark is that generational garbage collec-
tors often reserve a fixed fraction of the heap for the nursery.

In our measurements, we found the shortlived/longlived dis-
tinction to be largely independent from the precise definition
of shortlived. Ideally, a tracing garbage collector should not
expend any effort on quasi immortal or truly immortal ob-
jects, but focus mostly on shortlived and occasionally on
longlived objects.

Some of our benchmarks, such as SPECjvm98, are invoked
by harness code that is also written in Java and executed
by the VM. We consider objects that survive until the ter-
mination of the benchmark proper as truly immortal even if
they do not survive until the termination of the harness.

3. METHODOLOGY
Unless stated otherwise, we conducted our experiments

using a “BaseBasenoncopyingGC” image (called “BaseBase-
MarkSweep” in version 2.0.0) of version 1.1 of the Jikes
RVM on Linux/PowerPC. This image uses the baseline (non-
optimizing) compiler to compile both VM and application
methods and uses a mark-and-sweep garbage collector. Us-
ing a mark-and-sweep collector ensures that objects do not
move, and thus the memory address of an object is a reliable
way of identifying it during its lifetime.

To gather the runtime program characteristics required to
build the Gog, we modified the Jikes RVM [1] to trace the
following events:

• The object allocation event identifies the newly allo-
cated object and its allocation context (thread and ac-
tivation record).

• The pointer assignment event identifies the object
pointed to and the location where the pointer is stored.

• The deallocation event identifies a dead object. The
garbage collector generates these events.

An object allocation event creates a node in the Gog

and annotates it with birthtime, type, and allocation con-
text. An object deallocation event updates the deathtime
and lifetime of the corresponding object. Since the garbage
collector generates the deallocation events, the timings for
these events are not precise: an object reported as dead
at garbage collection n may have become unreachable any
time after collection n − 1. To reduce this imprecision, we
perform relatively frequent garbage collections, and we use
precise deathtime traces [22] for the set of numbers most
sensitive to this issue (Section 5.3.4).

There are two kinds of pointer assignment events. A
pointer assignment event where the pointer is stored into
a field of a heap object creates an edge between two objects
if the edge does not already exist. A pointer assignment
event where the pointer is stored into a global or a stack
variable updates information in the pointed-to object that
we use to determine whether it escapes.

4. BENCHMARK PROGRAMS
Table 1 describes our benchmark suite. Our benchmark

suite includes the SPECjvm98 [32] and Java-Olden [7] suites.
Prior work on garbage collection has also used these pro-
grams. In addition, we used four real-world applications as
benchmarks: an XML database, a web-server, a chat-server,
and an XSLT processor.3 The micro-benchmark null con-
3The benchmarks are available at
http://systems.cs.colorado.edu/colorado bench/.
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sists of an empty main method. The average row in each
table gives the arithmetic mean of the results for all bench-
marks, except null.

The second column of Table 1 shows the total size of
all class files for each benchmark in KB. The Java-Olden
benchmarks are small, they are kernels illustrating a single
algorithmic task. The third and fourth column of Table 1
give descriptions of the benchmarks and their inputs. The
Column “GC interval” shows the number of bytes allocated
between forced garbage collections. We chose GC intervals
of approximately 1/25 of the high watermark in Bytes.

The Jikes RVM is written in the Java programming lan-
guage and is self-hosted; it provides its own runtime services,
allocating objects in the same heap as user data. Thus, the
effectiveness of the garbage collector impacts not only the
application, but also the virtual machine. For most of our
measurements, we present two sets of numbers: one for all
allocated objects (including VM and library objects), and
one for just the objects allocated on behalf of the appli-
cation. The numbers for all allocated objects are relevant
because VM boot-up and compilation are part of the pro-
gram’s execution. The application-only numbers illustrate
the differences between benchmarks.

Table 2 shows some statistics for our benchmarks. Of the
SPECjvm98 benchmarks, compress and mpegaudio do not
exercise the garbage collector much.

The “Owner” columns in Table 2 categorize heap objects
into the percentage of total objects that are allocated (i)
in the Jikes RVM boot image, (ii) by the running VM, and
(iii) by the application. The Jikes RVM boot image contains
a memory snapshot of compiled core VM classes and their
associated objects. When the VM boots, this file is read
and the corresponding objects are recreated [2]. Once the
Jikes RVM has booted, we use the allocation site to classify
objects into RVM or application objects. If the allocation
site is within the standard Java library, we traverse the dy-
namic chain until we encounter a caller in the RVM runtime
system or the application. For the larger benchmarks, most
of the objects are allocated by the application itself; on the
other end of the spectrum, the synthetic benchmark null
intentionally does not allocate any application objects.

The “Lifetime” columns in Table 2 categorize heap objects
by their lifetime following the definitions in Section 2. The
numbers in parentheses count only objects where the owner
is the application (we use this convention throughout this
paper). The “n/a” for the null benchmark indicates that
the application does no allocation.

We see that most benchmarks have a high percentage of
shortlived objects confirming the weak generational hypoth-
esis [21]. Few objects are longlived or quasi immortal but
many benchmarks have a significant fraction of truly im-
mortal objects. The number of truly immortal objects is
particularly high for the micro-benchmark null. This is be-
cause null allocates only system objects, and many of these
survive until the VM terminates. It may therefore be worth-
while to treat system objects specially in a memory manager
for a VM implemented in Java. A significant percentage of
application-only objects are also truly immortal. This is
contrary to the strong generational hypothesis and moti-
vates techniques like pretenuring [20, 4]. For those bench-
marks where almost all objects are truly immortal, never
attempting to collect garbage may be the best approach to
memory management [16].

5. RESULTS
This section presents our results. Section 5.1 investigates

connectivity from the stack, Section 5.2 investigates connec-
tivity from globals, and Section 5.3 investigates connectivity
within the heap.

