
On the Type Accuracy of Garbage Collection

Martin Hirzel
University of Colorado

Boulder, CO 80309

hirzel@cs.colorado.edu

Amer Diwan
University of Colorado

Boulder, CO 80309

diwan@cs.colorado.edu

ABSTRACT
We describe a novel approach to obtaining type-accurate infor-
mation for garbage collection in a hardware and language inde-
pendent way. Our approach uses a run-time analysis to propa-
gate pointer/non-pointer information from significant type events
(such as allocation, which always returns a pointer). We use this
technique to perform a detailed comparison of garbage collec-
tors with different levels of accuracy and explicit deallocation
on a range of C programs. We take advantage of the portability
of our approach to conduct our experiments on three hardware
platforms, Alpha/Digital UNIX 4.0D, Pentium/Linux 2.2, and
SPARC/Solaris 2. We find that the choice of hardware platform
(which includes the architecture, operating system, and libraries)
greatly affects whether or not type accuracy enhances a garbage
collector’s ability to reclaim objects.

1. INTRODUCTION
Garbage collection (GC), or automatic storage reclamation, has
well-known software engineering benefits [16]. It is therefore
no surprise that even though C and C++ do not mandate GC as
part of the language definition, many C and C++ programmers
are now using garbage collection to free “dead” objects [6, 3]
or identify memory leaks in programs that use explicit dealloca-
tion [9, 7, 5, 1]. In order for a garbage collector to be effective
for these two uses, it must satisfy the following requirements.
First, the garbage collector must be competitive with a careful
programmer at collecting garbage. If the garbage collector fails
to identify dead objects then it will either cause memory leaks or
fail to identify memory leaks, depending on how garbage collec-
tion is being used. Second, the garbage collector must be com-
petitive in run-time performance with explicit deallocation. The
second requirement is less important if the garbage collector is
used as a leak detector. This paper evaluates garbage collectors
with different levels of accuracy and explicit deallocation with
respect to the first requirement.

One factor that determines a garbage collector’s effectiveness in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, or post on servers or to redistribute to lists, requires prior specific
permission and/or fee.
ISMM ’00 Minneapolis MN USA

Copyright ACM 2000 1-58113-263-8/00/10...$5.00
http://www.cs.colorado.edu/˜hirzel/papers/
index.htm

finding dead objects istype accuracy. Type accuracy determines
whether or not a garbage collector can distinguish pointers from
non-pointers in memory. The two extremes of type accuracy
are fully type accurateandconservative. A fully type accurate
garbage collector can correctly distinguish pointers from non-
pointers in all regions of memory (globals, locals, and heap). A
conservative garbage collector cannotreliably distinguish point-
ers in any region of memory. Between these two, there are partially-
accurate garbage collectors that can distinguish pointers from
non-pointers reliably in some regions of memory but not in oth-
ers. If a garbage collector is not accurate for a particular region of
memory it must use heuristics to identify pointers in that region.
In a nutshell, the collector must treat all values in that region that
look like pointers as pointers. Since different hardware platforms
(which includes architecture, operating system, and libraries) use
different memory layouts and alignments, a value that looks like
a pointer on one machine may not look like a pointer on another
machine.

This paper examines the effect of type accuracy on garbage col-
lection effectiveness for a range of C benchmark programs. We
consider all combinations of type accuracy (accuracy in stack,
globals, or heap) and compare them to the original explicit mem-
ory management in the C benchmark programs. We use a novel
run-time analysis that tracks the flow of pointers through memory
locations to compute accuracy information for C programs. Fi-
nally, we present our measurements for three hardware platforms
that use widely different memory layouts.

Our results demonstrate that the benefit of type accuracy in re-
claiming objects depends greatly on the hardware platform. On
the Alpha/UNIX 4.0D, a 64-bit machine, all garbage collectors
(including conservative collectors) are competitive with explicit
deallocation in reclaiming objects. On 32-bit machines, such as
the Pentium/Linux 2.2 and the SPARC/Solaris 2, type accuracy
significantly affects the effectiveness of a garbage collector: ac-
curate garbage collectors continue to perform well on 32-bit ma-
chines but the less precise collectors perform relatively poorly.
We show that the relative importance of accuracy in different re-
gions of memory also depends on the hardware platform. On the
Alpha and the Pentium accuracy in the stack and global areas is
the most important. On the SPARC accuracy in the heap is just
as important as accuracy in other areas of memory.

The rest of this paper is organized as follows. Section 2 gives
an introduction to type accuracy in garbage collectors and dis-
cusses the memory layout of three hardware platforms. Section

1

mailto:hirzel@cs.colorado.edu
mailto:diwan@cs.colorado.edu
http://www.cs.colorado.edu/~hirzel/papers/index.htm
http://www.cs.colorado.edu/~hirzel/papers/index.htm

3 describes our benchmark programs, evaluation methods, and
our novel approach to type accuracy. Section 4 presents the ex-
perimental results. Sections 5 and 6 present related work and
possible directions for future work. Section 7 concludes the pa-
per.

2. BACKGROUND
Broadly speaking there are two kinds of garbage collectors:type
accurateand conservative. A type accurategarbage collector
knows exactly which memory locations and registers contain point-
ers. Type-accurate collectors typically require compiler support
in the form of tables or code that identifies pointers [8, 14]. In
contrast, aconservativegarbage collector cannot reliably iden-
tify pointers: it assumes that every value in memory that could
be interpreted as a pointer is indeed a pointer [6]. Conservative
garbage collectors require little or no compiler or language sup-
port; indeed this is one of the main selling points of conservative
garbage collection.

