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Abstract—Increasingly, applications that deal with big data
need to run analytics concurrently with updates. But bridging
the gap between big and fast data is challenging: most of
these applications require analytics’ results that are fresh and
consistent, but without impacting system latency and throughput.
We propose virtual lightweight snapshots (VLS), a mechanism that
enables consistent analytics without blocking incoming updates in
NoSQL stores. VLS requires neither native support for database
versioning nor a transaction manager. Besides, it is storage-
efficient, keeping additional versions of records only when needed
to guarantee consistency, and sharing versions across multiple
concurrent snapshots. We describe an implementation of VLS in
MongoDB and present a detailed experimental evaluation which
shows that it supports consistency for analytics with small impact
on query evaluation time, update throughput, and latency.

I. INTRODUCTION

The ability to leverage insights from large volumes of
rapidly-evolving data is a requirement in an increasing number
of applications. Decisions must be made on-the-spot for a
given incoming event, but often, these decisions must also
consider large volumes of historical data. Big data companies
have acknowledged the need to effectively combine big data
(analytics over retrospective data) with fast data (data that is
constantly updated) for a wide range of problems [1], [2].

At IBM, a middleware called “Operational Decision Man-
ager: Decision Server Insights” (ODM Insights) has been
developed as a foundation for such applications [3]. Figure 1
depicts its architecture. An event processor receives multiple
events that cause updates to the system’s NoSQL data store;
simultaneously, it generates actions in response to these events
informed by analytics over the same store to analyze historical
data and discover new insights. Real-world scenarios targeted
by ODM Insights include customer payment verification (e.g.,
detecting promotions and fraudulent activites), air traffic con-
trol (e.g., rerouting the closest flights to an airport), and health
costumer care (e.g., predicting outbreaks and illness diagnosis).
For most of these applications, data freshness is crucial, since
incorrect decisions may be taken if analytics do not see a recent
version of the data. But freshness is not the only concern:
analytics results must also reflect a consistent view of the data.
In these high-stake domains, a seemingly small change in the
data can lead to radically different outcomes, and consistency
is essential to ensure the integrity of results and predictability
of the system’s behavior.

Traditionally, update operations (OLTP) and analytics
(OLAP) have been handled by different systems. Transactional
systems are optimized to support many concurrent updates,
maximizing throughput and ensuring low latency. In contrast,

Fig. 1: The ODM Insights middleware for events and analytics.

OLAP systems, such as data warehouses, are optimized for
long-running queries that involve expensive table scans. Al-
though changes can be propagated from the transactional store
to the data warehouse periodically, analytics end up being
performed over an outdated version of the data. Using a single
system for both workloads brings freshness to analytics, but
leads to resource contention: analytics may hold long-running
locks, thus negatively impacting update throughput and latency.
To mitigate this problem, a lower level of isolation, such as
cursor stability [4], can be used, but this has the undesirable
effect that records may change while analytics are in progress,
leading to inconsistent results.

In the context of the ODM Insights middleware, ensuring
consistency is more challenging because the data resides in
a NoSQL system. These systems have been widely used to
handle both big and fast data, but they often do so without
guaranteeing consistent results. One of the goals for ODM
Insights is to support MongoDB as its data store for various
reasons [5], including (i) its support to JSON, which brings
interoperability and flexibility for the middleware, (ii) its abil-
ity to handle high update throughputs, (iii) its implementation
of a non-versioned store that limits space requirements, (iv)
its popularity, and (v) its availability on IBM’s Bluemix cloud
platform. However, as many NoSQL systems, MongoDB lacks
transactional capabilities and only guarantees weaker forms
of consistency, such as atomicity on single record operations
and cursor stability for queries. Indeed, despite the foregoing
benefits, our prior work with ODM Insights could not use
MongoDB directly due to its lack of consistency [5].

This paper introduces virtual lightweight snapshots (VLS),
a new snapshotting technique that provides consistency for
analytics in the presence of concurrent updates in disk-resident
NoSQL systems. VLS was designed to require neither a trans-
action manager nor native support for versioning: snapshots
are virtual and built on demand–as needed by ad-hoc queries–
at a low cost, having negligible overheads both in terms
of latency and throughput. Our approach focuses on non-
distributed scenarios but we are extending the solution to
address distributed cases as well (see Section VI).

The design of VLS was inspired by concurrent garbage
collection (CGC) algorithms, which perform memory reclama-
tion while applications concurrently modify the memory [6];
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Fig. 2: Single-snapshot approach over the flight table.

in a database system, this is equivalent to supporting a
query to execute over a consistent snapshot while updates
are taking place. Therefore, VLS can be seen as a snapshot
isolation technique [7] that is amenable for implementation
in NoSQL stores. Our approach also shares some similarities
with previous work on transient versioning [8]–[10], in the
sense that snapshots are created on demand. There is, however,
an important difference: VLS does not require a transaction
manager. This is key to the applicability of VLS to ODM
Insights, as many NoSQL systems, including MongoDB, lack
support for transactions.

