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Abstract—MapReduce is a platform for analyzing large
amounts of data on clusters of commodity machines. MapReduce
is popular, in part thanks to its apparent simplicity. However,
there are unstated requirements for the semantics of MapReduce
applications that can affect their correctness and performance.
MapReduce implementations do not check whether user code
satisfies these requirements, leading to time-consuming debugging
sessions, performance problems, and, worst of all, silently corrupt
results. This paper makes these requirements explicit, framing
them as semantic properties and assumed outcomes. It describes
a black-box approach for testing for these properties, and uses
the approach to characterize the semantics of 23 non-trivial
MapReduce workloads. Surprisingly, we found that for most
requirements, there is at least one workload that violates it. This
means that MapReduce may be simple to use, but it is not as
simple to use correctly. Based on our results, we provide insights
to users on how to write higher-quality MapReduce code, and
insights to system and language designers on ways to make their
platforms more robust.

I. INTRODUCTION

Corporations collect large amounts of data during day-to-
day operations, and analyzing this data yields insights that
translate directly into monetary value. For many corporations,
the tool of choice for performing such analyses is MapReduce,
because it is simple, yet scales to large clusters of commod-
ity machines. Massive parallel computing was formerly the
domain of the HPC and DB communities, who are quick to
point out that there is little new in MapReduce. But the reality
remains that MapReduce, and particularly its free open-source
implementation Hadoop, is widely adopted, and accounts for
a large percentage of compute time on data centers of Google,
Yahoo, Facebook, and others. In these contexts, MapReduce
has been used to build search indices, analyze log files, extract
information from large bodies of unstructured text, run graph
algorithms on social networks, and perform many other data-
intensive tasks.

Part of the appeal of MapReduce is that is is easy to adopt.
To get started, a programmer merely writes two functions,
Map and Reduce, and the platform takes care of parallelism,
distribution, and fault tolerance. However, the platform makes
several implicit assumptions about the semantics of user-
written code. For instance, the Map function should be stateless
and the Reduce function should avoid interference between
different key partitions. If the user configures MapReduce to
also use the Reduce function as a Combine function piggy-
backed on the mapper, then the Reduce function needs to
be associative. (We elaborate on these assumptions later in
this paper.) If the user code violates these requirements,
then depending on placement and scheduling decisions made
at runtime, the program can yield arbitrary and potentially
incorrect results.

MapReduce implementations such as Hadoop do not check
semantic requirements on user code, because user code is
written in general-purpose languages like Java or C++. One
could argue that this situation is improved by higher-level pro-
gramming languages that target MapReduce, such as Pig [20]
or Jaql [2], because they satisfy the semantic requirements
for their built-in operators. However, Pig, Jaql, and other lan-
guages of their sort still rely heavily on user code, and do not
check that code for adherence to semantic requirements. While
some static [13] and dynamic [19] analyses for MapReduce-
like code provide a good starting point for doing this, to date
that work provides only partial solutions.

Given that MapReduce relies on semantic properties of
user code for correctness and performance, one would expect
the foregoing issues to be well-known. However, it turns out
that the community of MapReduce users and developers has
little awareness of the problem. In fact, the required semantic
properties are vague, and nobody knows how much user code
out there satisfies them. Prior workload characterizations for
MapReduce focus on performance, not semantics [4], [14].
Our paper fills this gap by providing a semantic workload
characterization for MapReduce.

To provide a foundation for our approach, we formulate a
set of semantic requirements for MapReduce in the form of
six semantic properties: determinism, selectivity, statefulness,
commutativity, partition isolation, and associativity. Then, we
apply black-box test-case generation techniques to user code
in an attempt to assess whether these properties hold. To
do this, we gathered a suite of 23 non-trivial MapReduce
workloads, some of which contain multiple Map and Reduce
functions. The core of this paper is a detailed empirical study
of the semantic properties of each Map or Reduce function
in each of these workloads. The empirical study shows that
most things that user-code can do wrong, it does do wrong in
at least one workload. In other words, properties required for
the correct execution of MapReduce are routinely violated.
The lesson for the user is to be aware of these properties
during development and testing. The lesson for the system or
language designer is to avoid relying too heavily on unchecked
semantic properties of user code. Instead, MapReduce systems
and languages would do well to add automated support for
making programs more robust.

This paper makes the following contributions:

• The first empirical study of semantic properties in MapRe-
duce workloads, using 23 non-trivial applications.

• Formulations of semantic properties and assumptions for
MapReduce.

• Interpretations of the empirical findings that can help users
and language designers utilize MapReduce correctly, and
provide better programming systems to support it.
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The remainder of this paper is structured as follows.
Section II provides background information on MapReduce ap-
plications, and defines several important semantic properties of
Map and Reduce functions. Using these properties, Section III
describes the assumptions about Map and Reduce functions
used in Hadoop applications. Section IV presents the testing
framework that we use to determine whether properties hold.
Section V presents the details of our study design. Sections VI
and VII analyze our study data and discuss implications of our
results, respectively. Section VIII discusses related work, and
Section IX concludes.

II. BACKGROUND

To characterize MapReduce workloads at a semantic level,
we first need to understand the structure of these workloads,
the signatures of user-defined functions in that structure, and
the semantic properties with which said functions can be
characterized.

A. MapReduce Applications

Fig. 1 shows the general structure of a MapReduce ap-
plication. The application begins by reading inputs from a
distributed file system. The map stage consists of many data-
parallel workers executing a user-defined Map function. This
is followed by an optional combine stage. The combine stage,
if present, is piggy-backed on the map stage, using cheap local
communication. Next comes the shuffle stage, which forms a
complete bipartite graph of network communication. The data
sent across these links consists of key-value pairs, and the
shuffle stage ensures that if two key-value pairs have the same
key, they arrive at the same worker. Next comes a sort stage,
which sorts all keys for a given partition. The sort stage is
shown in gray in this figure, because whereas map, combine,
and reduce are user-defined, sort is built-in. Finally, the reduce
stage consists of many data-parallel workers executing a user-
defined Reduce function, and the output is written back out to
the distributed file system.
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Fig. 1. MapReduce data flow graph

B. Signatures for Map and Reduce

For the study described in this paper we used the Hadoop
implementation of MapReduce. In Hadoop, the distributed file
system is the Hadoop File System (HDFS), and the user-
defined functions are written in Java. The rest of this paper
sometimes uses “Hadoop” as synonymous with “MapReduce”;
the results we obtain for Hadoop should generalize to other
MapReduce systems.