Modern collectors achieve short pause times by perform-
ing partial collections. However, these partial collections
usually require write barriers, which are expensive. In Sec-
tion 5.4 we investigate an idea for how connectivity infor-
mation can enable safe partial garbage collections without
write barriers.

5.1 Correlation between lifetime and connec-
tivity from stack

This sections considers two kinds of connectivity from the
stack: objects that are reachable only from the stack and
objects that escape their allocating activation records or
threads.

5.1.1 Objects reachable only from the stack
Given sufficient compiler support, objects pointed to only

by the stack should be relatively cheap to garbage collect be-
cause they are not pointed to by the heap or global variables.
Figures 1(a) and (b) present data for all objects and only for
objects allocated on behalf of the application, respectively.
In both figures the length of a bar gives the percentage of
objects that are reachable only from the stack. Each bar
has four segments, for shortlived, longlived, quasi immortal,
and truly immortal objects.

Our results indicate that the benchmarks have a signifi-
cant percentage of objects that are pointed to only from the
stack: in 11 of the 22 benchmarks it is higher than 30%. For
most benchmark programs, the majority of these objects are
shortlived. If a compiler can identify allocation sites whose
objects do not escape into the heap or globals, these objects
can be allocated in a special area where they can be garbage
collected cheaply.

5.1.2 Lifetime of escaping objects
Recently, there has been much work on escape analysis

[12, 18, 36]. Prior work has used escape analysis to elimi-
nate synchronization or to allocate objects on the stack [17,
38]. We investigate whether object escapement has any cor-
relation to object lifetime.

Table 3 gives the percentage of objects that escape the
stack frame or thread that created them (the numbers in
parentheses consider only application objects). An object
escapes its stack frame if it (i) is returned from its allocating
method, (ii) is assigned to a global, or (iii) is assigned to a
field of some other object that is reachable from a caller
activation record. An object escapes from a thread if it
becomes reachable from a thread other than the one that
created it. The Jikes RVM runtime system creates threads
for garbage collection and finalization and thus even single-
threaded benchmarks may have thread-escaping application
objects.

We see that on average, only 26.8% of all objects are non-
escaping, the rest escape at least their stack frame, and 19%
even escape their thread.

Figure 2 shows the lifetime of objects that escape their
thread. In Figure 2, the length of the bars shows the per-
centage of objects that escape their thread. Each bar is
subdivided into four segments, one for each lifetime bin.
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Table 1: Benchmark programs.

Benchmark Size/KB Description Input GC interval

null 0.2 Empty main method, does nothing. – 553,905
SPECjvm98

compress 17.4 Modified Lempel-Ziv method (LZW). -s 100 -m1 -M1 1,193,412
db 9.9 Performs database functions on memory resident database. -s 100 -m1 -M1 951,881
jack 127.8 Parser generator, earlier version of JavaCC. -s 100 -m1 -M1 678,956
javac 1909.2 The Java compiler from the JDK 1.0.2. -s 100 -m1 -M1 1,080,090
jess 387.2 Java Expert Shell System. -s 100 -m1 -M1 684,702
mpegaudio 117.3 Decompresses audio files. -s 100 -m1 -M1 789,493
mtrt 56.5 Multi-threaded raytracer. -s 100 -m1 -M1 895,044

Java-Olden
bh 17.3 Solves the N-body problem using hierarchical methods. -b 500 -s 10 591,819
bisort 4.6 Sorts by creating and merging bitonic sequences. -s 100000 588,607
em3d 7.1 Simulates electromagnetic waves propagation in 3D object. -n 2000 -d 100 805,814
health 9.8 Simulates Columbian health care system. -l 5 -t 500 -s 0 559,042
mst 5.8 Computes minimum spanning tree of a graph. -v 50 558,853
perimeter 9.8 Computes perimeter of quad-tree encoded raster images. -l 16 1,118,846
power 11.2 Solves the power system optimization problem. – 608,275
treeadd 3.1 Adds the values in a tree. -l 20 1,375,696
tsp 5.9 Computes estimate for traveling salesman problem. -c 60000 669,420
voronoi 13.9 Computes Voronoi diagram of a set of points. -n 2048 590,537

Colorado Benchmarks
ipsixql 1986.2 Performs queries against persistent XML document. XQL queries against Shakespeare 689,387
jigsaw 4312.9 W3C’s web-server, reference implementation of HTML 1.1. download of complete contents 1,000,000
nfc 556.0 Chat-server. 10 rooms, 100 users, 100,000 messages 1,000,000
xalan 4200.0 XSLT tree transformation language processor. summarize a Shakespeare play 905,853

Average
average 655.6 No benchmark, arithmetic mean of all benchmarks but null. – 825,510

Table 2: Benchmark statistics. The owner and lifetime numbers are in percent of allocated objects. The
numbers in parentheses count only objects where the owner is the application.