Type accurate and conservative collectors are at two extremes of
type accuracy; one can imagine collectors that fall in between
the two. For instance, Bartlett’s collector [3, 4] is type accurate
for the heap but inaccurate for other areas of memory. Other col-
lectors with intermediate accuracy, such as the ones that are type
accurate just for the globals, are possible but, to our knowledge,
have not been explored in literature.

The main advantage of conservative garbage collection over type-
accurate collection is that it can be used in almost any language
environment with little effort, since it requires little or no com-
piler or language cooperation. However, prior literature (e.g.,
Chapter 9 of Jones’ book [11]) points out many deficiencies of
conservative collection compared to accurate collection. Two
main deficiencies are:

• Unlike type-accurate collection, a conservative collector
cannot compact objects. Compaction of live objects im-
proves memory locality, enables fast allocation, and elim-
inates fragmentation. Thus, conservative collection can
register worse performance than a compacting type-accurate
collector.

• A conservative collector may misidentify a pointer, thus
preventing garbage objects from being deallocated.

Prior work has partly investigated the first deficiency of conser-
vative garbage collection [13]. To our knowledge, no one has
done a quantitative and direct study of the second deficiency of
conservative garbage collection.

Table 1 describes what pointers look like in three different hard-
ware platforms:1 SPARC running Solaris 2, Pentium running
Linux 2.2 kernel, and Alpha running Digital UNIX 4.0D. For
each of these hardware platforms, the table shows the value of the
lowest address returned by the allocator for the Boehm-Demers-
Weiser collector [5] during a run of one of our benchmark pro-

1When we refer to hardware platform we mean not just the ar-
chitecture but also the operating system and the standard libraries
on the machine.

grams (bc).2 The table also shows what that address maps to
when interpreted as a string, int, long, or float. In other words,
this table shows, for three hardware platforms, the kind of values
a string, int, long, or float must have in order for it to be misiden-
tified as a pointer by a conservative garbage collector. Note that
in the “int” and “float” rows for Alpha there are two values: this
is because Alpha pointers occupy 64 bits whereas an int or float
only requires 32 bits.

From this table we see that the string interpretation of the pointer
yields nonsensical strings for all three hardware platforms. There-
fore, we think that it is unlikely that a conservative garbage col-
lector will mistake a text string as a pointer. When pointers are
interpreted as integers, we see that on the Alpha two adjacent
and aligned integers must have appropriate values in order to be
interpreted as a pointer. Thus it is unlikely that integers will be
mistaken for pointers on the Alpha.3 On the other hand, point-
ers map to only a single (though large magnitude) integer on the
Pentium and SPARC; thus it is more likely that a conservative
garbage collector will retain dead objects on these hardware plat-
forms.

3. METHODOLOGY
We conducted our study by measuring the behavior of eleven C
programs with different memory managers ranging from explicit
deallocation to type-accurate garbage collection. We ran our ex-
periments on three hardware platforms—Alpha, Pentium, and
SPARC—to investigate the platform-dependent effects outlined
in Section 2. We start this section by describing our benchmark
programs and giving basic statistics about the programs (Sec-
tion 3.1). We then describe the different memory management
schemes that we explored (Section 3.2).

3.1 Benchmarks
We used two criteria to select our benchmark programs. First, we
picked benchmarks that performed significant heap allocation.
Second, we picked benchmarks that we thought would demon-
strate the difference between accurate and inaccurate garbage
collection. For example, we pickedanagramsince it uses bit
vectors which may end up looking like pointers to a conservative
garbage collector.

Table 2 describes our benchmark programs.Linesgives the num-
ber of lines in the source of the program (including comments
and blank lines). Two of our benchmarks,gctestand gctest3,
are designed to test garbage collectors [3, 4]. These benchmarks
both allocate and create garbage at a rapid rate. The original
version of these programs contained explicit calls to the garbage
collector. We removed these calls to allow garbage collection
to be automatically invoked based on our policy (Section 3.2.3).
bshift is an Eiffel program that was translated into C using the
Eiffel-to-C compiler distributed as part of GNU SmallEiffel.li
andbshift include custom garbage collectors. We replaced calls
to these custom collectors with calls to our collector. The re-
maining programs use standard C allocation and deallocation to
manage memory.

2These addresses are not the same as the lowest addresses re-
turned by systemmalloc: the BDW collector tries to place ob-
jects at high addresses to avoid unnecessary retention due to its
conservatism.
3Except, of course, if integers are used to implement bit vectors.

2

Type SPARC Solaris Pentium Linux Alpha UNIX

void * 0xef5c0aa0 0x08360000 0x0000000140080000
char[] \239\ \10\160 \8 6\0 \0 \0 \0 \0 \1 @\8 \0 \0
int -279180640 137756672 1 1074266112
long -279180640 137756672 5369233408
float -6.809955E+28 5.476863E-34 2.652495E-315 2.125

Table 1: Pointers in three hardware platforms

Name Source Lines Main data structures Dealloc. Workload Kind of program

gctest3 Bartlett 85 lists and arrays automatic loop to 20,000 synthetic test
gctest Bartlett 196 lists and trees automatic only repeat 5 in listtest2 synthetic test
anagram Austin 647 lists and bitfields explicit words < input.in string processing
ks Austin 782 D-arrays and lists explicit KL-2.in graph algorithm
ft Austin 2 156 graphs explicit 1000 2000 graph algorithm
yacr2 Austin 3 979 arrays of structures explicit input2.in channel router
bshift Hirzel 4 398 dlists automatic scales 2 through 12 object-oriented
bc Austin 7 308 abstract syntax trees explicit find primes smaller 500 calculator/interpreter
li Spec95 7 597 cons cells automatic boyer.lsp functional/interpreter
gzip GNU 8 163 Huffman trees explicit -d texinfo.tex.gz compression
ijpeg Spec95 31 211 various image repn. explicit testinput.ppm image compression

Table 2: Benchmarks

Table 3 shows the number of bytes each benchmark allocates
throughout its execution on each of three hardware platforms.