Before listing semantic properties, we describe the general
structure of Map and Reduce functions. When building a
Hadoop application, the developer needs to write a Map class
with a Map function, and a Reduce class with a Reduce
function. The signature for a Map function is:

public void Map(KEYIN key, VALUEIN value,
Context context)

As this signature shows, a Map function takes three parameters,
key, value, and context. Their concrete types are defined by
users. Usually, the input for the map stage is a file, and each
line of this file becomes a key-value pair. We refer to each
key-value pair as a data item. Every time a Map function is
called for a data item, we call this a firing. A firing of the Map
function submits zero or more output data items by invoking
a callback on the context parameter:

context.write((KEYOUT) key, (VALUEOUT) value);

The signature for a Reduce function is:
public void Reduce(KEYIN key, Iterable<VALUEIN> values,

Context context)

The Reduce function also takes three parameters, two of which
are the same as for the Map function. The signatures differ
with respect to the second parameter. There is a list of values
for Reduce functions while for Map functions, there is only a
single value. As for the Map function, the concrete parameter
types are defined by users.

We consider properties of Reduce functions at two levels.
One is the coarse-grained level, where the input to a firing
consists of a key and a list of values. In other words, the
firing corresponds to the entire call to the Reduce function.
The other level is the fine-grained level, where the input to a
firing consists of a key and a single value. In other words,
the fine-grained level breaks the Reduce function call into
multiple separate firings, one for each value in the list. After
each firing, no matter at what level, Reduce functions may
submit output data items using the same callback as for Map
functions: context.write((KEYOUT) key, (VALUEOUT) value).

There are several reasons for analyzing Reduce functions
at two levels. On the one hand, the coarse-grained level may
seem more natural, because it corresponds to a function call.
On the other hand, the fine-grained level is more consistent
with how Map functions are treated, because both handle a
single key-value pair at a time. Analyzing Reduce functions
at two levels also provides more information. For example, a
given Reduce function may be stateful from one value to the
next at the fine-grained level, but stateless from one list to the
next at the coarse-grained level.

C. Properties

This section defines six semantic properties of Map or
Reduce functions. We selected these properties because they
affect the correctness and the performance of MapReduce
applications. As we shall see in Section III, the properties form
the foundation for assumptions about MapReduce. Some of the
properties (such as associativity) appear prominently in the
MapReduce literature. Other properties (such as determinism)
usually remain implicit in the literature, but their effect on
application semantics is no less fundamental. We are not aware
of additional properties that carry similar importance to the six
we chose for this study for MapReduce.

1) Determinism: Determinism characterizes the repeata-
bility of all firings of a function across entire runs of a
MapReduce application. Given the same inputs, a deterministic
function produces the same outputs on any run. A function that
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generates different outputs for different runs given the same
sequence of inputs to its firings is non-deterministic.

2) Selectivity: Selectivity characterizes the number of data
items produced by a function per firing. If a function has
selectivity > 1 for at least one firing, it is prolific. If a function
always has selectivity ≤ 1 for all firings and < 1 for at least
one firing, it is selective. If a function always has selectivity 1
for all firings, it is one-to-one.

3) Statefulness: Statefulness characterizes the repeatability
of individual firings of a function within a single run of a
MapReduce application. Given the same input, a stateless func-
tion produces the same outputs on any firing. If a function’s
outputs are affected by historical inputs, it is stateful.

4) Commutativity: A function is commutative if a change
in the order in which input data items are sent to it does
not change its outputs. As shown in Fig. 1, MapReduce sorts
the outputs of the map stage before sending them to the
Reduce function. Thus, for Map functions, when assessing
commutativity, we compare outputs after sorting them.

5) Partition-isolation: Partitioning uses the key parameter
that is provided to the Map or Reduce function. In a partition-
isolated function, output data items for firings with one key
are not affected by firings with different keys. If firings with
different keys can affect one another, the function is partition-
interfering.

6) Associativity: We check associativity only for Reduce
functions. Let k be a key, and let x and y be lists of values.
A function R is associative if the following holds for all
k, x, and y:

R(k, R(k, x) + R(k, y)) = R(k, x+y)

For simplicity, we assume that each function returns its outputs
instead of sending them via a Context callback. If R is
an associative Reduce function, users can also use R as a
combiner, as shown in Fig. 1.

The six properties that we have presented are not alto-
gether independent. Statelessness implies commutativity and
partition-isolation. However, the reverse is not true: a stateful
function may or may not also be commutative and partition-
isolated. Therefore, the properties are worth establishing sep-
arately.

III. SEMANTIC ASSUMPTIONS

This section presents the assumptions regarding the fore-
going properties that underlie the usage of Map and Reduce
functions in Hadoop applications.

A. Assumptions about Map Functions

The Map function is expected to be deterministic. Deter-
minism is useful for testing and debugging, since a determin-
istic application can be run any number of times with the same
output, and the actual output of a run can easily be compared
to a stored expected output. Furthermore, MapReduce comes
with a fault-tolerance mechanism that recovers from a failed
worker machine by repeating its tasks on a different machine.
The implicit assumption behind this mechanism is that tasks
yield the same results the second time around.

The selectivity of the Map function is expected to be one-
to-one. This is not required for correctness – the framework is
general enough to safely handle selective or prolific Map func-
tions. However, it is still useful to know about the selectivity
of Map functions, because this has performance implications:
it determines the amount of network communication in the
shuffle, and the load on the reducers. In functional program-
ming languages, Map is a higher-order function also known as
apply-to-all. In that paradigm, Map is one-to-one.