Benchmark High watermark Total allocation Owner (%) Lifetime (%)
(bytes) (bytes) (objects) Boot RVM App. Shortlived Longlived Quasi imm. Truly imm.

null 14,109,770 14,396,503 106,009 76.4 23.6 0.0 2.4 (n/a) 0.0 (n/a) 9.2 (n/a) 88.4 (n/a)

compress 27,688,408 132,931,724 226,002 35.8 62.8 1.3 42.9 (37.2) 9.6 (17.1) 0.0 (2.3) 47.4 (43.4)
db 23,503,105 97,899,266 3,401,539 2.4 3.2 94.4 87.6 (90.1) 0.1 (0.1) 0.1 (0.1) 12.2 (9.8)
jack 16,907,838 331,031,287 8,194,044 1.0 12.7 86.3 96.6 (97.6) 1.8 (2.1) 0.1 (0.1) 1.6 (0.2)
javac 25,296,557 285,631,761 8,228,933 1.0 23.3 75.7 81.0 (77.0) 13.5 (17.8) 1.1 (1.5) 4.4 (3.6)
jess 17,056,718 334,187,450 8,662,674 0.9 7.6 91.4 98.0 (99.3) 0.3 (0.3) 0.0 (0.0) 1.7 (0.4)
mpegaudio 16,578,151 35,850,575 380,054 21.3 77.7 1.0 68.6 (7.6) 0.0 (0.0) 0.0 (0.0) 31.3 (92.4)
mtrt 22,414,466 173,683,581 6,889,168 1.2 2.9 95.9 93.7 (95.1) 0.0 (0.0) 2.2 (2.3) 4.1 (2.6)

bh 14,580,046 42,900,870 1,212,329 6.7 5.1 88.2 88.4 (95.5) 1.2 (1.3) 0.4 (0.4) 10.1 (2.7)
bisort 14,628,360 16,085,265 176,878 45.8 17.2 37.1 11.5 (0.0) 0.0 (0.0) 0.0 (0.0) 88.4 (100.0)
em3d 19,534,225 22,101,972 135,894 59.6 28.6 11.8 21.1 (0.0) 0.0 (0.0) 0.0 (0.0) 78.9 (100.0)
health 16,563,273 38,618,097 1,332,116 6.1 4.0 89.9 82.2 (88.1) 0.5 (0.5) 0.5 (0.5) 16.9 (10.8)
mst 14,254,193 15,446,269 124,317 65.2 30.7 4.1 13.5 (0.0) 0.0 (0.0) 6.0 (0.0) 80.4 (100.0)
perimeter 27,458,366 31,528,263 595,507 13.6 10.3 76.1 8.5 (0.0) 0.0 (0.0) 0.0 (0.0) 91.5 (100.0)
power 14,914,494 38,101,825 912,770 8.9 5.3 85.8 85.1 (94.4) 0.0 (0.0) 0.0 (0.0) 14.9 (5.6)
treeadd 33,644,773 35,751,748 1,159,451 7.0 2.6 90.4 1.7 (0.0) 0.0 (0.0) 0.0 (0.0) 98.3 (100.0)
tsp 16,836,300 21,583,991 310,956 26.0 10.7 63.2 45.5 (60.7) 0.0 (0.0) 0.0 (0.0) 54.5 (39.3)
voronoi 14,832,375 17,712,879 191,434 42.3 26.1 31.6 27.0 (22.2) 0.0 (0.0) 0.1 (0.2) 72.9 (77.7)

ipsixql 17,141,410 99,908,400 2,357,562 3.4 16.6 80.0 84.0 (85.7) 6.7 (8.4) 1.9 (2.4) 7.3 (3.4)
jigsaw 26,487,443 257,452,354 4,289,782 1.9 68.0 30.2 93.4 (92.2) 0.0 (0.0) 0.0 (0.0) 6.5 (7.8)
nfc 25,643,076 173,637,549 2,154,719 3.8 21.7 74.6 93.3 (99.4) 0.0 (0.1) 0.0 (0.0) 6.7 (0.5)
xalan 22,784,083 123,412,189 1,637,966 4.9 92.5 2.5 87.5 (87.2) 0.1 (0.9) 0.1 (1.4) 12.2 (10.5)

average 20,416,555 110,736,063 2,503,528 17.1 25.2 57.7 62.4 (58.5) 1.6 (2.3) 0.6 (0.5) 35.3 (38.6)
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Figure 1: Lifetime of objects pointed to only by the
stack. For most benchmarks the longlived and quasi
immortal segments of the bars are nearly empty.

Table 3: Escape rates (in percent of allocated ob-
jects). The numbers in parentheses count only ob-
jects where the owner is the application.

Benchmark No escape Stack frame Thread

null 10.0 (n/a) 90.0 (n/a) 74.0 (n/a)

compress 10.5 (21.5) 89.5 (78.5) 39.4 (4.5)
db 0.8 (0.1) 99.2 (99.9) 2.6 (0.0)
jack 37.2 (39.2) 62.8 (60.8) 1.2 (0.0)
javac 29.7 (37.3) 70.3 (62.7) 1.4 (0.0)
jess 40.4 (43.3) 59.6 (56.7) 1.2 (0.0)
mpegaudio 9.4 (8.3) 90.6 (91.7) 24.8 (0.3)
mtrt 82.5 (85.6) 17.5 (14.4) 1.4 (0.0)

bh 41.1 (45.2) 58.9 (54.8) 7.0 (0.0)
bisort 6.4 (0.0) 93.6 (100.0) 46.3 (0.0)
em3d 14.8 (50.0) 85.2 (50.0) 60.6 (0.0)
health 13.8 (14.3) 86.2 (85.7) 6.2 (0.0)
mst 9.4 (0.0) 90.6 (100.0) 66.1 (0.0)
perimeter 2.2 (0.0) 97.8 (100.0) 13.9 (0.0)
power 84.7 (97.0) 15.3 (3.0) 9.1 (0.0)
treeadd 1.0 (0.0) 99.0 (100.0) 7.1 (0.0)
tsp 46.2 (66.7) 53.8 (33.3) 26.8 (0.0)
voronoi 7.4 (0.1) 92.6 (99.9) 44.0 (0.0)

ipsixql 4.0 (2.7) 96.0 (97.3) 4.2 (0.0)
jigsaw 26.5 (36.1) 73.5 (63.9) 6.2 (8.9)
nfc 28.2 (26.4) 71.8 (73.6) 21.3 (21.7)
xalan 66.6 (18.8) 33.4 (81.2) 7.4 (7.5)

average 26.8 (28.2) 73.2 (71.8) 19.0 (2.0)

Figure 2(a) shows data for all objects, whereas Figure 2(b)
only shows data for the application objects.