The core contribution of this paper is VLS. VLS is a
new technique that enables consistent analytics in disk-resident
NoSQL systems (e.g., MongoDB) while, at the same time,
attaining low latency and high throughput for updates (Sec-
tions II and III). The overheads are kept low through the use of
data structures that are compact and support fast operations to
manage the snapshots. In addition, storage usage is minimized
by sharing data across multiple queries and snapshots. As
a proof of concept, we implemented VLS in MongoDB by
modifying the native database operations to support the VLS
algorithm (Section III-C). Furthermore, our detailed experi-
mental evaluation shows that VLS supports consistent results
with low memory usage and computational overheads for
analytics and updates (Section IV).

II. BACKGROUND AND MOTIVATION

An important goal of our work is to provide efficient
support for concurrent updates and analytics running in a
NoSQL system, so as to have results that are both fresh
and consistent. Our solution to this problem was inspired
by techniques used in CGC. Although these techniques were
designed for a different problem, issues arise during a table
scan in the presence of updates that are similar to those
that arise in CGC. When attempting to reclaim memory, the
garbage collector scans the memory and must see a consistent
version to avoid premature reclamation. Concurrently, one or
more threads of an application may modify that same memory,
e.g., by manipulating object pointers. Analogously, a table
scan that is performed while multiple updates are concurrently
applied should see a consistent snapshot of the table.

Snapshot-at-the-beginning algorithms are a class of CGC
algorithms that reclaim only objects that are unreachable at the
beginning of a garbage collection scan. The graph of reachable
objects is fixed at the moment garbage collection starts, and the
collector only sees that snapshot, ignoring objects that become
unreachable as it runs to ensure termination. In what follows,

we describe one such algorithm, Yuasa’s algorithm [6], that al-
lows applications to keep running and to make modifications to
object pointers while the garbage collection is being executed.
We begin by showing, through an example, how the algorithm
can be adapted to support a single scan without blocking
concurrent updates. Then, we discuss additional challenges that
arise in the database context, notably how to support index
scans and multiple concurrent analytics, and give an overview
of how VLS addresses them.
Single Snapshot: Example. Consider a simple scenario from
an air traffic control, which represents a typical ODM Insights
use case: there is an airport closure due to a storm and flights
must be rerouted. To identify the closest flights, a query is
issued to the database that holds information about all flights
for a given destination. This database is updated continuously,
receiving events as planes move. Each record in the table has
a unique id, the flight number, and the current distance to the
destination airport. Finding the closest flights requires a scan
S over the table. For the time being, we assume that there are
no indices and S needs to read the entire table.

Figure 2a shows the state, or snapshot, of the table at the
time S starts. Using transient versioning terminology, we call
this snapshot the stable version of the table for the analytics,
with the corresponding records being the stable versions as
well. As in Yuasa’s algorithm, where the garbage collector
sees the memory state at the time it begins its execution, a
query sees the database state as of the time it starts and must
not see subsequent changes.

As changes are applied, the snapshot is maintained using
two data structures: (i) a bit that is assigned to each record
in the base table to indicate whether it is stable (bit set to
0), or whether it has been changed or read by the scan (bit
set to 1); and (ii) a remset (which stands for remembered set)
that remembers the stable version for the records that have
been changed but have yet to be read since the scan started.
Similarly, in CGC, the bits indicate which object pointers the
garbage collector should read and which pointers it should
skip, while the remset stores the overwritten values for the
object pointers skipped by the collector.

At the beginning of scan S, all bits are set to 0, and the
remset is empty, as shown on Figure 2a. As S proceeds, it
reads records and switches the bit from 0 (unread) to 1 (read).
During the scan, updates may be applied to the table. Figure 2b
shows S having read the first two records and three updates
being applied to records that have yet to be read (ahead of S).
Update U modifies the value for record 2. Since the current
version of this record is the stable one, U first copies this
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version to the remset, flips its state to 1, indicating that this
record has changed, and applies the update. Update D deletes
record 4 from the base table, but before doing so, copies its
current version to the remset. Finally, update I inserts a new
record and sets the bit to 1 indicating that it does not belong
to the stable version of the table, i.e., it must be skipped by S.

Figure 2c shows three additional updates on records that
have their bit set to 1. The first update is on record 1, which
has already been read by S, while the second and third updates
are on records 2 and 7, ahead of S but with their bits already
set to 1. These updates can be applied directly, requiring no
bit operations or changes to the remset. As S proceeds, it skips
records 2 and 7, since they have been changed/inserted after
S started. Figure 2d shows, in the base table, read records
in a gray background, and the skipped ones with a white
background. After scanning the base table, S retrieves the
stable version of records that have been skipped from the
remset: record 2, which was modified, and record 4, which
was deleted. The combination of the records read from the base
table (gray records) and the remset records corresponds exactly
to the stable version of the table and is what we call a virtual
lightweight snapshot (VLS). The snapshot is virtual because
it is simulated rather than materialized, and it is lightweight
as the bits and the remset are the only additional pieces of
information used to maintain the snapshot.