The parallelization scheme for MapReduce requires the
Map function to be stateless. If the Map function is stateless,
it is safe to chop the input after any key-value pair, and assign
chunks of inputs to any map workers, without affecting the
result. If the Map function is stateful, the user must instead
carefully arrange which key-value pairs to store in which input
files. Such data invariants make applications brittle.

The Map function is expected to be commutative modulo
the ordering of its outputs. In other words, the order of an input
sequence may affect the order, but not the values, of an output
sequence. Commutativity is important for parallelization. If the
Map function is commutative, then the parallel scheduler for
MapReduce can assign input chunks to map workers in any
order.

Similarly, the Map function should be partition-isolated.
Partition isolation supports parallelization, because it implies
that any input chunk can be assigned to any map worker
without concern for interference by data items with different
keys.

B. Assumptions about Reduce Functions – Coarse-Grained
Level

The Reduce function is assumed to be deterministic for
the same reasons the Map function is. Determinism helps with
testing, debugging, and fault-tolerance, and overall leads to
cleaner semantics.

At the coarse-grained level, for each firing on a key and
list of values, the Reduce function is expected to yield exactly
one key-value pair as output. In other words, its selectivity
should be one-to-one. Just like the selectivity of the Map
function, the selectivity of the Reduce function does not affect
correctness, but is relevant to performance. It affects the output
disk bandwidth and footprint, and the data size for down-
stream consumers (looking beyond where Fig. 1 ends). In
functional programming languages, Reduce is a higher-order
function also known as fold or aggregate. In that paradigm, it
turns one list of input values into one output value. This has
been dubbed the iterator-based approach to aggregation [24].

The Reduce function should be stateless at the coarse-
grained level. This may appear counter-intuitive at first glance,
because reduction typically involves stateful aggregation across
values. However, that reduction state is necessary only between
values within a key, while the coarse-grained level considers
each key with its entire list of values for a firing. Stateless
reduction at the coarse-grained level is needed for the par-
allelization scheme to be correct; it enables the MapReduce
scheduler to assign any task to any reduce worker.

At the coarse-grained level, the Reduce function should
be commutative modulo output order; that is, the order in
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which pairs of keys and lists of inputs are submitted to the
Reduce function must not affect output values, only output
order. At the coarse-grained level, we are not concerned with
the order of values within each list. Commutativity is implied
by statelessness, but even in the stateful case it has benefits,
because it allows the parallelization scheme to assign tasks to
reduce workers in any order.

The Reduce function should be partition-isolated: no
state from one key interferes with processing of another key.
Partition isolation is needed for parallelization; it allows the
parallel scheduler to freely assign any key to any reduce
worker.

The Reduce function should be associative if and only
if the Reduce function is also used as the combiner (see
Fig. 1). If the Reduce function is used as a combiner but is
not associative this is incorrect, because it implies that the
result depends on the chunking and worker assignment. On
the other hand, if the Reduce function is associative but is not
used as a combiner this is fine for correctness, and affects only
performance. By not using a combiner, the application loses an
optimization opportunity, since all data flows over the shuffle
before reduction.

C. Assumptions about Reduce Functions – Fine-Grained
Level

The Reduce function should be deterministic at the fine-
grained level, just as at the coarse-grained level.

At the fine-grained level, the Reduce function should be
selective. In other words, when the input for a key is presented
one value at a time, then only the last value for that key
produces an output. As with all selectivities in MapReduce,
this does not affect correctness, only performance. The fine-
grained level is the perspective of a function called at each step
during the reduction. MapReduce does not require users to in-
crementalize their functions in this way, but this accumulator-
based approach to aggregation is common in other systems,
where it can be used for optimizations [24].

At the fine-grained level, the Reduce function is expected
to be stateful. The result for a key is expected to depend on
all values in the list for that key, which means that when each
value is handled by a separate firing, the Reduce function must
remember some state between firings. A Reduce function that
is stateless at the fine-grained level is not necessarily incorrect,
but that case is so uncommon that it is suspicious: it may
indicate that the system is not being used in the way in which it
was designed. For instance, such functionality might be better
situated in the Map function, thus saving the overhead of a
shuffle and an extra computation stage.

Assumptions for commutativity at the fine-grained level
are subtle. By default, the sort stage shown in Fig. 1 sorts only
the keys within a partition, not the values within a key [7]. That
implies an assumption that Reduce be commutative at the fine-
grained level, because otherwise the results are scheduling-
dependent. However, a common practice of Hadoop users is
to request a secondary sort of the values within a key. When
the secondary sort is present, Reduce need not be commutative
at the fine-grained level. The inventors of MapReduce could
have chosen to make their system more resilient by making
the secondary sort the default.

Function 
under test 

Analyzer Property of 
interest 

Property value 
and evidence 

Hadoop libraries 

Fig. 2. Testing framework

The MapReduce system guarantees partition-isolation by
construction at the fine-grained level, because the Reduce
function handles all values for a given key together as a single
list. Also, there is no separate assumption about associativity
at the fine-grained level, because the definition of associativity
directly uses multiple lists of values for the same key. Hence,
we do not analyze either partition-isolation or associativity at
the fine-grained level.

IV. DYNAMIC ANALYSIS

We now describe the testing framework that we use to
determine whether or not properties hold. We describe how to
instrument a function-under-test (FUT) to form a test program
for our analysis. Next, we describe how each property is tested.
Finally, we discuss test input generation techniques. In related
work [23], we built a similar testing framework for a different
domain (streaming analytics using SPL [12] instead of batch
analytics using MapReduce [7]).

A. Testing Framework

Figure 2 shows our testing framework. The main com-
ponent is the Analyzer, which reads the property that users
want to test, along with an FUT, which is a user-written Map
or Reduce function. The Analyzer instruments the FUT such
that when it executes, it generates information that can be
checked later. Then the Analyzer generates inputs relevant to
the property and executes the function with the inputs using
the Hadoop libraries. Instrumentation results are sent back to
the Analyzer, which checks whether the property holds. If the
property is violated, the Analyzer presents users with evidence
indicating the violation. If the property has not yet been shown
to be violated, the Analyzer generates additional test inputs
until it reaches a technique time limit, and on reaching that
time limit, it reports to the user that the property “potentially”
holds. The Analyzer can also report statistics on the extent of
the evidence provided for a potentially holding property.