From Figure 2 we see that while escaping objects are of-
ten truly immortal, it is not always true. In particular, nfc
has many objects that escape a thread, but are shortlived.
Since nfc is one of our most realistic benchmarks, we con-
clude that a garbage collector cannot ignore thread-escaping
objects; indeed many of them may be shortlived. The intu-
ition for this is that server applications often use shortlived
thread-escaping objects to communicate between threads.
We found the correlation between lifetime and escaping from
the stack to be weaker than the correlation between lifetime
and escaping from the thread.

We repeated the above experiments for our three multi-
threaded benchmarks, mtrt, jigsaw, and nfc, and this time
ignored objects that escaped to the garbage collector thread.
While the data changed slightly, the main conclusions re-
mained the same. For example, most of the objects that
escaped a thread in nfc remained shortlived.

5.2 Correlation between lifetime and connec-
tivity from globals

Figure 3 shows the lifetime of objects reachable from glob-
als. It includes objects that may also be reachable from the
stack or heap. In Figure 3, the length of the bars shows
the percentage of objects reachable from globals. Each bar
is subdivided into four segments, one for each lifetime bin.
Figure 3(a) shows data for all objects, whereas Figure 3(b)
only shows data for the application objects.

Because global variables exist as long as their classes exist,
we expect objects reachable from globals to be immortal.4

4With an interprocedural liveness analysis for global vari-
ables, a garbage collector may be able to collect objects
even if they are still reachable from globals [23]. We dis-
regard this possibility, because we believe interprocedural
liveness analysis for globals is unrealistic for Java programs.
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Figure 2: Lifetime of objects escaping their thread.
For most benchmarks the longlived and quasi im-
mortal segments of the bars are nearly empty.

Figure 3 confirms our expectations. From Figure 3(a) we
see that with the exception of jack, nfc, and ipsixql, most
objects reachable from globals are truly immortal. Of these
benchmarks, jack has a relatively small percentage of ob-
jects reachable from globals.

The benchmark ipsixql has a large Scc that is reachable
from globals and is heavily mutated. Figure 4 demonstrates
this pictorially. The horizontal axis gives time in bytes al-
located. The vertical axis (in log scale) gives the size of
an Scc in number of objects. There is one curve for each
Scc with at least two objects. A point (x, y) on a curve,
C, means that at time x, Scc C has size y objects. Fig-
ure 4 shows that ipsixql has one very large Scc and several
smaller ones. Although many of the objects in the largest
Scc die together at the end of the program, significant parts
of the Scc are continuously replaced with newly allocated
objects. This large Scc is part of a cache that stores faulted
objects.5 The atypical behavior of this large Scc dominates
the behavior of ipsixql, and among other things destroys the
correlation between lifetime and reachability from globals.
In addition, we will see in Section 5.4 that ipsixql incurs a
significant write barrier overhead.

In summary, we see that for all benchmarks (except for
jack, nfc, and ipsixql) there is a strong correlation be-
tween reachability from globals and lifetime. A generational
garbage collector could exploit these observations by eagerly
promoting objects reachable from globals to old generations.

5.3 Correlation between lifetime and connec-
tivity from heap

In this section we consider several kinds of heap connec-
tivity. We investigate how likely it is for objects that are
connected by a pointer to have the same deathtime (Sec-
tion 5.3.1) and whether the popularity of objects is related
to their lifetimes (Section 5.3.2). Next, we investigate how
likely it is for transitively connected objects to have the
same deathtime (Section 5.3.3), and we conclude by eval-
uating how sensitive these same-deathtime results are to
our methodology of tracing with frequent garbage collec-
tions (Section 5.3.4).

5.3.1 Linked objects
This section explores the deathtime of directly-linked ob-

jects. First, we look at how often objects are modified. Con-
sider a program that repeatedly modifies an object O such
that a field in O points to one of many different objects at
different times. In this case, we can expect O’s deathtime
to be largely unrelated to the deathtime of objects that O
points to. If, on the other hand, the program modifies few
objects after initialization, then we can expect a significant
correlation between the deathtime of connected objects.

We view the first non-null assignment to an object field
as “initialization” and subsequent assignments to the same
field as “mutations”. Column “Mutated” of Table 4 gives
the percentage of all allocated heap objects that are mutated
during program execution. The numbers in parentheses are
the percentage of objects allocated by the application that
are mutated during program execution. Table 4 shows that
programs do not mutate the majority of objects, and thus,
the lifetimes of linked objects are likely to be related.

5Because sources for ipsixql are not available our observa-
tions are based on the output of a decompiler, and thus are
somewhat speculative.
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Figure 3: Lifetime of objects reachable from glob-
als. For most benchmarks the longlived and quasi
immortal segments of the bars are nearly empty.
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Figure 4: Sccs in ipsixql.

Column “Write barrier” of Table 4 gives the overhead of
the write barrier for our benchmark program runs. We omit
timing data for jigsaw and nfc because they are interactive.
Write barrier overheads are measured using a Jikes RVM
(v2.0.2) FastSemispace image on a 1 processor PPC/AIX
machine. The write barrier is implemented as a sequential
store buffer. Because the Jikes RVM is written in the Java
programming language, the overheads include the execution
of the application, VM, and optimizing compiler at its de-
fault optimization level (1).

Table 5 investigates the correlation between direct object
connectivity and object deathtimes. Column “O1 → O2” of
Table 5 gives the probability that two adjacent objects in
the Gog have the same deathtime. We see that for many
programs the probability is nearly 100%. In contrast, col-
umn “Any pair” gives the probability that any two possibly
unlinked objects in the program die at the same time. We
compute this value by considering all pairs, both linked and
unlinked. We see that in most cases, the probability that
linked objects die at the same time is much higher than the
probability of any two objects dying at the same time.