Name Alpha Pentium, SPARC

gctest3 3 600 008 2 200 004
gctest 1 702 376 1 123 180
anagram 265 984 259 512
ks 15 840 7 920
ft 298 056 166 832
yacr2 267 512 148 680
bshift 1 189 976 793 132
bc 10 854 848 12 382 400
li 7 669 920 4 792 160
gzip 28 376 14 180
ijpeg 11 326 128 9 030 872

Table 3: Total allocation in bytes

3.2 Memory management schemes
We now describe the memory management schemes we explored:
explicit memory management and garbage collection with vari-
ous levels of accuracy. We conclude this section by discussing
how we compared the different schemes.

3.2.1 Explicit memory management
We conducted our experiments with explicit memory manage-
ment (hereafter referred to asfree) only for those programs that
used explicit memory management to start with. In these pro-
grams we inserted wrappers around allocation and deallocation
routines to track various memory allocation and deallocation statis-
tics.

3.2.2 Garbage collection
We conducted our experiments with garbage collection by re-
placing calls to allocation routines with calls to the garbage col-
lector allocator and by eliminating calls to deallocation routines.

The garbage collector is the Boehm-Demers-Weiser collector [5]
modified to accept accurate type information about one or more
regions of memory.

Since C programs may violate type declarations, we cannot use
traditional mechanism for providing accurate information to the
BDW collector. For instance, imagine a program that uses an ap-
propriately sized integer to hold a pointer. Clearly this “integer”
should be considered by the garbage collector as a pointer even
though its programming language type is not a pointer. We there-
fore use a new approach to gathering accurate type information
about C programs. The key to our approach is to determine type
information at run time when we have more precise knowledge
about what locations contain pointers and what locations contain
non-pointers. To accomplish this, we run the program twice, one
time to collect type information and the second time to use the
information for accurate garbage collection. Of course the two
runs must use the same set of inputs in order for the type infor-
mation from the first run to hold for the second run. We now
describe the mechanics of our two runs in more detail and con-
clude this section by discussing the strengths and weaknesses of
our approach.

Figure 1 illustrates our approach to type accuracy for C pro-
grams. The first step (instrumentor) adds calls to the C program
to mark every event that may update type (or rather pointer/non-
pointer) information. We also instrument the code of any library
routines that the C program calls which may manipulate point-
ers in the user data (such asmemcpy). Table 4 shows examples
of the calls we add to the C code. Basically, we insert calls that
identify the target and the sources of every assignment. The call
sequence for each assignment begins by identifying the target of
the assignment and then has a call for each value used to compute
the value being assigned. If a value is definitely a pointer (e.g.,
&y or malloc(4)) then we callnoteptr assignmentsourceother-
wise we callnoteassignmentsource. We treat call parameters

3

analysis

Instrumentor Link Run

Link

Stubs +
BDW gc

Run

GC tables

C Program +
Library routines

Run-time

Figure 1: Framework for collecting type-accurate information

C Expression Calls added

x = y noteassignmenttarget(&x)
noteassignmentsource(&y)

*x = y noteassignmenttarget(x)
noteassignmentsource(&y)

x = &y noteassignmenttarget(&x)
noteptr assignmentsource()

x = y op z noteassignmenttarget(&x)
noteassignmentsource(&y)
noteassignmentsource(&z)

x = malloc(4) noteassignmenttarget(&x)
noteptr assignmentsource()

int global noteglobal(&global)
int local notestackalloc(&local)

Table 4: Examples of calls added to C code

C Expression Action
x = y is ptr(x) = is ptr(x) or is ptr(y)
*x = y is ptr(*x) = is ptr(*x) or is ptr(y)
x = &y is ptr(x) = true
x = y op z is ptr(x) = is ptr(x) or is ptr(y) or is ptr(z)
x = malloc(4) is ptr(x) = true;

Table 5: Outline of run-time analysis

and returns similarly to assignments. In addition to this instru-
mentation, we replace calls to each allocation routinealloc with
calls tomy alloc, which takes the same parameters asalloc. Our
instrumentation pass uses the SUIF compiler infrastructure [15]
and can be used for any language as long as there is a translator
from the language into SUIF or ANSI C.

We get our data-collection run by linking the instrumented pro-
gram with arun-time analysis library. This library provides
implementation for all routines called by the instrumentation.
These implementations perform a run-time type analysis inter-
leaved with the original program execution. Table 5 outlines at
a high level the actions that our run-time analysis takes. From
this table we see that once our analysis determines that a variable

contains a pointer, it assumes that the variable always contains a
pointer even after a non-pointer value is assigned to it. This can
result in imprecision in our analysis if a program uses a variable
to hold pointers and non-pointers at different times during the
execution.

At the end of this run, the program outputs tables that describe
which memory locations contain pointers. The second run uses
these tables to provide accurate information to the garbage col-
lector. Since memory addresses of objects may be different in the
second run, the first run assigns unique identifiers to each heap-
allocated object and global variable and uses these identifiers to
refer to objects. Each entry in the table is of one of the following
forms:

• (global id, offset): the global variable identified by globalid
contains a pointer atoffset.

• (heapid, offset): the heap allocated object identified by
heapid contains a pointer atoffset.

• (proc name, offset): activation records for the procedure
identified by procname contain a pointer atoffset.

Note that we do not output any information about pointers in
registers since we force all variables to live in memory; registers
serve only as scratch space and never contain pointers to objects
that are not also reachable from pointers in memory.