While we use dynamic analysis to check the properties,
an alternative approach would have been to use static anal-
ysis. Both approaches are valid, and yield different trade-
offs. Dynamic analysis can observe only the behavior of
specific test runs, whereas static analysis can generalize over
all possible runs. Conversely, static analysis may be imprecise
and consider situations that are infeasible in practice. Since the
main contribution of this paper is the empirical study, rather
than the analysis approach, we chose to be pragmatic and select
dynamic analysis.
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TABLE I. WORKLOAD INFORMATION

Application Source Lines Functions Functionality
of code map red.

MultiFileWordCount Hadoop 178 1 1 Count words from several files.
QuasiMonteCarlo Hadoop 208 1 1 Estimate π using Monte-Carlo method.
RandomTextWriter Hadoop 651 1 0 Write 10GB of random textual data per node.
RandomWriter Hadoop 185 1 1 Write 10GB of random data per node.
SecondarySort Hadoop 161 1 1 Sort by two keys, a primary and a secondary.
Sort Hadoop 143 1 1 Sort the data written by the random writer.
WordCount Hadoop 60 1 1 Count the words in the input files.
Anagrams GitHub 79 1 1 Find all the anagrams in the given data corpus.
ApacheLogAnalyzer GitHub 224 1 1 Extract statistics from Apache access log file.
CustomKey GitHub 255 1 1 Count integer pairs in a file.
CVSPairThreshold GitHub 80 1 1 Read a file, looking at pairings above a certain threshold.
Dictionary GitHub 92 1 1 Concatenate different translations for the same word.
FacebookBuzzCount GitHub 107 1 1 Count “likes” on FaceBook for each college.
Geolocation GitHub 91 1 1 Group articles in Wikipedia by their GEO location.
ReduceSideJoin GitHub 119 2 1 Simple example of reduce side join.

ScoreFriends GitHub 273 4 2 Pipeline of multiple MapReduce jobs that starts with a score and a
a list of friends for each user, and sorts each list by decreasing scores.

UserAccessCount GitHub 69 1 1 Find user access information from log files.
FarmerMarket YouTube 99 1 1 How good are a city’s farmer’s markets?
Canopy Mahout 170,913 3 1 Group objects into clusters.
Dirichlet Mahout 170,913 2 1 Performs Bayesian mixture modeling.

FuzzyKMeans Mahout 170,913 4 2 Discover soft clusters where a particular point can belong to more than
one cluster with certain probability.

KMeans Mahout 170,913 3 1 Group objects into clusters.
MeanShift Mahout 170,913 4 1 Mean Shift clustering.

B. Testing Each Property

1) Determinism: The Analyzer generates an input and runs
it twice. Then the Analyzer compares the outputs from the two
executions. If they differ, the Analyzer concludes that this FUT
is definitely non-deterministic, returning the input as evidence.
Otherwise, it tries again with more inputs. If it reaches the time
limit, the FUT is probably deterministic.

2) Selectivity: The Analyzer generates an input, and checks
the output after each firing. If the output contains more than
one data item, the FUT is definitely prolific. Otherwise, the
analyzer keeps generating inputs until the time limit is reached.
At this point, if any firing had produced 0 data items, the FUT
is probably selective, otherwise, it is probably one-to-one.

3) Statefulness: For simplicity, the Analyzer tests stateful-
ness with an input in which all data items are the same. It
checks the output after each firing to see if it differs from the
output from the previous firing. If it is different, the FUT is
definitely stateful. Otherwise, the Analyzer keeps trying new
inputs until reaching the time limit. It then concludes that the
FUT is probably stateless.

4) Commutativity: The Analyzer generates an input for
the FUT. It executes the FUT with different permutations
of the input, one by one. The Analyzer checks the output
after each permutation to see if it differs from the output
of the previous permutation. If there is any difference, the
FUT is definitely non-commutative. Otherwise, the Analyzer
tries again with another input and its permutations. If the
time limit is reached without encountering evidence for non-
commutativity, the function is probably commutative.

5) Partition-isolation: The Analyzer generates an input in
which all data items have the same key. It runs the FUT on this

input and saves the result. Then, it randomly inserts data items
into the input that have a different key. It runs the FUT again
and compares the results. If the results differ, the pair of inputs
is evidence for partition-interference. Otherwise, the Analyzer
keeps trying new inputs until reaching the time limit. It then
concludes that the FUT probably satisfies partition-isolation.

6) Associativity: We check associativity only for Reduce
functions. The Analyzer generates an input consisting of a list I
of data items with the same key. It splits the list into two parts,
I1 and I2, such that I1 + I2 = I . Then, it runs the FUT four
times, to obtain four results: O = FUT(I), O1 = FUT(I1),
O2 = FUT(I2), and OC = FUT(O1 +O2). If O 6= OC , the
function is definitely not associative. Otherwise, the Analyzer
tries a different input. If the Analyzer reaches the time limit,
it reports that the FUT is probably associative.

C. Test Case Generation

Our testing framework relies on test case generation tech-
niques, many of which could be viable in our context. For
example, search-based test case generation techniques [1], [21]
and constraint-based test case generation techniques [3], [5],
[11], [16] yield successful results in many scenarios. This
work, however, uses a simpler approach, involving random test
case generation [9]. In random test case generation, for each
input to the FUT, values for that input are randomly chosen
within the range of possible values for that input given its type.
We chose this approach because it is easy to apply, widely
used, and works well in our case.

V. EMPIRICAL STUDY

To evaluate whether MapReduce applications meet the
paradigm’s design requirements, we conducted an empirical
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TABLE II. PROPERTY TESTING RESULTS FOR MAP FUNCTIONS

Application Class containing Determi- Selec- State- Commu- Partition
Map function nistic? tivity ful? tative? isolated?