Column “O1 → O2, O1 mutated” in Table 5 gives the
probability that two objects, O1 and O2, have the same
deathtime given that O1 points to O2 and O1 is mutated.
For 14 of the 22 benchmarks (19 of 22 benchmarks when
looking at the application-only numbers), these probabilities
are lower than the ones in column “O1 → O2”.

Tables 4 and 5 show that for many benchmarks there is
both a high probability that objects are not mutated and
that objects linked by a pointer have the same deathtime.
However, for some programs, such as db, we see that even
though it has a low mutation rate (0.7%), it also has a rel-
atively low probability of linked objects dying at the same
time (22.7%). In other words, a low percentage of modified
objects is no guarantee for a high correlation of deathtimes
of connected objects. Apparently, even though db modifies
only few objects, the modifications happen in key places and
thus have a big impact on the deathtimes of linked objects.

A garbage collector can exploit these results by clustering
linked objects together. Since on average linked objects have
a 80.4% probability of dying at the same time, the garbage
collector will be able to free up many objects at once.
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Table 4: Mutation rates in % of allocated objects
and write barrier overheads in % of total execution
time. In the mutation rates, the numbers in paren-
theses consider only objects where the owner is the
application.

Benchmark Mutated Write barrier

null 18.6 (n/a) 15.8

compress 10.5 (8.0) 3.9
db 0.7 (0.0) 1.5
jack 4.0 (4.2) 5.7
javac 18.2 (23.4) 19.4
jess 3.5 (3.3) 8.1
mpegaudio 7.5 (3.8) 3.4
mtrt 1.2 (0.9) 4.3

bh 5.7 (4.5) 1.2
bisort 29.8 (50.0) 6.6
em3d 14.8 (0.0) 2.0
health 16.4 (16.6) 1.0
mst 16.2 (1.3) 2.6
perimeter 3.5 (0.0) 1.2
power 2.2 (0.0) 0.1
treeadd 1.7 (0.0) 6.0
tsp 27.5 (33.3) 10.9
voronoi 33.8 (73.2) 5.2

ipsixql 1.7 (0.4) 19.8
jigsaw 4.1 (6.4) –
nfc 14.6 (17.6) –
xalan 2.0 (2.5) 32.4

average 10.5 (11.9) 7.6

Table 5: Pairs of objects with same deathtime (in
percent of pairs of objects with given connectiv-
ity). The numbers in parentheses count only objects
where the owner is the application.

Benchmark Any pair O1 → O2 O1 → O2,
O1 mutated

null 79.5 (n/a) 96.5 (n/a) 97.7 (n/a)

compress 22.8 (19.5) 95.5 (63.9) 96.8 (44.2)
db 2.0 (2.1) 22.7 (19.7) 12.5 (0.6)
jack 0.3 (0.3) 54.1 (45.4) 19.1 (5.2)
javac 0.7 (0.9) 66.1 (65.8) 70.4 (68.7)
jess 0.2 (0.3) 63.6 (58.6) 90.1 (89.0)
mpegaudio 10.0 (83.6) 94.8 (74.8) 94.6 (43.8)
mtrt 0.7 (0.7) 77.3 (71.2) 75.9 (57.6)

bh 2.6 (2.3) 89.3 (87.0) 71.0 (51.1)
bisort 78.9 (100.0) 98.9 (100.0) 99.6 (100.0)
em3d 63.7 (100.0) 99.1 (100.0) 97.7 (100.0)
health 4.4 (3.1) 11.4 (9.5) 4.7 (3.6)
mst 66.2 (100.0) 96.1 (100.0) 96.6 (100.0)
perimeter 84.0 (100.0) 99.3 (100.0) 96.0 (n/a)
power 3.8 (2.8) 96.3 (100.0) 97.8 (n/a)
treeadd 96.6 (100.0) 99.4 (100.0) 97.7 (n/a)
tsp 27.9 (15.7) 98.2 (100.0) 99.4 (100.0)
voronoi 44.7 (38.0) 89.1 (82.7) 85.3 (78.9)

ipsixql 1.3 (1.3) 79.1 (79.3) 78.8 (25.2)
jigsaw 0.8 (1.6) 88.9 (83.6) 92.1 (85.9)
nfc 1.0 (0.8) 75.7 (68.9) 69.5 (64.0)
xalan 2.2 (21.9) 94.3 (93.2) 94.2 (82.5)

average 24.5 (33.1) 80.4 (76.4) 78.1 (61.1)

5.3.2 Incoming pointers
This section investigates whether there is a correlation be-

tween the popularity of an object and its lifetime. A popular
object is one that is pointed to by many other objects [24].

We counted the number of objects pointed to by at least
two other heap objects. For most benchmarks, fewer than
40% of the objects had at least two predecessors. We also
looked at the lifetime distribution of objects pointed to by at
least two other heap objects. The distribution varied widely:
in some cases, most of these objects were shortlived, while
in other cases most of these objects were truly immortal.
Because of space constraints we do not present the results
in detail.

To conclude, we saw little correlation between the popu-
larity of an object and its lifetime.

5.3.3 Sccs and lifetime
Table 5 suggests that direct connectivity is usually, but

not always, a good indicator of deathtime. In this section we
consider more global notions of connectivity: strongly and
weakly connected components (Sccs and Wccs, Section 2).

Column “In nontriv. Scc” in Table 6 shows the percentage
of objects that belong to Sccs with at least two objects in
the global object graph. On average, only a minority of
objects are members of nontrivial Sccs.