Note that this snapshot ensures consistent results: at the
beginning of the scan (Figure 2a), the closest flight is the one in
record 1, and since the stable version of the table is maintained,
the result reflects that version. If cursor stability were used
instead, individual records would be locked as they are read
by the scan: after the scan fetches records 0 and 1, and after
the updates in record 2 are applied in Figure 2b and Figure 2c,
the scan would identify that record 2 contains the closest flight,
which is incorrect. In addition, this result reflects neither the
stable version of the table, nor the version of the table at the
end of the scan: for both versions, the closest flight is still the
one in record 1.
Challenges in the Database Context. While we can draw
analogies between CGC and consistent evaluation of database
queries, there are additional issues that need to be addressed in
the database context. One challenge is that garbage collection
works for a single scan, while databases need to support con-
current analytics corresponding to distinct, possibly overlap-
ping, snapshots. A naı̈ve approach would be to simply allocate
one bit and one remset per scan. However, the overlap between
concurrent scans can be large, leading to many duplicated
record versions across remsets and inefficient storage use. To
avoid duplicates, we extend the bit logic described above
to allow multiple, overlapping snapshots to share a single
remset, reducing the amount of additional storage required.
Our experimental results show that sharing remsets leads to
storage savings of up to 60 times (Section IV).

Another challenge is that garbage collection always per-
forms a full scan, while we need to support index scans, i.e.,
partial scans on the base table. For example, assume that the
table from Figure 2 has a B-Tree index on the distance field
and a query asks for flights that are at most 400 miles from the
airport. When using the index, some records are skipped (e.g.,
flights with distance greater than 400 miles: records 3, 4, and
6). Updates to these records would still add them to the remset

Fig. 3: Overview of the virtual lightweight snapshots approach.

as the bit indicates that they are stable, leading to incorrect
results: the delete operation in Figure 2b would maintain that
version of record 4 in the remset, while this version should
not be read by the index scan. The VLS algorithm ensures
that these spurious records, i.e., records incorrectly added to
the remset, are not retrieved by the index scans.

A third challenge is to ensure the integrity of the bits used
for records as the system runs, in a way that minimizes the
overheads and allows resources to be efficiently reused. As
a simple example, consider again Figure 2: at the beginning
of the scan, all records have their bit set to 0, and at the
end of the scan, all records have their bit set to 1. A classic
CGC implementation would do a pass to flip the bits to 0
again before a new scan starts. This is obviously expensive
in a database context, in particular for large datasets with
many millions (or billions) of records. We avoid the need
to reset the bits by changing their semantics between two
consecutive scans, i.e., in every other execution, 1 becomes
the indicator for stable records. As a consequence, these bits
can be reused without the need for an expensive operation to
reset them. Index scans, on the other hand, require additional
bookkeeping: since some records are not read, their bits remain
unflipped. Thus, the algorithm needs to ensure that all the
bits are properly set for a new scan. While for full scans
the overheads for maintaining the bits are amortized, since
all records are read, a naı̈ve solution for index scans can result
in unacceptable costs, which we avoid in our approach.

III. THE VLS ALGORITHM

Figure 3 shows a high-level overview of the VLS architec-
ture. The approach implements versioning at the record level: a
virtual lightweight snapshot is created for each read-only query
(i.e., analytics) and consists of (a subset of the) records from
the base table and from the shared remset. A query runs over
its snapshot and thus sees a consistent view of the data. Update
operations applied to the base table maintain these snapshots
by copying stable versions of modified records to the remset,
where these versions can be shared across queries, limiting
space overhead.

Our goal is to support consistent analytics without neg-
atively impacting the concurrency in NoSQL systems (e.g.,
MongoDB) so as to bring consistency to ODM Insights. These
systems often lack transactional capabilities, and although
some stores have native support for database versioning, not all
of them do, and full-fledged versioning costs a lot of storage
space. Thus, we make the following assumptions about the
underlying store: (i) there is no support for ACID transactions,
and as a consequence, updates are atomic and modify single
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Fig. 4: Global masks in the VLS algorithm.

records; (ii) there is no database versioning; (iii) the data is
disk-resident and non-distributed; and (iv) analytics fundamen-
tally rely on a few key data access operations, namely scans,
which can be either full scans over a given base table or index
scans. The VLS algorithm supports any analytics that can be
built on top of these scans. In ODM Insights, that includes
both descriptive analytics [11] and predictive analytics [3].