MultiFileWordCount MapClass D prolific - C P
QuasiMonteCarlo QmcMapper D prolific - C P
RandomTextWriter RandomTextMapper - prolific S - -
RandomWriter RandomMapper - prolific S - -
SecondarySort MapClass D 1 : 1 - C P
Sort Mapper D 1 : 1 - C P
WordCount TokenizerMapper D prolific - C P
Anagrams AnagramMapper D 1 : 1 - C P
ApachLogAnalyzer StatisticsMapper D selective - C P
CustomKey CustomIntPairMapper D selective - C P
CVSPairThreshold Map D prolific - C P
Dictionary AnagramMapper D 1 : 1 - C P
FacebookBuzzCount FacebookMapper D prolific - C P
Geolocation GeoLocationMapper D selective - C P

ReduceSideJoin ReduceSideJoinUserNameMapper D 1 : 1 - C P
ReduceSideJoinUserLogsMapper D 1 : 1 - C P

ScoreFriends

EmitFriendsMapper D prolific - C P
ReduceSideJoin 1 UserScoreMapper D selective - C P
ReduceSideJoin 1 FriendsUserMapper D selective - C P
SecondarySort 2 UserFriendMapper D selective - C P

UserAccessCount Map D 1 : 1 - C P
FarmerMarket MapClass D 1 : 1 - C P

Canopy InputMapper D selective - C P
ClusterClassificationMapper D selective - C P

Dirichlet InputMapper D selective - C P

FuzzyKMeans InputMapper D selective - C P
ClusterClassificationMapper D selective - C P

KMeans InputMapper D selective - C P
ClusterClassificationMapper - selective S - -

MeanShift
InputMapper D selective S - -
MeanShiftCanopyCreatorMapper D 1 : 1 S - -
MeanShiftCanopyClusterMapper D 1 : 1 - C P

study. As objects of study we chose 23 MapReduce ap-
plications, which were composed of 38 Map functions and
24 Reduce functions. Table I provides information on these
applications. The first column lists the name of the applica-
tion, and the second column lists its source. The next two
columns list the numbers of lines of code (counted using cloc
version 1.56), and the numbers of Map and Reduce functions
in each application. The rightmost column provides a brief
description of the functionality of each application.

These object programs come from three sources. Seven
are provided as samples with the Hadoop package – in this
case, Hadoop version 0.21. Eleven come from an online code
source site (GitHub) and from tutorials found on YouTube. The
remaining five are from Apache Mahout version 0.8. Mahout
implements core machine learning algorithms such as cluster-
ing, classification, and batch-based collaborative filtering on
top of Apache Hadoop using the MapReduce paradigm [17].

Most of the object programs we use are self-contained;
they range in size from 60 to 651 lines of code. The Mahout
applications make extensive calls to the Mahout library, from
which they are difficult to separate. Therefore, for the Mahout
programs, we included the entire library (170,913 lines of
code) in the line count.

As mentioned in Section IV, the Analyzer uses a time
limit, and it can be set to any time. We used five minutes,

which worked well for our experiments and corresponds to
roughly 100 tests. We manually checked all analysis results and
found only one case where the answer was incorrect: for some
Map functions, input files need empty lines to expose the fact
that these functions are selective. However, the files generated
by our Analyzer contain no empty lines, so it misclassifies
functions whose selectivity depends on empty lines as one-
to-one. We report the manually corrected results. This manual
step could have been avoided by letting the Analyzer generate
empty lines in the test files.

VI. RESULTS

This section focuses on objective results, deferring inter-
pretations of those results to Section VII.

Table II displays the results of applying our analysis
approach to Map functions in our object programs. Whereas
Table I lists 38 Map functions, Table II lists only 32 Map
functions. The other six functions are omitted because they do
not generate any output, and therefore their semantic properties
cannot be tested for. Rather than using the context.write API
described in Section II, these Map functions store intermediate
results in attributes of their Map classes. Then, at the end of
the map stage, the Map classes use a Cleanup function to finish
the computation and produce an output to be passed on to the
reduce stage.
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TABLE III. PROPERTY TESTING RESULTS FOR REDUCE FUNCTIONS AT THE COARSE LEVEL

Application Class containing Determi- Selec- State- Commu- Partition Associ- Com-
Reduce function nistic? tivity ful? tative? isolated? ative? biner?

MultiFileWordCount IntSumReducer D 1 : 1 - C P A Y
RandomWriter Reducer D prolific - C P A N
SecondarySort Reduce D prolific - C P - N
Sort MyReducer D prolific - C P A N
WordCount IntSumReducer D 1 : 1 - C P A Y
Anagrams AnagramReducer D selective - C P - Y
ApachLogAnalyzer StatisticsReducer D 1 : 1 - C P - N
CustomKey CustomIntPairReducer D 1 : 1 - C P A N
CVSPairThreshold Reduce D selective - C P A Y
Dictionary AnagramReducer D selective - C P - N
FacebookBuzzCount IntSumReducer D 1 : 1 - C P A Y
Geolocation GeoLocationReducer D 1 : 1 - C P - N
ReduceSideJoin ReduceSideReducer D prolific - C P - N

ScoreFriends ReduceSide 1 Reducer D prolific - C P - N
SecondarySort 2 Reducer D prolific - C P A N

UserAccessCount Reduce D selective - C P A N
FarmerMarket Reduce D selective - C P A N
Canopy CanopyReducer D prolific - C P - N
Dirichlet CIReducer D 1 : 1 - C P - N
Kmeans CIReducer D 1 : 1 - C P - N

FuzzyKMeans CanopyReducer D prolific - C P - N
CIReducer D 1 : 1 - C P - N

MeanShift CanopyReducer D prolific - C P A N

As the table shows, of the 32 Map functions, three are non-
deterministic. Eight functions are prolific, ten are one-to-one,
and 14 are selective. In addition to the three non-deterministic
functions, we found two other stateful functions. All stateful
Map functions in our set of object programs were also non-
commutative and partition-interfering.