Column “Same Scc” in Table 6 gives the probability that
two objects in the same Scc have the same deathtime. Col-
umn “Same Wcc” in Table 6 gives the probability that two
objects in the same Wcc have the same deathtime. The
numbers in parentheses consider only objects allocated by
the application. Since an Scc implies stronger connectivity,
we expected that the probability would be higher for an Scc

than for a Wcc.
Table 6 shows that for many programs there is a high

probability that objects in the same Scc die together. For
many benchmarks the probability for two objects in an Scc

having the same deathtime is greater than the probability
of two linked objects (Table 5) having the same deathtime.
A garbage collector could exploit these observations by des-
ignating any object in an Scc as the key object [21], the
object whose death likely coincides with the death of other
objects connected to it. Thus, when that object dies, there
is a good chance that the rest of the Scc is also garbage.

5.3.4 Trace granularity
For most of the numbers in this paper we analyzed traces

with three kinds of events: object allocation events, pointer
assignment events, and deallocation events (see Section 3).
To obtain the deallocation events, we performed frequent
garbage collections. In our traces, all objects that become
unreachable between collection n and collection n+ 1 die at
the time when collection n+1 happens. Thus, our traces are
granulated : deathtimes are not precise, but rounded up to a
multiple of the GC interval (rightmost column in Table 1).

Until recently, the only known way to get precise death-
time traces (not granulated traces) was to perform a
garbage collection at every allocation (e.g. [34]), which is
prohibitively expensive. Recently, Hertz et al. proposed
the Merlin algorithm [22] that generates precise deathtime
traces much faster than the brute force method. When we
used Hertz’s precise deathtime traces to regenerate our re-
sults we found that it made a significant difference in the
same deathtime numbers (Tables 5 and 6) but not in the
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Table 6: Column “In nontriv. Scc” shows objects
in non-trivial Sccs (in percent of allocated objects).
Columns “Same Scc” and “Same Wcc” show pairs
of objects with the same deathtime (in percent of
pairs of objects in the same Scc or Wcc, respec-
tively). The numbers in parentheses count only ob-
jects where the owner is the application.

Benchmark In nontriv. Scc Same Scc Same Wcc

null 13.0 (n/a) 99.8 (n/a) 95.4 (n/a)

compress 9.8 (13.5) 99.4 (100.0) 25.7 (64.6)
db 0.6 (0.0) 99.5 (100.0) 2.2 (2.1)
jack 0.4 (0.0) 99.0 (100.0) 0.5 (0.3)
javac 15.1 (19.0) 34.1 (34.0) 1.3 (2.6)
jess 0.7 (0.0) 94.9 (19.3) 0.2 (0.3)
mpegaudio 8.7 (8.2) 99.1 (100.0) 10.4 (99.1)
mtrt 0.6 (0.2) 99.5 (100.0) 21.8 (23.1)

bh 1.4 (0.0) 99.6 (100.0) 28.5 (5.4)
bisort 8.0 (0.0) 99.8 (n/a) 87.7 (100.0)
em3d 19.7 (74.9) 99.8 (100.0) 71.5 (100.0)
health 14.4 (14.6) 46.7 (46.3) 6.2 (4.7)
mst 13.9 (50.9) 99.8 (100.0) 76.8 (100.0)
perimeter 78.8 (100.0) 100.0 (100.0) 96.6 (100.0)
power 1.7 (0.0) 99.7 (n/a) 64.1 (100.0)
treeadd 1.2 (0.0) 99.8 (n/a) 99.9 (100.0)
tsp 25.7 (33.3) 100.0 (100.0) 87.3 (100.0)
voronoi 37.0 (91.5) 42.6 (39.2) 56.6 (38.0)

ipsixql 46.9 (56.5) 1.3 (1.3) 1.3 (1.3)
jigsaw 5.0 (3.1) 81.6 (63.8) 1.2 (3.2)
nfc 9.6 (10.8) 1.9 (0.8) 1.5 (0.8)
xalan 2.6 (2.0) 99.0 (98.6) 9.5 (26.0)

average 14.4 (22.8) 80.8 (72.4) 35.8 (46.3)

classification of objects by lifetime into shortlived, longlived,
quasi immortal, and truly immortal.

Table 7 shows how using granulated traces inflated the
numbers in Tables 5 and 6. To obtain the numbers in Ta-
ble 7, we recomputed the numbers in Tables 5 and 6 using
precise deathtime traces. Then, we subtracted the num-
bers based on precise deathtime traces from the numbers
based on granulated traces. We report these differences for
application objects only. Since Merlin cannot yet trace mul-
tithreaded programs, Table 7 does not contain the results
for all the benchmarks. Merlin’s inability to handle mul-
tithreaded programs is also the reason why we do not use
precise deathtime traces throughout the paper.

As expected Table 7 shows that granulated traces inflate
the same deathtime numbers, i.e. most entries are greater
than zero. (Since our precise and granulated traces use dif-
ferent runs and different versions of the Jikes RVM, there is
some noise in our data leading to a few negative numbers.)
The following table juxtaposes (a) the average number of
pairs of application objects with the same deathtime based
on granulated traces (last rows in Tables 5 and 6) and (b)
the average over-estimation in these numbers (last row in
Table 7).

Any O1 → O2 O1 → O2, Same Same
pair O1 mutated Scc Wcc

(a) 33.1 76.4 61.1 72.4 46.3
(b) 2.3 9.9 13.7 2.1 1.3

From this table we see that even though the likelihood of
two linked objects having the same deathtime is lower by
9.9% (on average) with precise traces than with granulated
traces, our basic results still hold. In other words, the like-
lihood of linked objects or objects in the same Scc having

Table 7: Over-estimation of numbers in Tables 5 and
6 due to granulated traces. The numbers count only
objects where the owner is the application.