The remainder of this section describes the VLS algorithm
in detail, showing how it provides efficient support for (i) mul-
tiple scans and (ii) index access. The end of the section also
discusses our current VLS implementation.

A. Support for Multiple Scans

The VLS algorithm extends the bit representation and
the remset used in the single-scan approach from Section II.
Instead of relying on a single bit, N -bit vectors are used to
handle N concurrent analytics, so that each scan can set these
bits independently. Bit vectors are also attached to the remset
to indicate which record versions correspond to which active
scans. Additional bookkeeping is required to: (i) allocate bits
to incoming scans, (ii) maintain the meaning of bits (stable
and changed/read), and (iii) remove records from the shared
remset when they are no longer needed.

1) Data Structures: Our approach uses several masks that
are represented as bit vectors. The algorithm and the choice
of specific masks are such that we can always use efficient
bitmap operations (Table I), making the solution practical and
limiting the overhead added to the database operations (see
Section IV). We note that bit vectors have been used before to
efficiently deal with a variety of database problems, including
concurrent query processing in data-centric engines [12] and
multi-query optimization in data warehouses [13].

We first discuss the masks used for scans that are not tied
to a specific record.

• Active Mask. When a scan starts, it is assigned a specific
bit that is identified by its position. A scan uses this bit
consistently, i.e., the same position, in all masks for its entire
duration. To assign a position to an arriving scan, we need
to know which positions are available. This is done by using
the global N -bit vector active mask: if position i in active
mask has bit 1, then position i is not being used by any
active scan; otherwise, if the bit is 0, position i has already
been assigned.
While active mask is global to the database and is used
to control the assignments of scans to bits, the base table
maintains a local copy of this mask to inform table updates
if stable versions of the records must be maintained in the
remset (i.e., if there are active scans while updates are in
progress). This copy is stored in the N -bit vector local
active mask. We show later, while describing the database
operations, how these masks are synchronized.

• Stable Mask. The global N -bit vector stable mask stores
which value in each bit means stable. For instance, if
position i in stable mask is 0, then 0 corresponds to stable
for that position. Initially, stable is represented by 0 in all
positions, i.e., the stable mask is initialized as a vector of
bits set to 0.

• Scan Mask. In addition to active mask, which globally
keeps track of which bits have been allocated, each scan
needs to know which bit it owns. Therefore, each scan keeps
a mask indicating which position it uses, represented by
the N -bit vector scan mask. In this mask, the position with
bit value 1 is the one assigned to the scan—all the other
positions are set to 0.

Figure 4 illustrates the use of these masks. Their values
change only when a scan starts or completes. At time T0, no
scan is active and active mask only contains bits with value
1. Because two scans were executed to completion before T0,
stable mask indicates that 1 means stable for the first two bits
(which were assigned to these two scans), and that 0 means
stable for the last three bits. When scan S1 starts at time T1, it
is given an available bit (here, the third bit), reflected in active
mask by setting the third bit to 0, and a scan mask indicating
that it should use the third bit for all its operations. Similarly,
when scan S2 starts at time T2, it is allocated the first bit,
and given a corresponding scan mask. Once S1 completes at
time T3, its scan mask is released, the third bit in active mask
reverts to 1, and the meaning of stable is switched from 0 to
1 in stable mask. The same occurs when scan S2 completes at
time T4. At this point, all the bits in active mask have value
1, i.e., there are no scans running.

We now present the bit vectors tied to specific records. As
described in the previous section, the remset is used to store
the stable versions of the records that have been modified but
that have yet to be read by a scan; note that one record may
have different versions in the remset, since scans can start at
different times. As snapshots for different active scans may
overlap, to make efficient use of memory, we use a shared
remset, along with additional bit masks that indicate which
record versions a scan should fetch from it. The following
masks are used in either the base table or the remset:

• Status Mask. Each record in the base table is associated
with an N -bit vector status mask, where each bit corre-
sponds to a different active scan.

• Remset Status Mask. The algorithm maintains a mask for
each record version in the remset: the N -bit vector remset
status mask. If position i in the remset status mask of a
record version is 0, then the active scan S assigned to
position i should read this version, i.e., this version belongs
to the snapshot for S; otherwise, if the bit value is 1, S
should skip it.
In addition to keeping track of which snapshot a record

belongs to, the remset status mask is also used to support
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TABLE I: Efficient bitmap operations in the VLS algorithm.
Name Bitmap Operations for Scans and Updates

REMSET MASK INS ( stable mask XOR status mask )
OR local active mask

REMSET MASK UPD scan mask OR remset status mask
LCL ACTIVE MASK UPD local active mask OR scan mask

ACTIVE MASK UPD active mask OR scan mask
STATUS MASK UPD NOT ( stable mask XOR local active mask )