To generate the executable for the second run we link the instru-
mented program with a modified BDW collector. We modified
the BDW collector to use type informationwhen available. If
accurate type information is not available for a region of mem-
ory then BDW uses its own pointer identification mechanisms to
identify potential pointers in that region. Even if type informa-
tion is available for a region, BDW still checks that information
with its own pointer identification mechanism since the type in-
formation may not be precise (for example, if a program uses
a variable to hold a pointer at some points and a non-pointer
at other points). The second run uses the instrumented rather

4

than the original program to ensure that both runs have the same
stack layout. However, unlike the first run which uses a “run-
time analysis” library, the second run uses a “stubs” library that
implements all analysis routines with empty procedures.

During the second run we collect detailed statistics about live
objects after each explicitfreeand after each garbage collection.
For this statistics collection run, we can choose to either use or
ignore each of local, heap, and global accuracy individually, and
we can choose to allow or ignore explicit deallocation. Finally,
we force garbage collections to occur at exactly the same points
in the program execution in all runs (see Section 3.2.3).

The main advantage of our approach is that it is language inde-
pendent: we can use it to evaluate the effectiveness of accuracy
for any program that can be compiled to the SUIF representa-
tion. However, since it requires two runs (which are both quite
slow), it cannot provide real accurate garbage collection—it is
just a method for measuring one aspect of accuracy: object re-
tention. In particular, we cannot use this approach yet to measure
other benefits of accuracy (such as compaction or fast allocation).
We conclude this section by discussing the limitations of our ap-
proach or current implementation:

• When a location in an object contains a pointer at any time
during the program run, we identify it as a pointer at all
times during program execution. If the programmer hap-
pens to store a non-pointer that looks like a pointer in the
same location, the garbage collector may wrongly retain
memory.

• BDW uses not just the activation records belonging to user
routines but also some of its own activation records as roots
for garbage collection. Since we do not have precise type
information for BDW’s own activation records, we have to
be conservative for these activation records. We think that
we can avoid using these activation records as roots but
have not investigated this so far.

• If at least one of the operands of an arithmetic expression
is a pointer, we identify the result as a pointer. We expect
that this may cause incorrect retention of objects if the re-
sult of an expression looks like a pointer but will never ac-
tually be used like a pointer (for example if the arithmetic
expression is computing the hash value of a pointer). We
are in the process of reducing this imprecision in our im-
plementation.

• While our implementation currently handles most of C (in-
cludingsetjmp/longjmp) it does not yet support programs
that use signal handlers, callexitorsetjmp/longjmpthrough
function pointers, or usealloca. We believe it is relatively
straightforward to extend our implementation to support
these features.

3.2.3 Comparison methodology
To facilitate comparison across garbage collectors with different
levels of accuracy we forced garbage collection to be triggered
everyn bytes of allocation, wheren is the same in all configura-
tions. We ran each benchmark twice with each level of garbage

collection accuracy. The first time we pickedn to trigger approx-
imately 5 garbage collections during the program run and the sec-
ond time we pickedn to trigger approximately 50 garbage col-
lections during the program run. With 5 garbage collection runs
the number of live bytes between collection grows to be much
larger (by an order of magnitude) than with 50 garbage collec-
tions. Thus there is a greater possibility that a non-pointer value
in memory will look like a pointer for the 5 garbage collection
runs.

We compare explicit deallocation to garbage collection primarily
at points immediately following a garbage collection.

3.3 Abbreviations
We now present some abbreviations that we use in the remainder
of the paper:

• gc: Unmodified BDW collector;

• gcshg: BDW collector using accuracy information (where
available) for the stack, heap, and globals;

• free: Original program using explicit deallocation.

While the above abbreviations identify different memory man-
agement schemes, we will sometimes use them to mean the num-
ber of bytes occupied by objects when using the corresponding
memory management scheme.

4. RESULTS
This section starts by presenting results that compare garbage
collection with explicit deallocation (Section 4.1). It then presents
results evaluating the value of different levels of accuracy in garbage
collection and leak detectors (Section 4.2). Then it discusses how
our approach allows us to build more effective leak detectors than
existing ones (Section 4.3). We then try to quantitatively explain
why we observe different results for different hardware platforms
(Section 4.4). Finally we summarize the results (Section 4.5).

4.1 Garbage collection versus explicit deal-
location

Tables 6 and 7 compare accurate (gcshg) and conservative (gc)
garbage collection to explicit deallocation for the Alpha, Pen-
tium, and SPARC hardware platforms. These tables contain data
for all benchmarks that use explicit deallocation. There are two
rows for each benchmark, one where we invoked the collector 5
times and one when we invoked the collector 50 times. TheAv-
erage

gcshg−free

free column presents an average of the excess bytes
thatgcshg retains overfreeas a fraction of the bytes retained by
free. We compute this ratio immediately after each garbage col-
lection and take their arithmetic mean to arrive at the numbers
in the table. For example, a value of 0.01 in this column means
that if a program usedgcshg it would retain, on average, 1%
more bytes than explicit deallocation. A negative number in this
column means thatgcshg, on average, had fewer live bytes than
explicit deallocation; in other words, there is a possible memory
leak in explicit deallocation (we discuss memory leaks in Section
4.3). Thefrac. gccolumns give the fraction of garbage collec-
tions after whichgcshg had a different number of live bytes than

5

explicit deallocation. Thegc−free
free and its accompanyingfrac. gc

columns in Table 7 present the same data, but this time compar-
ing gc (i.e., BDW garbage collector) to explicit deallocation. In
this and subsequent tables, we represent fractions that are smaller
than 0.01 but not zero as 0.00 and fractions that are exactly zero
as 0.