Benchmark Any O1 → O2 O1 → O2, Same Same
pair O1 mutated Scc Wcc

compress 7.7 7.2 3.6 0.0 1.9
db 1.3 16.0 −1.0 0.0 1.3
jack 0.3 7.9 3.6 0.0 −0.3
javac 0.4 23.2 27.7 0.7 0.5
jess −0.3 43.3 14.0 18.3 −0.3
mpegaudio 6.0 4.5 1.8 0.0 0.6

bh 2.3 1.4 6.5 0.0 5.1
bisort 0.0 0.0 0.0 n/a 0.0
em3d 0.2 2.4 100.0 0.0 −0.1
health 2.2 5.4 3.0 0.5 1.9
mst 2.1 2.2 5.8 0.0 2.0
perimeter 0.0 33.3 n/a 0.0 0.0
power 2.7 0.0 n/a n/a 0.0
treeadd 0.0 0.0 n/a n/a 0.0
tsp 4.6 0.0 0.0 0.0 0.0
voronoi 8.8 12.3 13.4 8.5 8.8

average 2.3 9.9 13.7 2.1 1.3

the same deathtime is much higher than the likelihood of
two random objects having the same deathtime.

5.4 Partial collections with clustering by con-
nectivity

A partial garbage collection processes only a part of the
heap, as opposed to a full garbage collection that processes
the entire heap. For example, generational garbage collec-
tors frequently collect the younger objects (where most ob-
jects are likely to be dead) without collecting the older ob-
jects. Partial collections in a generational collector, however,
use potentially expensive write barriers. Table 4 gives the
overhead of write barriers in percent of total execution time.
We see that write barriers are often expensive, accounting
for 7.6% of program execution time on average. Prior work
confirms these findings [37]. Fitzgerald and Tarditi [16] did
experiments where generational collectors “... did poorly
on benchmarks that had low collection costs and high write
barrier costs. For those benchmarks, the cost of the write
barrier was higher than the reduction in collection cost”.

We hope to use connectivity information to avoid write
barrier overhead even for partial collections. Our approach
is based on Harris’s algorithm in [19]. Harris’s algorithm
starts by incrementally building a type graph at class load-
ing time in a Java system. The type graph has an edge from
type T1 to T2 if T1 has a field that can point to an object
of type T2. He then collapses all strongly connected compo-
nents. The collapsed graph is a directed acyclic graph, and
he calls each of the collapsed nodes a partition. For a par-

tition P1, we define ancestors(P1) = {P2 | P2
∗→ P1} as the

set of partitions from which P1 is reachable in the partition
DAG.

Harris uses these partitions for incremental collection.
However, we observe that they can also be used for perform-
ing partial garbage collection without write barriers. For
example, consider partitions without any incoming edges.
Objects in these partitions (i.e. instances of classes in the
partition) can be garbage collected without scanning any
other partitions. To collect a partition with incoming edges,
say P1, the garbage collector needs to look only at the ob-
jects in ancestors(P1). This is similar to generational collec-
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tion in that a partition with no incoming edges is analogous
to the youngest generation and a partition at depth d in the
DAG is analogous to generation d.

To use the above scheme for efficient partial collections,
two properties must hold. First, the number of objects in
the ancestors must be small for most partitions, otherwise
we will end up having to collect a good part of the heap at
every partial collection. Second, the objects that are close to
the roots should be the most profitable to collect since they
are the easiest to collect. We now present data for each of
the requirements. Figure 5(a) gives the number of objects in
the ancestors of the partition of each object in a benchmark
program. To generate this graph we weighed the partition
DAG with the live objects in each partition at a particular
snapshot in program execution. A point (x, y) in Figure 5(a)
means that y objects are in partitions whose ancestor sets
have sizes of at most x% of all live objects. We see that most
objects require the garbage collector to look at about 59%
of the total objects at that point. As Harris observes, these
numbers are high because Java does not yet support generic
types and thus container data structures have fields of type
Object (and can therefore point to all objects). Stronger
static analysis (or a language with generic types) may yield
better results.

Figure 5(b) presents the same graph as Figure 5(a) ex-
cept that it uses optimal partitioning: for each object, it
reports how many other objects reach it in the snapshot
used for Figure 5(a). Figure 5(b) thus gives an upper bound
on the quality of partitioning with a stronger analysis than
type-based analysis. Figure 5(b) shows that at least in the
optimal scenario, all objects can be garbage collected by
examining only about 18% of the objects.

Figures 5(a) and (b) present data measured on snapshot
object graphs. This is equivalent to sampling the objects
that happen to be alive at one particular point in time; such
a sample will overemphasize longlived, quasi immortal, and
truly immortal objects. Thus, it may be the case that for
shortlived objects a garbage collector may need to look at
many fewer objects than 59%.

Figure 6 shows the average number of objects from which
each object can be reached in the global object graph.
Figure 6(a) presents data for all objects and Figure 6(b)
presents data for application objects only. The length of
the bars is the average number of objects with a path to
an object on a logarithmic scale. There are four bars for
each benchmark, one per lifetime bin. We see that the bars
for shortlived objects are usually the shortest (we have ex-
plained the exceptional behavior of ipsixql in Section 5.2).
That is encouraging because it means that to garbage-collect
shortlived objects, we do not have to look at too many
other objects. This data also suggests that Figures 5(a) and
(b) are overly pessimistic since they are based on snapshots
which will be biased towards longer-lived objects.

6. RELATED WORK
We now summarize relevant work on understanding ob-

ject behavior, generational garbage collection, other relevant
memory management schemes, and escape analysis.