STATUS MASK SCAN UPD status mask XOR scan mask

SCAN TABLE READ ( stable mask XOR status mask )
AND scan mask

STABLE FLIP stable mask XOR scan mask
SCAN REMSET READ scan mask AND remset status mask

IDX STATUS MASK INS NOT ( index active mask )
IDX STATUS MASK UPD index status mask OR index active mask
IDX ACTIVE MASK UPD index active mask OR scan mask
SCAN IDX MASK I UPD index status mask AND ( NOT ( scan mask ) )
SCAN IDX MASK U UPD index status mask OR scan mask

IDX SCAN READ index status mask AND scan mask

memory reclamation of versions in the remset that will no
longer be used: if all the bits in a remset status mask are 1,
no other scan will read the corresponding version, so the scan
can remove this version from the remset. This reclamation is
immediate: a record version is removed as soon as it is no
longer needed.

Next, we look at how these bit masks are maintained
by individual operations on the store: table updates and full
scans. Since our focus is on NoSQL stores, we assume that
table updates are atomic, and that there is no transaction
manager. While describing the algorithm, we refer to the
bitmap operations from Table I.

2) Update Operations: Let U be an update operation that
inserts, deletes, or modifies a single record.
U modifies a record. First, U uses the bit operation REMSET -

MASK INS and stores its value in a temporary N -bit vector temp
mask. If all bits in temp mask have value 1, it means that (i) this
record has already been modified before (if so, stable versions
were already placed in the remset), or (ii) all active scans
have already accessed it (if so, these scans no longer need this
record), or (iii) there are no active scans, or (iv) a combination
of the previous; therefore, U simply modifies the record and no
operations need to be applied to the masks. Otherwise, if there
is at least one bit 0 in temp mask, the current version of the
record is the stable one for at least one active scan; in this case,
this version needs to be maintained in the remset prior to the
update, and the following actions are executed in order: (1) the
current version of the record is added to the remset, together
with temp mask, which corresponds to the remset status mask
of this version; (2) status mask is updated to the result of bit
operation STATUS MASK UPD, to inform active scans to skip the
record; and (3) the record is modified by U.

Note that, in the bitmap operation REMSET MASK INS, the
expression stable mask XOR status mask checks if, for each
bit position in status mask, the record is stable (outputting
0 for stable), while the remainder of the operation ensures
that only bits having active scans are taken into account.
Other operations perform similar XOR operations against the
stable mask to capture the proper stable semantics, including
STATUS MASK UPD.
U inserts a record. U inserts the new record with a status
mask generated with the bit operation STATUS MASK UPD: this
operation guarantees that active scans will skip the record, and
that new scans include that record in their snapshots.

U deletes a record. The steps are the same as when modifying
a record, except that U deletes the record from the base table,
and there is no need to maintain the status mask of the record.

3) Full Scan Operations: We now describe the algorithm
for a full scan S.
S begins. If all bits in active mask are 0, there is no
position available for S and the scan is placed on a queue for
future execution (see discussion at the end of this subsection).
Otherwise, a free position i is assigned to S, and both active
mask and local active mask are updated together to have the
bit at position i set to 0. Finally, S generates its scan mask,
and can start scanning the table.
S reads a record in the table. S stores the value of the bit
operation SCAN TABLE READ in a temporary N -bit vector called
temp mask. If all bits in temp mask have value 0, the current
version of the record is the stable one for S. S then fetches the
record and updates its status mask to the value of bit operation
STATUS MASK SCAN UPD: this operation updates (i.e., flips) the bit
value in position i to reflect that S has already read this record,
i.e., that S will not need it anymore. Otherwise, if position i of
temp mask has value 1, the current version of this record is not
the stable one for S, i.e., this record has already been updated
(inserted / modified) after S started, so S skips this record. It
is worth noting that, in SCAN TABLE READ, the use of scan mask
ensures that only position i of S is taken into account, and
the remainder of the bit operation takes care of capturing the
stable semantics, as explained earlier.
S finishes scanning the table. S updates stable mask using
the bit operation STABLE FLIP, which ensures that the bit at
position i is flipped to change the meaning of stable. Besides,
bit operation LCL ACTIVE MASK UPD is used by S to update local
active mask. After scanning the table, S needs to scan the
remset to get the stable version of records it had skipped before
(see the next operation).
S reads a record version in remset. S stores the value of
operation SCAN REMSET READ in a temporary N -bit vector temp
mask. If the bit at position i in temp mask is 1, that record does
not belong to the snapshot for S and is skipped. Otherwise, S
accesses the record and updates remset status mask using the
REMSET MASK UPD bit operation, which flips the bit at position
i in remset status mask to record the fact that S has already
fetched this version, i.e., that S will no longer use the record.
At this point, an important part of the algorithm takes place,
which is the memory reclamation of the remset: if all bits
in the updated remset status mask have value 1, this version
will no longer be used by any scan, and S removes it from
the remset. This reclamation is immediate: as soon as a record
version becomes unnecessary, it is removed from the remset.
S ends. S uses ACTIVE MASK UPD to update active mask, making
position i available again for future scans, and synchronizing
its value for bit i with local active mask.