From these tables we see that for most benchmarks, the number
of live bytes usinggcshg is close to the number of live bytes for
free at points immediately following a garbage collection. The
two programs wheregcshg performs much worse thanfree are
gzip and ijpeg. However, from Table 3 we see thatgzip does
little allocation and thus the difference betweengcshg andfree is
not significant.ijpegon the other hand does a significant amount
of allocation. Figure 2 comparesgcshg, gc, and free for ijpeg-
5 on a SPARC. A point(x,y) on the graph means that at time
x (measured in bytes allocated since the start of program), live
objects occupyy bytes. From this figure we see that even though
ijpeg allocates heavily, the number of bytes that are live at any
given point is very small. Thus even thoughgcshg appears to
do significantly worse thanfreeon ijpeg according to Table 6, in
absolute terms, the number of excess bytes retained bygcshg is
rather small.

From Table 6 we see that the performance ofgcshg also varies
with hardware platform. This is becausegcshg is not fully accu-
rate for C programs (Section 3).

The behavior of conservative garbage collection,gc, varies much
more across hardware platforms than accurate collection. On the
Alpha,gc performs almost as well asgcshg. On the Pentium,gc
does worse (i.e., retains more dead objects) than on the Alpha.
On the SPARC,gc performs even worse. These results suggest
that the choice of hardware platform plays a role in determining
which memory management scheme will perform best.

Our results suggest that at least on the Alpha platform, most
garbage collectors, includinggc, will reclaim objects almost as
effectively as explicit deallocation. However, this is only part of
the picture since it says that garbage collection will have almost
the same number of live bytes as explicit deallocation at points
immediately following a garbage collection. Obviously, at other
points, there may be many more live objects with garbage collec-
tion. For example Figure 2 shows that immediately following a
garbage collection, the number of live bytes is relatively similar
for all three memory management strategies. However, at other
points,ijpeg with garbage collection may have an order of mag-
nitude more live bytes than explicit deallocation. These results
make two important points: (i) just because a garbage collected
program uses much more memory than a non-garbage collected
program, it does not mean that the garbage collector is leaking
memory, and (ii) even if a garbage collector is as effective at re-
claiming objects as explicit deallocation, it may still have a much
larger memory footprint and thus worse memory system behav-
ior. We can decrease the peaks of our garbage collection curves
by collecting garbage more frequently, as illustrated by Figure 3
(note that Figure 3 uses a different scale than Figure 2).

Finally Tables 6 and 7 show that for more frequent collections
(50 times instead of 5 times) on average the difference between
garbage collection and explicit deallocation is greater. This may

be caused by dead pointers on the stack; waiting longer between
garbage collection allows more activation records to pop off the
stack and thus the garbage collection needs to consider fewer
dead pointers. Based on this, we expect that adding liveness in-
formation togcshg andgc will improve their behavior for more
frequent collections [2].

4.2 Effect of garbage collector accuracy
In which region of memory is accuracy most important for each
of our three hardware platforms? Table 8 presents data that com-
pares different levels of accuracy to conservative garbage collec-
tion. Unlike Tables 6 and 7 which presented data only for pro-
grams that use explicit deallocation, Table 8, presents data for our
entire benchmark suite. TheAverage

gc−gcshg
gc column presents

the average of the excess bytes thatgc retains overgcshg as a
fraction of the bytes retained bygc. We compute this ratio im-
mediately after each garbage collection and take their arithmetic
mean to arrive at the numbers in the table. The characters in
parentheses besides the numbers indicate which accuracy con-
tributed to the improvement ofgcshg overgc. The frac. gccol-
umn gives the fraction of garbage collections after whichgcshg
had a different number of live bytes thangc.

From these tables we see that accurate garbage collection is slightly
better than conservative collection on the Alpha.yacr2, bshift,
and ijpeg are the only three benchmarks wheregcshg performs
significantly better than conservative garbage collection (gc). More-
over, for two of the benchmarks,bshiftandijpeg, gcshg is better
thangcon only for a relatively small fraction of the time (as evi-
dent from thefrac. gccolumn).

On the Pentium and especially the SPARC architecture accurate
garbage collection does better than conservative collection in the
majority of the benchmarks. The most significant improvements
from accurate collection come onyacr2, bshift, gzip, andijpeg,
but many other benchmarks see smaller improvements due to ac-
curacy. Figures 2 and 3 graphically display the superiority of
gcshg overgc on ijpeg. Figure 4 magnifies the initial segment of
Figure 3 to make it clearer.

On inspecting the parenthesized characters next to the data we
see that on the Pentium and the Alpha accuracy in the stack and
globals is most important. Accuracy in globals improves results
for more benchmarks than accuracy in the stack. On the SPARC,
accuracy in the heap is also quite important.

4.3 Usefulness of accuracy in finding mem-
ory leaks

The previous section demonstrated that garbage collection with
accuracy frequently reclaims more objects than conservative garbage
collection. Thus, a leak detector based on accurate garbage col-
lection will likely find more memory leaks than a leak detector
based on conservative garbage collection.

Even for our suite of benchmarks, we detected four programs
where accurate garbage collection reclaimed more objects than
explicit deallocation:bc, ft, yacr2, ijpeg. Only one of these leaks
(ft) shows up in Table 6, since Table 6 presents theaveragediffer-
ence between explicit deallocation and garbage collection. In our
experiments, conservative garbage collection reclaimed more ob-
jects than explicit deallocation in only one programft. All these

6

Alpha Pentium SPARC
Benchmark avg.

gcshg−free

free frac. gc avg.
gcshg−free

free frac. gc avg.
gcshg−free

free frac. gc

anagram-5 0 0 0 0 0.00 0.50
anagram-50 0 0 0 0 0.00 0.50
ks-5 0 0 0 0 0 0
ks-50 0 0 0 0 0 0
bc-5 0.00 0.83 0.00 0.83 0.01 0.83
bc-50 0.00 0.98 0.01 0.98 0.03 0.98
ft-5 -0.00 0.83 0 0 0.01 0.83
ft-50 0.00 0.98 0 0 0.00 0.96
yacr2-5 0.00 0.75 0.02 0.75 0.02 0.75
yacr2-50 0.00 0.35 0.02 0.95 0.00 0.95
gzip-5 0.23 0.67 0.22 0.67 0.22 0.67
gzip-50 0.57 0.82 0.57 0.82 0.26 0.82
ijpeg-5 0 0 0.10 0.80 0.16 0.20
ijpeg-50 0.07 0.33 0.32 0.98 0.05 0.33