6.1 Understanding object behavior
Barry Hayes described and tested the weak and strong

generational hypotheses [21]. The weak generational hy-
pothesis states that “newly-created objects have a much

lower survival rate than older objects” [21]. The strong
generational hypothesis states that “even if the objects in
question are not newly created, the relatively younger ob-
jects have a lower survival rate than the relatively older ob-
jects” [21]. He found that even though the weak generational
hypothesis is often true, the strong generational hypothesis
is usually false. He goes on to describe key object oppor-
tunism, where the assumption is that connected objects die
together and this can be exploited by collecting a data struc-
ture when its root dies. We provide supporting evidence for
this claim and explore the correlation of different kinds of
connectivity with lifetime.

Stefanović and Moss [35] explore the age distribution of
objects. They collect their data by garbage collecting fre-
quently. Unlike our work, Stefanović and Moss do not em-
pirically relate age behavior to connectivity.

Dieckmann and Hölzle [14] measure the distribution of
object lifetimes, sizes, and types and the reference density
(fraction of fields that contain pointers) for the SPECjvm98
benchmarks. They focus on traits inherent in individual ob-
jects, whereas we study connectivity between various objects
and how it correlates with lifetime.

Shuf et al. [31] study the cache and TLB behavior of the
SPECjvm98 benchmarks and pBOB. They use the Jikes
RVM to trace high-level heap accesses and then use a sim-
ulator to correlate cache and TLB misses with object sizes
and layouts.

6.2 Generational garbage collection
There has been significant prior work on collectors that

partition objects by age [26, 27, 39, 25, 42]. The most com-
mon of these collectors are generational collectors. Gener-
ational collectors generally have poor performance if a sig-
nificant number of objects do not obey the generational hy-
potheses.

Prior work has proposed many variations and enhance-
ments to generational collectors. Objects that are expected
to live long can be pretenured [40, 4]. Pretenuring avoids
having to repeatedly copy objects, but it typically requires
profile information. Wilson et al. [43] describe an alternative
to the breadth-first Cheney copying used in most garbage
collectors [9]. Wilson’s scheme groups an object with its
immediate children and thus hopefully improves the spatial
locality of data accesses. Chilimbi and Larus [11] describe
an enhancement to generational garbage collection for im-
proving data cache behavior.

Our results point at several possibilities for improving
generational garbage collection. For example, our results
suggest that moving an object near its connected objects
is often a good idea since connected objects have a similar
deathtime. Thus, connectivity information may give us the
benefits of pretenuring and locality optimizations without
requiring profile information. We will explore improvements
to generational collection based on connectivity information
in future work.

6.3 Segregating objects by criteria other than
age

Region-based memory management can be viewed as
an alternative to both explicit memory management and
garbage collection. Allocation sites are annotated such that
they allocate objects into separate regions. Deallocation
points are determined statically, but the granularity of deal-
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(a) Number y of objects that are reachable from at most
x% of the live objects, where reachability is based on static
type information.
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(b) Number y of objects that are reachable from at most
x% of the live objects, where reachability is based on the
actual pointers in the heap.

Figure 5: Reachability in snapshot of heap.

location is an entire region, not an individual object. The
annotations can either be performed automatically (for func-
tional languages) based on a program analysis [38], or man-
ually by the programmer [17].

Contaminated garbage collection does a runtime analysis
to track the lowest activation record (the one closest to the
bottom of the stack) from which an object is reachable [8].
Objects are only collected when the activation record asso-
ciated with them is popped. In some ways, this technique
can be thought of as a runtime region analysis.

If there is an ownership relation between two objects such
that the owned object dies before the owner, and if the
owned object has a fixed size, it may be inlined into the
owner [15].

In contrast to generational collection, the above tech-
niques segregate objects by deathtime (at some granularity)
rather than by age. Using our connectivity results we hope
to bring some of the benefits of segregation by deathtime to
generational collection.

Harris [20] describes a variation of Baker’s Treadmill col-
lector [3] that segregates objects by connectivity and types.
Section 5.4 discusses his paper in more detail.

Memory managers often segregate objects by size [5] or
even by type [30], which enables some implicit bookkeeping
of an object’s location, instead of explicitly storing addi-
tional information.

Seidl and Zorn [29] segregate objects based on their mem-
ory access behavior in the context of an explicit deallocation
system. The segregation improves locality and reduces the
active working set. We expect that organizing objects based
on their connectivity will have similar benefits with respect
to memory system performance.

6.4 Escape analysis
If the lifetime of a data structure ends before the routine

that allocated it returns and the size of the data structure
is bounded, it can be allocated on the stack instead of the

heap. Analyses that try to determine these properties of
objects are called escape analyses [12, 28, 18, 41, 36]. Some
escape analyses focus on objects that escape a thread (e.g.,
[33]). Our escape behavior numbers help judge the potential
benefit of escape analyses for garbage collection.

7. CONCLUSIONS
This paper explores object connectivity and its relation-

ship with object deathtime and lifetime. We classify con-
nectivity into three categories: (i) connectivity from stack
variables; (ii) connectivity from global variables; and (iii)
connectivity from heap objects. We consider both direct
connectivity (e.g., object O1 points to object O2) and tran-
sitive connectivity (e.g., object O1 is reachable from object
O2).

Our results demonstrate that many kinds of connectivity
correlate strongly with object deathtime or lifetime. More
specifically, we find that (i) objects that are reachable only
from the stack are usually shortlived; (ii) objects that are
reachable from globals are usually quasi immortal or truly
immortal; and (iii) objects that are connected via pointers
(directly or transitively) usually die at the same time. Since
our infrastructure (Jikes RVM) uses the same heap as the
application, we present results for both all objects (including
objects created on behalf of the Jikes RVM) and application
objects (objects created on behalf of the application only).

In summary, our results provide valuable information on
object behavior, which should be useful in both improving
existing collection algorithms and designing new collection
algorithms.
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Figure 6: Average number of objects from which each object can be reached in the global object graph.
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