Understanding the Connectivity
of Heap Objects

Martin Hirzel, Johannes Henkel, Amer Diwan
University of Colorado at Boulder

Michael Hind
IBM T.J. Watson Research Center

Motivation
e Connectivity often gets in the way of GC:

— Pig-and-python problem
— Write barrier overhead

e We investigate connectivity to see:

— How GC can avoid problems with it
— How GC can benefit from it

= This is an empirical study of program behavior

Key-object opportunism

e Hayes, Using key object opportunism to collect old
objects, OOPSLA 1991

e Hypothesis: connected objects die together

B
ﬂi

I ‘b
Lc+=1'p |

e [dea: when key object dies, collect connected objects

— High benefit (reclaimed memory) at low cost
— Opportunistic about what to collect

= Need to understand connectivity to implement this

Methodology

e We obtained traces from 22 Java programs

— Traced events: allocation, pointer write, death

— Infrastructure: Jikes RVM 1.1 aka Jalapeno
(BaseBasenoncopyingGC, 1-processor PPC/Linux)

e We used the traces to construct and analyze the
global object graph (GOG):

— Nodes: all objects during whole run
— Directed edges: all pointers during whole run

5 _ 5]
m"_'ﬂuﬁu\'_l— 3

C C

3

Benchmarks

Benchmark H Bytecode size ‘ Total alloc. ‘ Comments

mst 5KB | 15,446KB | Java-Olden
bisort 4KB 16,085KB

voronoi 13KB 17,712KB

tsp 5KB | 21,583KB

em3d 7TKB | 22,101KB

perimeter 9KB | 31,528KB

treeadd 3KB | 35,751KB

power 11KB 38,101KB

health 9KB 38,618KB

bh 17KB | 42,900KB

mpegaudio 56KB | 35,870KB | SPECjvm98
db 9KB | 97,899KB

compress 17KB | 132,931KB

mtrt 56KB | 173,683KB

javac 1909KB | 285,631KB

jack 127KB | 331,031KB

jess 387TKB | 334,187KB

ipsixql 1,986KB | 99,908KB | XML database
xalan 4,200KB | 123,412KB | XSLT processor
nfc 556KB | 173,637TKB | chat server
jigsaw 4,312KB | 257,452KB | web server

Owner
e The Jikes RVM is implemented in Java

— Allocates heap objects at runtime
— Pre-allocates objects in bootimage

Owner

| 57.7% Application

|| 25.29% Jikes RVM

B 17.1% Boot image

= Jikes RVM objects put additional pressure on GC
= Good GC can speed up application and Jikes RVM

Lifetime definitions
e (Classification of objects into four bins

e Slightly modified from [Blackburn et al. 2001]

end

> time (bytes all ocated)

PS @ death=end
Truly immortal

P Py life < (end—death)
Quasi immortal
P PY life < threshold
Shortlived
o——o© otherwise

Longlived

Lifetime data

Lifetime Lifetime (application only)

] 62.4% Shortlived [} 58.5% Shortlived

B 1.6% Longlived B 2.3% Longlived

|| 0.6% Quasi immortal || 0.5% Quasi immortal
|] 38.6% Truly immortal || 35.4% Truly immortal

= Almost no objects are longlived or quasi immortal
= Rule of thumb: 60% shortlived, 40% truly immortal

= GC should avoid wasting effort on immortal objects

Connectivity from stack
e Objects pointed to only by local variables

Pointed to only by stack Pointer to only by stack (application only)
|| 32.9% Shortlived || 35.0% Shortlived
B 0.0% Longlived B 0.3% Longlived
0, 11 0, 11
33.7% |] 0.0% Quasi immortal 36.1% |] 0.0% Quasi immortal
| 0.8% Truly immortal | 0.8% Truly immortal

= Most of these objects are shortlived

= Stack allocation and regions can reclaim these cheaply

Connectivity from globals
e Global variable = static field in Java

e Reachable = transitively pointed to

g | B

Reachable from globals Reachable from globals (application only)

] 4.0% Shortlived || 5.1% Shortlived
B 0.4% Longlived B 0.7% Longlived
. . . .
24.6% || 0.1% Quasi immortal 17.3% || 0.2% Quasi immortal
|] 20.1% Truly immortal || 11.3% Truly immortal

= Many of these objects are truly immortal

= This could be used for pretenuring

Do connected objects die together?

[given connectivity, (equideath pairs) / (all pairs)]

Connectivity(Oy, Os) Pr{t jean(O1) = tgean(O2) }
Any pair of objects 33.19% 1?01
pointsTo(Oy, O,) 76.4% L

pointsTo(Oy, Oy) A mutated(O,) |61.1%

pointsTo(Oy, O9) N =mutated(Oy) | 83.4%

WCC(Ol) — WCC(OQ) 463%

= e
IE/ILI:I
I e
Scc(0;) = Scc(0y) 72.4% %;PI

= Yes for pointsTo(O1,02) or Scc(O;) = Scc(O2)
= Connected objects should be garbage collected together

reach
e reach(X) = |{Y € GoG | Y —* X}

e Number of objects in GOG that reach an object
o E.g reach(F)=[{AEF} =3

|A—% B <

A o

\ -

= Rough indication for how “difficult” an object is to collect

11

reach

Percentile 25% 50% 75% 95%
Arithmetic mean without ipsizql
Shortlived 1 1 1 2

Truly immortal 42,670 45,471 48,809 83,324

Only wpsizql

Shortlived 1,066,692 1,066,692 1,066,693 1,066,693
Truly immortal 22,864 22,865 22,865 22,865

= Shortlived objects tend to have reach < 2

= With connectivity information, shortlived objects should be

easy to collect

12

Connectivity-Based GC

e Ongoing work: new GC that expoits connectivity
e Partition objects by connectivity

e High intra-partition connectivity
= Key object opportunism

e Low inter-partition connectivity

= Write barrier removal

13

Related work

e Regions
e [iscape analysis

e Fitzgerald and Tarditi, The case for profile-directed
selection of garbage collectors, ISMM 2000

e Dieckmann and Holzle, A study of allocation behav-
wor of the SPECium98 Java benchmarks, ECOOP
1999

e Shuf et al., Characterizing the memory behavior of

Java workloads, SIGMETRICS 2001

14

Conclusions

e Objects pointed to only from the stack are often
shortlived, objects reachable from globals are often
immortal

= Roots-connectivity is correlated with lifetime

e Connected objects tend to have the same deathtime
= Connected objects should be garbage collected together

e Shortlived objects tend to be reached by few objects
in the GoG

= May be easy to collect with connectivity information

e We are currently implementing a CBGC that does
opportunistic partial GC without write barriers

15