4) 3-Scan Example: Figure 5 shows some of the stages
of VLS using the same example presented in Section II. We
assume that two analytic queries (S1 and S2) to find the closest
flights from a given airport are executing concurrently, and
both perform a full scan over the base table. To simplify the
example, we assume that N is 3.

Suppose that active mask is 100, stable mask is 000, and
bits 2 and 1 were assigned to S1 and S2, respectively (bit 1
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Fig. 5: Some stages and operations of the algorithm: (a) full scans S1 and S2 are reading records 5 and 1, respectively, when
two updates modify records 2 and 6 in the base table, saving record 2 for S2 and record 6 for S1 and S2; (b) when S1 scans
the remset, it skips record 2 and reads record 6; when S2 scans the remset, it reads both records 2 (c) and 6 (d), automatically
doing memory reclamation.

being the rightmost bit in the masks). Figure 5a shows the
state when S1 is reading record 5 and S2 is reading record 1,
at which point U modifies record 2. In this case, the current
version of record 2 must be stored in the remset for S2.
Note that S1 has already read this record. Before applying
the update, U copies the version to the remset, together with
remset status mask equals to 110, indicating that this version
belongs to the snapshot for S2. If another U modifies record 6,
the current version needs to be stored for both scans, since it
belongs to both snapshots. The record version is copied only
once to the remset, and remset status mask is set to 100,
indicating that both scans need to read this version, i.e., the
version is shared between the snapshots.

After scanning the table, S1 scans the remset (Figure 5b).
S1 only fetches record 6, and changes its remset status mask
accordingly. When S2 starts scanning the remset, it reads the
versions of records 2 and 6. At that point, both masks are
set to 111, which means that no other scan will use them in
the future, and S2 can remove these record versions from the
remset (Figures 5c and 5d).

5) Final Considerations: It it worth mentioning that, con-
ceptually, the VLS algorithm can be used to run any number
of concurrent analytics, but in practice, our approach allocates
bit vectors in the database with a given size N , and this value
determines the maximum number of concurrent scans. The
main reason for this design is that having fixed-size masks
avoids the costs of dynamically allocating bit vectors as scans
arrive and finish. Also, the algorithm is more efficient when bit
operations are implemented using native machine instructions,
i.e., N should be set according to the register width of the
CPU for optimal performance, as we show in Section IV.

From a query planning point of view, if a new scan request
arrives and there are no positions available, i.e., N scans are
already active, the scan can be added to a scheduling queue for
later execution. When an active scan completes, it signals to
this queue so that the next awaiting scan can execute. Instead
of waiting for a position on a per-scan basis, it is also possible
to allow several queries to share an underlying snapshot. This
requires some deeper integration with the query planner, which
must decide which requests should share a scan to make
best use of computational resources, as well as synchronize
execution for the queries sharing a given scan. We plan to
address this in future work.

B. Index Support

For the purpose of this discussion, we assume a simple
B-Tree index, or a balanced search tree where non-leaf nodes
contain a set of keys1. A leaf node keeps a set of pointers to
records in the base table—the record pointers—based on its
parent’s keys, and this set is also ordered by key. Figure 6a
shows an example of a B-Tree index with rank 2 on the
distance field from Figure 2a: record pointers are represented
by dashed arrows, and record ids are enclosed in circles.

Index scans are handled in a way similar to full scans, but
two additional issues must be taken into account. First, when
using the index, only a subset of the index and corresponding
base table are scanned, which means that updates operating
over records not supposed to be read by the scan may place
spurious records in the remset. Thus, we also need to ensure
the consistency of the bit masks after the index scan finishes.
Recall that bits are flipped as the index scan progresses, but
records not read by it remain untouched, which may impact the
correctness of an upcoming scan using the same bit position.

Second, the physical structure in the index, notably the or-
der of record pointers, may change as updates occur, requiring
additional bookkeeping. As an example, consider the B-Tree
presented in Figure 6a, and assume a query is issued to retrieve
flights that are at most 400 miles away from the airport. Such
an index scan, based on the stable version of Figure 2a, must
read records 0, 1, 2, and 5. Gray areas and arrows in Figure 6a
show the progress of the scan: it starts at the root node and
traverses down to the first record pointer, linking to record 1.
If update U of Figure 2b is applied at this moment, and since
the distance value in record 2 changes from 367.21 miles to
100.45 miles, the pointer to record 2 is removed from the index
and inserted before record 1’s pointer (see Figure 6b). Since
the scan follows the order in the B-Tree, it will read records
5 and 0 afterwards, thus missing record 2.

