
Understanding the Connectivity

of Heap Objects

Martin Hirzel, Johannes Henkel, Amer Diwan

University of Colorado at Boulder

Michael Hind

IBM T.J. Watson Research Center

Motivation
• Connectivity often gets in the way of GC:

– Pig-and-python problem

– Write barrier overhead

• We investigate connectivity to see:

– How GC can avoid problems with it

– How GC can benefit from it

⇒ This is an empirical study of program behavior

1

Key-object opportunism
• Hayes, Using key object opportunism to collect old

objects, OOPSLA 1991

• Hypothesis: connected objects die together

D

EA

C

B

• Idea: when key object dies, collect connected objects

– High benefit (reclaimed memory) at low cost

– Opportunistic about what to collect

⇒ Need to understand connectivity to implement this

2

Methodology
• We obtained traces from 22 Java programs

– Traced events: allocation, pointer write, death

– Infrastructure: Jikes RVM 1.1 aka Jalapeño
(BaseBasenoncopyingGC, 1-processor PPC/Linux)

• We used the traces to construct and analyze the
global object graph (Gog):

– Nodes: all objects during whole run

– Directed edges: all pointers during whole run

+ =+A

B

A A

C

A

B

C

3

Benchmarks
Benchmark Bytecode size Total alloc. Comments

mst 5KB 15,446KB Java-Olden
bisort 4KB 16,085KB
voronoi 13KB 17,712KB
tsp 5KB 21,583KB
em3d 7KB 22,101KB
perimeter 9KB 31,528KB
treeadd 3KB 35,751KB
power 11KB 38,101KB
health 9KB 38,618KB
bh 17KB 42,900KB
mpegaudio 56KB 35,870KB SPECjvm98
db 9KB 97,899KB
compress 17KB 132,931KB
mtrt 56KB 173,683KB
javac 1909KB 285,631KB
jack 127KB 331,031KB
jess 387KB 334,187KB
ipsixql 1,986KB 99,908KB XML database
xalan 4,200KB 123,412KB XSLT processor
nfc 556KB 173,637KB chat server
jigsaw 4,312KB 257,452KB web server

Owner
• The Jikes RVM is implemented in Java

– Allocates heap objects at runtime

– Pre-allocates objects in bootimage

Owner

57.7% Application

25.2% Jikes RVM

17.1% Boot image

⇒ Jikes RVM objects put additional pressure on GC

⇒ Good GC can speed up application and Jikes RVM

5

Lifetime definitions
• Classification of objects into four bins

• Slightly modified from [Blackburn et al. 2001]

death = end

life < (end−death)
Quasi immortal

Truly immortal

life < threshold
Shortlived

otherwise
Longlived

time (bytes allocated)

end

6

Lifetime data

62.4% Shortlived

1.6% Longlived

0.6% Quasi immortal

38.6% Truly immortal

58.5% Shortlived

2.3% Longlived

0.5% Quasi immortal

35.4% Truly immortal

Lifetime Lifetime (application only)

⇒ Almost no objects are longlived or quasi immortal

⇒ Rule of thumb: 60% shortlived, 40% truly immortal

⇒ GC should avoid wasting effort on immortal objects

7

Connectivity from stack
• Objects pointed to only by local variables

Pointed to only by stack Pointer to only by stack (application only)

32.9% Shortlived

0.0% Longlived

0.0% Quasi immortal

0.8% Truly immortal
33.7%

35.0% Shortlived

0.3% Longlived

0.0% Quasi immortal

0.8% Truly immortal
36.1%

⇒ Most of these objects are shortlived

⇒ Stack allocation and regions can reclaim these cheaply

8

Connectivity from globals
• Global variable = static field in Java

• Reachable = transitively pointed to

g B

CA

Reachable from globals Reachable from globals (application only)

4.0% Shortlived

0.4% Longlived

0.1% Quasi immortal

20.1% Truly immortal

5.1% Shortlived

0.7% Longlived

0.2% Quasi immortal

11.3% Truly immortal
24.6% 17.3%

⇒ Many of these objects are truly immortal

⇒ This could be used for pretenuring

9

Do connected objects die together?
[given connectivity, (equideath pairs) / (all pairs)]

Connectivity(O1, O2) Pr{tdeath(O1) = tdeath(O2)}
Any pair of objects 33.1% ?

pointsTo(O1, O2) 76.4%

pointsTo(O1, O2) ∧mutated(O1) 61.1%

pointsTo(O1, O2) ∧ ¬mutated(O1) 83.4% !

Scc(O1) = Scc(O2) 72.4%

Wcc(O1) = Wcc(O2) 46.3%

⇒ Yes for pointsTo(O1, O2) or Scc(O1) = Scc(O2)

⇒ Connected objects should be garbage collected together

reach
• reach(X) = |{Y ∈ Gog | Y →∗ X}|
• Number of objects in Gog that reach an object

• E.g. reach(F) = |{A,E,F}| = 3

A B

C

D

E

F

⇒ Rough indication for how “difficult” an object is to collect

11

reach

Percentile 25% 50% 75% 95%
Arithmetic mean without ipsixql

Shortlived 1 1 1 2
Truly immortal 42,670 45,471 48,809 83,324

Only ipsixql
Shortlived 1,066,692 1,066,692 1,066,693 1,066,693
Truly immortal 22,864 22,865 22,865 22,865

⇒ Shortlived objects tend to have reach ≤ 2

⇒ With connectivity information, shortlived objects should be

easy to collect

12

Connectivity-Based GC
• Ongoing work: new GC that expoits connectivity

• Partition objects by connectivity

• High intra-partition connectivity
⇒ Key object opportunism

• Low inter-partition connectivity
⇒ Write barrier removal

13

Related work
• Regions

• Escape analysis

• Fitzgerald and Tarditi, The case for profile-directed
selection of garbage collectors, ISMM 2000

• Dieckmann and Hölzle, A study of allocation behav-
ior of the SPECjvm98 Java benchmarks, ECOOP
1999

• Shuf et al., Characterizing the memory behavior of
Java workloads, SIGMETRICS 2001

14

Conclusions
• Objects pointed to only from the stack are often

shortlived, objects reachable from globals are often
immortal
⇒ Roots-connectivity is correlated with lifetime

• Connected objects tend to have the same deathtime
⇒ Connected objects should be garbage collected together

• Shortlived objects tend to be reached by few objects
in the Gog

⇒ May be easy to collect with connectivity information

• We are currently implementing a CBGC that does
opportunistic partial GC without write barriers

15