Table III displays analysis results obtained on Reduce
functions at the coarse-grained level. Whereas Table I shows
24 Reduce functions, Table III shows only 23 functions. One
is omitted because (as above) it produces no output and cannot
be tested for semantic properties. Instead, it stores intermediate
results in attributes of the Reduce class, which then calculates
the ultimate output from the Cleanup function.

As the table shows, all Reduce functions in our object
programs are deterministic. At the coarse-grained level, nine
Reduce functions are prolific, nine are one-to-one, and five
are selective. All Reduce functions are stateless, commutative,
and partition-isolated. There are 11 Reduce functions that are
associative. In seven cases, the Reduce functions are associa-
tive, but the applications do not use a combiner stage. There
is one case in which the Reduce function is not associative,
but the application uses it in a combiner stage.

Table IV displays analysis results obtained on Reduce
functions at the fine-grained level. As discussed in Section IV,
we check only four properties at this level: determinism, se-
lectivity, statefulness, and commutativity. All Reduce functions
are deterministic at the fine-grained level. Only one function
is prolific at the fine-grained level, six are one-to-one, and 16
are selective. Four functions are stateless at the fine-grained
level, while the rest are all stateful. Eight of the functions are
commutative, and the others are non-commutative.

VII. DISCUSSION AND IMPLICATION

We now provide additional insights into the results of our
study, and comment on its implications.

A. Assumptions vs. Realities for Map Functions

This section considers each of the assumptions applicable
to Map functions.

1) Determinism: Map functions are assumed to be deter-
ministic. However, our analysis discovered three Map functions
that are non-deterministic. Two of these are from examples in
the Hadoop package. These two Map functions use random-
number generators to produce synthetic test data for expe-
rimentation when no real-world data is available. The third
non-deterministic Map function is in the Mahout package.
This Map function does not use random-number generators
directly; instead, it uses an attribute of the Map class that
is initialized with a random number before the Map function
is first called. Specifically, this happens in the context of a
clustering algorithm, which begins with random clusters that
are later refined based on actual input data. In all three non-
deterministic Map functions, the non-determinism affects the
output not just of the Map stage, but of the entire application.

All three of these Map functions have been implemented
to be non-deterministic on purpose. This demonstrates that
there exist cases, such as for data-generation or for seeding
a machine-learning algorithm, where users consciously decide
that they do not need determinism. An implication for users is
that in such cases, the applications become more difficult to
test and debug, because their output is not reproducible. Even
if each local random-number generator were deterministic,
the overall result would also depend on task assignments,
scheduling, and even fault recovery: after a worker fails, the
system schedules the task to run again, but the results are all
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TABLE IV. PROPERTY TESTING RESULTS FOR REDUCE FUNCTIONS AT THE FINE LEVEL

Application Class containing Determi- Selec- State- Commu-
Reduce function nistic? tivity ful? tative?

MultiFileWordCount IntSumReducer D selective S C
RandomWriter Reducer D 1 : 1 - -
SecondarySort Reduce D prolific - -
Sort MyReduce D 1 : 1 - -
WordCount IntSumReducer D selective S C
Anagrams AnagramReduce D selective S -
ApachLogAnalyzer StatisticsReducer D selective S C
CustomKey CustomIntPairReducer D selective S C
CVSPairThreshold Reduce D selective S C
Dictionary AnagramReducer D selective S -
FacebookBuzzCount IntSumReducer D selective S C
Geolocation GeoLocationReducer D selective S -
ReduceSideJoin ReduceSideReducer D selective S -

ScoreFriends ReduceSide 1 Reducer D selective S -
SecondarySort 2 Reducer D 1 : 1 - -

UserAccessCount Reduce D selective S C
FarmerMarket Reduce D selective S C
Canopy CanopyReducer D 1 : 1 S -
Dirichlet CIReducer D selective S -
Kmeans CIReducer D selective S -

FuzzyKMeans CanopyReducer D 1 : 1 S -
CIReducer D selective S -

MeanShift CanopyReducer D 1 : 1 S -

but certain to contain different random numbers. That said, in
most cases, the user-written function is deterministic, and it is
useful for the MapReduce system to strive for determinism at
the application level too.

2) Selectivity: MapReduce is inspired by functional lan-
guages with higher-order functions, where the Map function
is traditionally one-to-one. However, only 10 of the 32 Map
functions we tested are one-to-one. There are 14 cases in which
Map functions are selective. In these cases, when an input item
is empty, the Map function generates no output. In other words,
instead of representing missing values by some representation
of null, these Map functions simply omit missing values. There
are also eight cases in which Map functions are prolific. In
six of these eight cases, the functions are prolific because of
the format of the input files utilized. If there is more than
one element in one line of an input file, these Map functions
split them and send them to output one by one. In other
words, these functions produce multiple output data items for
a single input data item. The remaining two prolific functions
are the non-deterministic synthetic input generators from the
Hadoop package. These input generators are configured with
the number of bytes written to output per firing. The default
setting is 1024 bytes, so in each firing, data is written to context
until the limit is reached. This makes these Map functions
prolific. By tweaking this setting, which is stored in an attribute
of the Map class, the same Map functions can also be made
selective or one-to-one.

As mentioned in Section III, selectivity does not affect
the correctness of applications, but it does affect performance.
Based on the roots of MapReduce in functional languages, one
would in theory expect the output of the map stage to have
the same size as its input. In practice, however, Map functions
are often not one-to-one. If the Map function is selective, then
the combine stage is less important, because the main purpose

of the combine stage is to reduce the volume of data to be
sent over the shuffle. On the other hand, if the Map function is
prolific, the combine stage, and possibly other optimizations
as well, are more important. For instance, if the data volume
after the map stage is large, it may help to introduce pipeline
parallelism between the map and reduce stages, as proposed
by MapReduce Online [6].