To address these issues and correctly support index scans,
we make the following adjustments to the VLS algorithm:

• To avoid retrieving records added to the remset but which
should not be read by the index scan (i.e., spurious records),
we assign a set called record set to each index scan. This set
contains the ids of records that a scan should read from the

1The approach can be extended to other index types.
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(a) Before update on record 2 (b) After update on record 2

Fig. 6: Index scan for flights that are at most 400 miles away.
Gray areas and arrows show the progress of the scan.

remset: ids referenced by record pointers read by the index
scan while traversing the B-Tree are added to the record
set, and when retrieving records from remset, the scan only
reads the stable version of records referenced in record set.
Since spurious records are not read by the index scan, their
ids will not be added to the record set, and will thus not be
read from the remset.

• To ensure that all bits are flipped when the scan finishes,
the algorithm needs to do a pass over the status mask of
the records before allowing a new upcoming scan to use
the same bit position. A naı̈ve approach would be for the
index scan itself to flip its corresponding bits in these masks
before completing and updating active mask; however, as
mentioned before, scanning all the masks at the end of a
scan can be very expensive for large tables, thus degrading
the latency and throughput of the system. Instead, we use
a separate thread to flip the bits in the status mask of
each record that has not been touched by the index scan;
this thread operates in the background after the index scan
finishes and as other scans read the base table. For this
reason, upcoming index scans will only be able to use the
same bit position after this background thread finishes. This
proved to be significantly more efficient: our solution, when
compared to the naı̈ve approach, showed a reduction of over
50% in the update latency with 64 concurrent analytics.

• To handle updates to the physical structure of the index, we
assign one bit mask per record pointer in the B-Tree and
maintain these as record pointers are inserted and deleted
from the index. The idea of these masks is to inform active
scans if a record pointer belongs to the stable snapshot of
the scan. Also, we postpone the removal of record pointers
from the B-Tree so that active index scans do not miss them;
this avoids issues similar to the one mentioned in Figure 6.

1) Data Structures: To maintain stable versions of the
index, our approach uses two additional masks:

• Index Active Mask. While active mask contains informa-
tion regarding both full and index scans, the global N -bit
vector index active mask only takes into account index scans.
This mask is used exclusively for index scan operations.

• Index Status Mask. Each record pointer in a B-Tree has
its own N -bit vector index status mask. As with the status
mask, each bit in the index status mask corresponds to an
active scan. A position i is 1 if the index scan SI at position
i should skip the record pointer (e.g., the pointer has been
either inserted after SI started, or removed before SI started);
if position i is 0, the corresponding record belongs to the
stable version for SI (e.g., either the pointer has not been
altered, or it has been removed after SI started).
To capture which record pointers have had their removal
postponed, each record pointer also maintains one extra bit
that we call index status bit: this bit is 1 if the pointer has

been flagged for removal, and 0 otherwise. The information
provided by index status bit is important to reclaim index
entries, as well as to inform active index scans about the
removal: if the bit is 1, the scan adds the record id to its
record set and does not need to follow the record pointer
to the table. Note that the removal of a record pointer is
triggered by either a record update that changes the position
of its pointer in the index, or a record deletion; in both cases,
the stable version of the record for the scan is in the remset,
and we add its id to record set so that the scan does not
identify it as a spurious record.

It is important to note that if the update is a deletion,
although the removal of the record’s corresponding pointers
is postponed, the deletion of the record itself from the base
table is not deferred. Therefore, every operation over the B-
Tree (besides index scans) must check the index status bit to
avoid following pointers that may have become invalid. Note
also that the database can reclaim index entries every time
an index scan finishes, thus avoiding keeping removed record
pointers in the B-Tree for long periods of time. We describe
this reclamation process later in this section.

2) Index Update Operations: We consider two kinds of
updates UI to record pointers in a B-Tree index: insertion and
deletion. The maintenance of the index does not change, except
that, when reallocating record pointers, their masks and bits
need to be reallocated as well.
UI inserts a record pointer in a B-Tree. When a new record
pointer is inserted into a leaf node, UI needs to ensure that
active index scans will skip it. UI inserts the record pointer in
the B-Tree with an index status mask set to the value of the
bit operation IDX STATUS MASK INS. In addition, it is assigned an
index status bit of value 0.
UI deletes a record pointer in a B-Tree. If there are no active
index scans, i.e., if index active mask is a mask of bits set to
1, UI simply deletes the record pointer and no further steps are
necessary. Otherwise, if there is at least one active index scan,
UI does not delete the record pointer: the removal is postponed.
The pointer is still maintained in the leaf node, and UI updates
its index status mask to the result of bit operation IDX STATUS -

MASK UPD: this update ensures that active index scans can still
see the record pointer, while new upcoming scans will skip
it. In addition, index status bit is set to 1 to indicate that the
removal of the record pointer has been deferred.