Table 6: Accurate gc versus explicit deallocation

Alpha Pentium SPARC
Benchmark avg. gc−free

free frac. gc avg. gc−free
free frac. gc avg. gc−free

free frac. gc

anagram-5 0 0 0 0 0.00 0.50
anagram-50 0 0 0 0 0.00 0.50
ks-5 0 0 0 0 0 0
ks-50 0 0 0 0 0 0
bc-5 0.01 0.83 0.01 0.83 0.04 0.83
bc-50 0.00 0.98 0.01 0.98 0.04 0.98
ft-5 -0.00 0.83 0.01 0.33 0.02 0.83
ft-50 0.00 0.98 0.01 0.33 0.00 0.98
yacr2-5 0.02 0.75 0.05 0.75 0.04 0.75
yacr2-50 0.03 0.35 0.06 0.95 0.05 0.95
gzip-5 0.23 0.67 0.22 0.67 0.65 0.67
gzip-50 0.57 0.82 0.66 0.82 1.08 0.82
ijpeg-5 0.07 0.20 0.97 0.80 0.93 0.80
ijpeg-50 0.07 0.33 0.78 0.98 0.67 0.98

Table 7: Conservative gc versus explicit deallocation

Alpha Pentium SPARC
Benchmark avg.

gc−gcshg
gc frac. gc avg.

gc−gcshg
gc frac. gc avg.

gc−gcshg
gc frac. gc

gctest3-5 0 0 (g) 0.00 0.67 0 0
gctest3-50 0 0 (g) 0.01 0.92 0 0
gctest-5 0 0 0 0 0 0
gctest-50 0 0 0 0 0 0
anagram-5 0 0 0 0 0 0
anagram-50 0 0 0 0 0 0
ks-5 0 0 0 0 0 0
ks-50 0 0 0 0 0 0
bc-5 (g) 0.00 0.83 (sg) 0.01 0.83 (shg) 0.03 0.83
bc-50 (g) 0.00 0.98 (sg) 0.00 0.98 (shg) 0.01 0.98
ft-5 0 0 (g) 0.01 0.33 (shg) 0.01 0.17
ft-50 0 0 (g) 0.01 0.33 (shg) 0.00 0.61
yacr2-5 (g) 0.02 0.25 (g) 0.03 0.25 (g) 0.02 0.25
yacr2-50 (g) 0.02 0.35 (g) 0.03 0.37 (g) 0.04 0.37
bshift-5 0 0 (g) 0.05 0.83 (shg) 0.10 0.67
bshift-50 (g) 0.02 0.05 (g) 0.11 0.77 (shg) 0.25 0.93
li-5 0 0 (g) 0.02 0.67 (shg) 0.00 0.83
li-50 0 0 (g) -0.00 0.94 (shg) 0.01 0.98
gzip-5 0 0 0 0 (s) 0.16 0.33
gzip-50 0 0 (h) 0.02 0.09 (s) 0.27 0.55
ijpeg-5 (s) 0.05 0.20 (sg) 0.39 0.80 (sg) 0.35 0.80
ijpeg-50 0 0 (sg) 0.24 0.96 (shg) 0.35 0.98

Table 8: Accurate versus conservative gc

7

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

liv
e

by
te

s

�

bytes allocated

free
gc+shg

gc

Figure 2: Memory usage ofijpeg-5 on a SPARC

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

liv
e

by
te

s

�

bytes allocated

free
gc+shg

gc

Figure 3: Memory usage ofijpeg-50 on a SPARC

8

0

50000

100000

150000

200000

250000

300000

350000

400000

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

liv
e

by
te

s

�

bytes allocated

free
gc+shg

gc

Figure 4: Memory usage ofijpeg-50 on a SPARC(first 9 collections)

potential leaks are small (typically 100 bytes or less) and are not
significant. However, it is important to keep in mind that the
benchmarks we used are well-established and well-studied pro-
grams; thus it would have been surprising to find significant leaks
in them.

Finally, our methodology was effective in indirectly finding two
leaks in the BDW collector4. The first of the two leaks was a
bug in the BDW collector; we fixed it before taking our measure-
ments. The second leak turned out to be a known inaccuracy that
caused the BDW collector to leak memory but run faster. We sus-
pected these leaks when we noticed discrepancies between data
for different levels of accuracy.

4.4 Explanation of results
The different performance of conservative garbage collection on
different hardware platforms could be due to two reasons. First,
different memory layouts on different hardware platforms could
cause different objects to be conservatively retained by the con-
servative collector. Second, different compiler optimizations on
different hardware platforms may create different values in mem-
ory which may cause different objects to be retained by the con-
servative collector.

To better understand the reason for the differences across plat-
forms we reran our experiments on the SPARC but this time us-
ing a different starting address for the heap: we forced the heap
to start at 0xbb000, which is much lower than the default start
address (see Table 1). If memory layout determines the behavior
of conservative collection then we should see a significant differ-
ence between results for the two heap layouts.

4We confirmed these with Hans Boehm via email in April and
May 2000.