3) Statefulness: Map functions are assumed to be stateless.
However, we found five Map functions that are stateful. Three
of these are stateful due to non-determinism as discussed
above. The other two have an attribute in their Map classes with
a counter. Each firing increments the counter, and each output
data item includes the counter as part of its value. Therefore,
these two functions are not only stateful, but their statefulness
is visible in the output of the map stage. This means that the
counts affect the sort stage and the reduce stage.

MapReduce always parallelizes the Map function and dis-
tributes it across multiple workers. However, this is not safe
to do for stateful Map functions, in the sense that the result of
a parallel run will differ from the result of a sequential run.
In fact, the computation is not repeatable from one parallel
run to the next, because it depends on scheduling. The lesson
for users is that something as innocuous as a counter can
jeopardize the determinism guarantees of an entire system,
and should therefore be avoided. The lesson for language and
system designers is that a trust-but-verify approach may be
useful: let users decide whether they want to write stateful
functions, but perform some analysis to warn about inadvertent
cases.

4) Commutativity: Map functions are assumed to be com-
mutative, but our analysis found five non-commutative Map
functions. These are the same five functions that were found
to be stateful, including three non-deterministic functions and
two functions that maintain state with a counter. Map functions
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need to be stateless for safe parallelization. In the stateful case,
commutativity could at least partially shield the application
from unsafe parallelization, because the result would at least
be robust relative to input order. However, this second line of
defense did not occur in any of the workloads we looked at.

5) Partition-isolation: Map functions are assumed to be
partition-isolated. The Map functions that are stateful and non-
commutative are also partition-interfering. The same reasons
apply here; the randomness and counter information cause the
output of one key to be affected by different keys. As discussed
under commutativity above, MapReduce parallelization is fully
safe only for stateless Map functions. Like commutativity,
partition-isolation can also serve as a second line of defense,
because it shields the application from some scheduler deci-
sions. However, we did not observe this effect in practice.

B. Assumptions vs. Realities for Reduce Functions, at the
Coarse-Grained Level

This section considers each of the assumptions applicable
to Reduce functions at the coarse-grained level.

1) Determinism: Reduce functions are assumed to be de-
terministic at the coarse-grained level and in all cases observed
in our experiment they are.

2) Selectivity: Reduce functions are assumed to be one-
to-one at the coarse-grained level. However, we found nine
prolific Reduce functions. In most of these cases, the functions
generate one output item for each data item in the values list.
In one case, the Reduce function always generates a split line
before generating other outputs when it is called for a key. We
also found five selective Reduce functions: for example, one
of them computes a sum, but only outputs it if it is non-zero.

Given that prolific and selective Reduce functions do
exist, the system needs to take them into consideration for
performance. Our findings validate the design choice made by
the inventors of MapReduce to put the output in a distributed
file system, because it is not always reduced to a small amount
of data. Also, if the Reduce function is prolific, it can be
counter-productive to use it as a combiner, because a combiner
tries to reduce traffic on the shuffle, and does not serve that
purpose when prolific.

3) Statefulness: Our study confirms the assumption that
Reduce functions are stateless at the coarse-grained level.

4) Commutativity: Our study confirms the assumption that
Reduce functions commute at the coarse-grained level.

5) Partition-isolation: Our study confirms the assumption
that Reduce functions satisfy partition-isolation at the coarse-
grained level.

6) Associativity: Our applications include 11 Reduce func-
tions that are associative, and 12 that are not. For those that
are associative, seven involve applications that do not use
a combiner. Of the non-associative Reduce functions, only
one is used as a combiner. We investigated this case and
found that the use of the non-associative Reduce function in
the combiner does not affect the behavior of the application
significantly; it affects only the position and the number
of commas in its output, which are used to split the real
output data. One application, CVSPairThreshold, uses both an

associative Reduce function and a combiner, but the combiner
employs a different function than Reduce. The combiner only
summarizes the information for a key, while the reducer also
does that and in addition controls the final output by applying
a threshold to the summarized information.

The foregoing discussion has two implications. First, if the
Reduce function is associative, users should have a combiner
stage using the same Reduce function to help improve perfor-
mance, because the Hadoop system is designed to include a
combiner stage. Second, when functions are not associative,
users cannot use the same Reduce functions in the combiner
stage. In the case we observed, even though the use of a non-
associative Reduce function in the combiner stage did not
affect the results significantly, it still means that results are
not precisely reproducible.

C. Assumptions vs. Realities for Reduce Functions, at the
Fine-Grained Level

This section considers each of the assumptions applicable
to Reduce functions at the fine-grained level.

1) Determinism: As at the coarse-grained level, Reduce
functions were all observed to be deterministic at the fine-
grained level.

2) Selectivity: Reduce functions are assumed to be selec-
tive at the fine-grained level. However, we found six Reduce
functions that are one-to-one and one that is prolific. Those
that are one-to-one generate one output item for each input
item in the list of values. The one case that is prolific at the
fine-grained level is also prolific at the coarse-grained level.
As mentioned above, this Reduce function generates a split
line when it is called. Therefore, for the first data item, there
are two output data items, which render this Reduce function
prolific. Comparing the results of checking selectivity at the
two levels, if a Reduce function is one-to-one or prolific at
the fine-grained level, it must be prolific at the coarse-grained
level. If it is selective at the fine-grained level, it could be
either one-to-one or selective at the coarse-grained level.

Not all Reduce functions are selective at the fine-grained
level. By comparing selectivity at both the coarse-grained
and the fine-grained levels, we obtain a more differentiated
view than if we were to look at only one or the other. The
fine-grained results reinforce the conclusions from earlier that
one should not expect the reduce stage to always decrease
the amount of data. Systems and applications must plan
accordingly to handle possibly large outputs.

3) Statefulness: Reduce functions are assumed to be state-
ful at the fine-grained level. However, we found four Reduce
functions that are stateless. Two of these simply implement
an identity function: each element of the list of values is
copied unmodified into the output data item, together with the
corresponding key. At first glance, an identity reducer may
seem useless, but keep in mind that MapReduce also performs
a sort stage in the reduce workers, and using an identity reducer
while specifying a secondary sort key is a common trick for
obtaining just the sorting. The other two stateless Reduce
functions perform simple transformations one value at a time,
but without remembering state across values. No historical
information is used, so these functions are stateless. Comparing
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the selectivity results with the statefulness results, we see that
if a Reduce function is selective, it is probably stateful. This
type of Reduce function summarizes the information on all
data items in the list of values and writes the final result to
output.

4) Commutativity: There are no assumptions made about
the commutativity of Reduce functions at the fine-grained
level. Stateless functions are commutative by default. There are
eight Reduce functions that are stateful and commutative; these
summarize information from input items. However, the other
11 stateful functions are not commutative. The order in which
inputs are received is important in these cases, because they
concatenate some information from each data item together
and send the concatenated content out. This suggests it would
be a good habit for users to enable Hadoop’s secondary
sorting (of values within a key). Alternatively, designers of
new systems could make this behavior the default.

VIII. RELATED WORK

Dean and Ghemawat’s [7] seminal paper on MapReduce
mentions some semantic properties of user-defined functions.
The paper points out that the overall application is determinis-
tic if the Map and Reduce functions are stateless. It describes
how the system takes care of partitioning and sorting; as
we discuss, doing so relaxes the requirements for partition-
independence and commutativity. The paper also mentions
that if Reduce is associative, it can be used as a combiner.
Our paper clarifies these properties and assumptions, and
characterizes to what extent they hold in workloads.

Lämmel [15] provides an essay on how to emulate MapRe-
duce in the Haskell functional programming language using
higher-order functions (HOFs). Among other things, Lämmel
reiterates the role of associativity, and points out that if the
Reduce function is commutative, there are additional opportu-
nities for optimization. Instead of rephrasing the inner work-
ings of MapReduce in Haskell, we characterize MapReduce
workloads implemented in Hadoop. Our paper explores which
semantic assumptions hold in practice.

Kavulya et al. [14] characterize traces of Hadoop jobs
running on a research cluster and Chen et al. [4] characterize
traces of Hadoop jobs running on production clusters. These
papers study empirical data on job completion times, data set
sizes, and burstiness of a job mix. Unlike these papers, we
look at code, not traces, enabling us to explore more high-
level semantic properties. However, even at the level of traces,
Chen et al. are able to characterize selectivity, finding that in
some jobs, the Map function aggregates data and is selective,
and in other jobs, the Reduce function expands data and is
prolific. Our semantic characterization confirms and explains
these surprising results about selectivity, as well as exploring
several additional properties.

Olston et al. describe a dynamic analysis [19] that generates
examples for Pig Latin [20], a programming language for
MapReduce. These examples show sample data at each stage
of a dataflow graph to help humans understand the behavior of
their application. Instead of concrete low-level example data,
we find high-level semantic properties. Furthermore, while
their paper mostly focuses on describing a tool for workload

characterization, our central contribution is an empirical study
that characterizes several real-world workloads.

Our own related work [23] describes a dynamic analysis
for dataflow operators and applies it to the SPL streaming
language [12]. Unlike the present paper, the prior paper does
not consider MapReduce programs, and it does not provide a
workload characterization. Instead, it formalizes properties in
first-order logic, and explores a variety of test case generation
techniques that can be used to check those properties on SPL
operators.

Hueske et al. [13] invented a static program analysis for
user-written code in Stratosphere, a MapReduce-like system.
They focus on read-sets and write-sets, which are useful for
operator reordering, and on selectivity, which we also explore.
On the other hand, they do not analyze determinism, state-
fulness, or partition-isolation, and instead silently assume that
those properties hold. Our paper differs in that we use dynamic
analysis instead of static analysis, work on MapReduce instead
of Stratosphere, and cover a broader set of semantic properties.

There is a growing literature on semantic workload char-
acterization for widely-adopted languages and features. These
papers formed part of the inspiration for our work, since
they have benefited the research community by identifying
pain-points in current designs. They encompass characteri-
zations of workloads for the C preprocessor [10], Java [8],
JavaScript [22], and R [18]. Like our work, they focus on se-
mantics, but unlike our work, they do not address MapReduce.

IX. CONCLUSIONS

This paper characterizes the semantics of 23 MapReduce
applications. The characterization checks commonly-held as-
sumptions of what properties user-written Map and Reduce
functions should satisfy. For example, one might expect that
Reduce reduces the data volume, by summarizing multiple
input data items into a single output data item. Likewise, Map
is assumed to be stateless, since otherwise, the parallel and
fault-tolerant MapReduce execution yields non-deterministic
outputs. We find that these assumptions are commonly violated
in practice. In some cases, a violated assumption constitutes a
bug, and we offer suggestions for fixing it. In other cases,
a violated assumption is arguably less important or even
intentional. We discuss implications from the perspective of
users, system implementers, and language inventors.

Characterization of workloads is one use case for our
testing framework, and this paper both illustrates how such
characterizations can be obtained and provides data on a
substantial set of applications. A second use case for our
testing framework, explored initially in [23], involves the
testing of Map and Reduce functions by engineers who create
them. In this use case, engineers can utilize test cases that
they create, or test cases generated by approaches such as the
one we utilize in our study, to assess whether their operators
possess necessary properties for the given situations in which
they are employed. In future work we intend to continue to
study this approach.
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Scott Schneider, Robert Soulé, and Kun-Lung Wu. IBM Streams
Processing Language: Analyzing big data in motion. IBM Journal of
Research and Development (IBMRD), 57(3/4):7:1–7:11, 2013.

[13] Fabian Hueske, Mathias Peters, Matthias J. Sax, Astrid Rheinländer,
Rico Bergmann, Aljoscha Krettek, and Kostas Tzoumas. Opening the
black boxes in data flow optimization. In Very Large Data Bases
(VLDB), pages 1256–1267, 2012.

[14] Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. An
analysis of traces from a production MapReduce cluster. In Cluster,
Cloud, and Grid Computing (CCGrid), pages 94–103, 2010.
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