Original Lower heap layout
Benchmark Average

gc−gcshg
gc Average

gc−gcshg
gc

gctest3-5 0 0
gctest-5 0 (sg) 0.39
anagram-5 0 0
ks-5 0 0
bc-5 (shg) 0.03 (shg) 0.39
ft-5 (shg) 0.01 (shg) 0.00
yacr2-5 (g) 0.02 0
bshift-5 (shg) 0.10 (hg) 0.04
li-5 (shg) 0.00 (s) 0.00
gzip-5 (s) 0.16 (s) 0.16
ijpeg-5 (sg) 0.35 (sg) 0.21

Table 9: Effect of changing heap layout for SPARC

Table 9 presents the results of this experiment. The “Original”
column of Table 9 is identical to theAverage

gc−gcshg
gc column in

Table 8 for the SPARC except that it presents numbers only for
the 5 garbage collection runs. The “Lower heap layout” column
is computed similarly to the “Original” column except that it uses
a lower starting address for the heap. From this table we see that
the starting address of the heap impacts the effectiveness of con-
servative garbage collection. However, there is no clear pattern.
Lowering the heap layout reduces the effectiveness of conserva-
tive garbage collection for two of the benchmarks (gctestandbc)
and increases the effectiveness for four of the benchmarks (ft,
yacr2, bshift, andijpeg).

These results suggest that the variation in performance of conser-
vative garbage collection across platforms is largely due to the
different memory layout. These results also suggest that the best
way to use existing leak detectors is to run them several times,

9

each time with a different heap layout. Since different heap lay-
outs will find different leaks, the end result will be that more
leaks will be detected.

4.5 Summary of results
Our results show that the hardware platform significantly affects
the performance of conservative garbage collection algorithms.
Particularly, we found that on the Alpha, accuracy did not make a
significant difference in the garbage collector’s ability to reclaim
objects. Moreover, on the Alpha, a 64-bit hardware platform,
all our garbage collectors were almost as effective in reclaiming
objects as explicit deallocation.

On the two 32-bit platforms, accuracy in garbage collection is
much more important for reclaiming objects. For the Pentium
and particularly the SPARC, accuracy significantly affects a garbage
collector’s ability to reclaim objects.

Finally, gcshg (our most accurate collector) is much more effec-
tive in reclaiming objects than conservative garbage collection on
the 32-bit platforms. Thus on the 32-bit hardware platforms, we
expect that a leak detector based ongcshg will find more mem-
ory leaks than existing leak detectors such as Purify [9] which
are based on conservative garbage collection.

5. RELATED WORK
In this section we review prior work on comparing different garbage
collection alternatives, type-accuracy for compiled languages, and
leak detection.

Bartlett [3], Zorn [18], Smith and Morrisett [13], and Agesenet
al. [2] compare different garbage collection alternatives with re-
spect to memory consumption. Bartlett [3] describes versions of
his mostly-copying garbage collector that differ in stack accu-
racy. Zorn [18] compares the Boehm-Demers-Weiser collector
to a number of explicit memory management implementations.
Smith and Morrisett [13] describe a new mostly-copying garbage
collector and compare it to the Boehm-Demers-Weiser collector.
All these studies focus on the total heap size. Measuring the to-
tal heap size is useful for comparing collectors with the same
accuracy, but makes it difficult to tease apart the effects of frag-
mentation, allocator data structures, and accuracy. Since we are
counting bytes in live objects instead of total heap size, we are
able to look at the effects of garbage collector accuracy in isola-
tion from the other effects. Agesenet al. investigate the effect
of liveness on the number of live bytes after an accurate garbage
collection. We do not consider liveness information at this point
but believe that liveness is worth considering.

Zorn [18], Smith and Morrisett [13], and Hickset al. [10] com-
pare different memory management schemes with respect to their
efficiency. Zorn [17] looks at the cache performance of different
garbage collectors. We do not look at run-time efficiency but
instead concentrate on the effectiveness of garbage collectors in
reclaiming objects.

Diwan et al. [8], Agesenet al. [2], and Stichnothet al. look at
how to perform accurate garbage collection in compiled type-
safe languages. Diwanet al. [8] describe how the compiler and
run-time system of Modula-3 can support accurate garbage col-
lection. Agesenet al. [2] and Stichnothet al. extend Diwanet

al.’s work by incorporating liveness into accuracy and allowing
garbage collection atall points and not just safe points. Even
though these papers assume type-safe languages, type accuracy
is still difficult to implement especially in the presence of com-
piler optimizations. Our methodology allows us to have type ac-
curacy even for C and without compiler support. This comes at
the cost of having to run the program twice with the same input,
but it is still useful as a leak detector and, of course, as a study in
garbage collector accuracy.

In work concurrent to ours, Shahamet al. [12] evaluate a con-
servative garbage collector using a limit study: They find that the
conservative garbage collector is not effective in reclaiming ob-
jects in a timely fashion. However, unlike our work, they do not
demonstrate if an accurate collector would be more effective in
reclaiming objects.

Hastings and Joyce [9], Dion and Monier [7], and GreatCircle
[1] describe leak detectors based on the Boehm-Demers-Weiser
collector [6]. The Boehm-Demers-Weiser collector can also be
used as a leak detector [5]. Our scheme uses more accurate infor-
mation than these detectors and is thus capable of finding more
leaks in programs.

6. FUTURE WORK
The work presented here is a preliminary investigation of the use-
fulness of accuracy and the potential usefulness of our tools. We
are continuing work in this area in several directions:

• Evaluating the effectiveness of richer forms of accuracy,
for example where accuracy involves liveness information.
Prior work, with the exception of a limit study [12], has in-
vestigated only intraprocedural liveness of local variables
[2]. We are investigating the usefulness of interprocedural
liveness information.

• Language-independent accurate garbage collection. While
our current run-time analysis allows us to do language-
independent leak detection, we cannot yet use it for language-
independent accurate garbage collection since it requires
two runs. We are modifying our analysis so that it requires
only a single run and are investigating compiler support to
reduce the overhead of the run-time type analysis.

• Leak detection. As we demonstrated, our analysis is more
accurate and thus more effective at finding leaks than ex-
isting leak detectors [5, 9, 1, 7]. However, our method
requires two runs of the program, which is infeasible es-
pecially for interactive programs. We are modifying our
analysis so that it requires only a single run.

• Improving conservative garbage collectors on “unfavorable”
platforms. With the BDW collector [5] one can “black-
list” ranges of memory. The memory allocator avoids al-
locating objects in the black-listed memory. Similarly on
some linker/loaders, one can specify the starting address
for the data area. We are investigating using one or both of
these possibilities to improve the performance of conser-
vative garbage collection on unfavorable platforms, such
as SPARC/Solaris.

10

7. CONCLUSIONS
This paper describes a novel approach to obtaining type-accurate
information in a language and hardware independent manner.
While this technique is not yet suitable to use for garbage col-
lection, we show that this approach is more effective at finding
leaks in C programs than prior approaches that use conservative
garbage collection.

We used our approach to compare garbage collectors with dif-
ferent levels of accuracy and explicit deallocation on three hard-
ware platforms, Alpha, Pentium, and SPARC. We found that the
choice of hardware platform greatly determines where accuracy
is needed. In particular, on some hardware platforms, such as the
64-bit Alpha, accuracy is not important for reclaiming objects.
On other hardware platforms such as the SPARC accuracy in all
regions of memory is important for reclaiming objects.

8. ACKNOWLEDGMENTS
We would like to thank Dirk Grunwald, Tony Hosking, and Alex
Wolf for valuable discussions during this project. We would also
like to thank Martin Burtscher, Rick Hudson, Eliot Moss, and
Darko Stefanovic for comments on a draft of this paper. We
would like to thank Hans Boehm for helping us understand the
Boehm-Demers-Weiser collector.

9. REFERENCES
[1] Great Circle – Real-time error detection and code

diagnosis for developers.http://www.geodesic.
com/solutions/greatcircle.html .

[2] Ole Agesen, David Detlefs, and J. Eliot B. Moss. Garbage
collection and local variable type-precision and liveness in
Java virtual machines. InProceedings of the SIGPLAN ’98
Conference on Programming Language Design and
Implementation, pages 269–279, Montreal, Canada, June
1998.

[3] Joel F. Bartlett. Compacting garbage collection with
ambiguous roots. Technical Report Technical Report 88/2,
DEC Western Research Laboratory, Palo Alto, CA,
February 1988. Also in Lisp Pointers 1, 6 (April-June
1988), 2-12.

[4] Joel F. Bartlett. Mostly-copying garbage collection picks
up generations and C++. Technical report, DEC Western
Research Laboratory, Palo Alto, CA, October 1989.

[5] Hans Boehm, Alan Demers, and Mark Weiser. A garbage
collector for C and C++.http://www.hpl.hp.com/
personal/Hans_Boehm/gc/ .

[6] Hans Boehm and Mark Weiser. Garbage collection in an
uncooperative environment.Software—Practice and
experience, 1988.

[7] Jeremy Dion and Louis Monier. Third degree.
http://research.compaq.com/wrl/
projects/om/third.html .

[8] Amer Diwan, Eliot Moss, and Richard Hudson. Compiler
support for garbage collection in a statically typed
language. InPLDI’92, pages 273–283, July 1992.

[9] Reed Hastings and Bob Joyce. Fast detection of memory
leaks and access errors. InProceedings of the Winter ’92
USENIX conference, pages 125–136, 1992.

[10] Michael Hicks, Jonathan Moore, and Scott Nettles. The
measured cost of copying garbage collection mechanisms.
In Functional Programming, pages 292–305, June 1997.

[11] Richard Jones and Rafael Lins.Garbage collection:
algorithms for automatic dynamic memory management.
John Wiley & Sons, 1st edition, 1997.

[12] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. On the
effectiveness of GC in Java. InProceedings of the
International Symposium on Memory Management,
Minneapolis, MN, October 2000.

[13] Frederick Smith and Greg Morrisett. Comparing
mostly-copying and mark-sweep conservative collection.
In International Symposium on Memory Management,
pages 68–78, October 1998.

[14] James Stichnoth, Guei-Yuan Lueh, and Michael Cierniak.
Support for garbage collection at every instruction in a
Java compiler. InPLDI’99, pages 118–127, May 1999.

[15] Stanford University SUIF Research Group. Suif compiler
system version 1.x.http://suif.stanford.edu/
suif/suif1/index.html .

[16] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher.
Caching considerations for generational garbage
collection. In1992 ACM Conference on Lisp and
Functional Programming, pages 32–42, San Francisco,
California, June 1992.

[17] Benjamin Zorn. The effect of garbage collection on cache
performance. Technical Report CU-CS-528-91, University
of Colorado at Boulder, May 1991.

[18] Benjamin Zorn. The measured cost of conservative
garbage collection. InSoftware–Practice and Experience,
pages 733–756, July 1993.

11

http://www.geodesic.com/solutions/greatcircle.html
http://www.geodesic.com/solutions/greatcircle.html
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://research.compaq.com/wrl/projects/om/third.html
http://research.compaq.com/wrl/projects/om/third.html
http://suif.stanford.edu/suif/suif1/index.html
http://suif.stanford.edu/suif/suif1/index.html

	Introduction
	Background
	Methodology
	Benchmarks
	Memory management schemes
	Explicit memory management
	Garbage collection
	Comparison methodology

	Abbreviations

	Results
	Garbage collection versus explicit deallocation
	Effect of garbage collector accuracy
	Usefulness of accuracy in finding memory leaks
	Explanation of results
	Summary of results

	Related Work
	Future Work
	Conclusions
	Acknowledgments
	REFERENCES