3) Index Scan Operations: For an index scan SI, the
algorithm needs to (i) verify the index status mask of record
pointers before reading records from the base table; (ii) make
use of the record set when scanning both the index and the
remset to deal with spurious records, and (iii) inform the
database when to flip the bits in the status mask vectors and
reclaim index entries.
SI begins. The steps are the same as for a full scan, but SI
also (i) initializes an empty record set before it starts scanning
the index and the table, and (ii) updates index active mask by
setting the position i assigned to SI to 0.
SI reads a record pointer in a B-Tree. Before reading and
following the record pointer, SI uses bit operation IDX SCAN -

READ and stores its value in a temporary N -bit vector temp
mask. If temp mask has one bit set to 1, it means that the
record pointer was either inserted after SI started, or flagged
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for removal before SI started: SI simply skips the pointer, since
it does not belong to its snapshot. Otherwise, if temp mask is
a vector of bits set to 0, the record pointer belongs to the
snapshot for SI, and SI adds the corresponding record id to
record set; in addition, it checks the value of index status bit:
if the bit is 1, the record pointer has been flagged for removal,
so SI skips the pointer (the stable version for the record is in
the remset); however, if the bit is 0, SI follows the pointer to
read the record in the table (next operation).
SI reads a record in the table. The steps are the same as for
full scans. Remember that SI still needs to execute the VLS
algorithm when reading records in the base table to update the
status mask of the records and to deal with updates that do
not change the physical structure of the index.
SI finishes scanning the table. The steps are the same as for
a full scan. The bit mask index active mask is also updated
with the value of IDX ACTIVE MASK UPD: this mask is updated
before scanning the remset so that no upcoming updates in a
B-Tree erroneously keep stable version information for SI.
SI reads a record version in remset. The steps are the same
as for a full scan, except that record set is also used. In the
algorithm for a full scan, if the bit at position i in temp mask is
0, this record belongs to the snapshot for the scan. For index
scans, the record could also be a spurious record. Given that
the bit is 0, we need to: (1) verify if the id of the record is in
record set: if this is the case, SI reads this record; otherwise,
it skips it; and (2) update remset status mask and, if all its
bits are 1, do the memory reclamation. Note that (2) is always
executed when the bit value is 0.
SI ends. SI discards its record set and starts a background
thread that is handled by the database itself and that executes
the following operations in order: reclamation of index entries
that were modified while SI was executing; and flipping of the
bits in position i for the status masks of records neither touched
by SI nor updated. After starting this thread, SI completes its
execution. Note that active mask is not updated at this point,
since we need to make sure all the masks are consistent before
allowing new upcoming scans to use the same bit position.

4) Operations for Finalizing an Index Scan: The following
are operations started by an index scan SI right before its
completion; they are executed in a background thread and
handled by the database system.
Index reclamation. The reclamation process iterates over the
record pointers of the B-Tree index structure. For each pointer,
if the index status bit is 0, the corresponding pointer may have
been inserted while SI was running; in this case, the algorithm
updates the index status mask to the result of bit operation
SCAN IDX MASK I UPD, so that new upcoming scans using the
same bit position do not skip this pointer. Otherwise, if the
value of index status bit is 1, the pointer is flagged for removal;
first, index status mask is updated to the value of bit operation
SCAN IDX MASK U UPD, to indicate that SI does not need this
pointer anymore; then, its updated value is verified: if all its
bits are set to 1, no other index scan will use this pointer, so
it can be removed from the index, and its index status mask
and index status bit are discarded.
Resetting the status masks. We iterate over all status masks in
the table, flipping the bit position used by SI as if the record is
being read by SI: bit operations SCAN TABLE READ and STATUS -

MASK SCAN UPD are used for the update process, similar to when

a scan reads a record in the table. This guarantees that, even if
the record was not read by SI (i.e., even if it does not satisfy
its query predicate), its bit is properly flipped to not affect the
results of a new scan that will use the same bit position. Next,
active mask is updated to the value of bit operation ACTIVE -

MASK UPD, freeing the bit position to new arriving scans.

C. Implementation

We implemented the VLS algorithm inside MongoDB,
since one of the goals is to support this system as the main
data store in the ODM Insights middleware. MongoDB is a
document-oriented database that uses Binary JSON (BSON) as
a storage format, and it stores collections of key-value pairs.
The system, as many other NoSQL stores, neither supports
versioning nor guarantees consistency for analytics in the
presence of concurrent updates.

Our prototype, MongoDB-VLS2, extends the built-in
database operations from MongoDB with VLS capabilities.
We modify the standard create (i.e., insert), update, and
delete operations based on the algorithm from Section III.
MongoDB-VLS also modifies the built-in scan operations:
both full and index scans read and write bit masks, skip records
from the base table if necessary, and read the remset at the
end of the execution. For index scans, as described in the
previous section, a background thread is used to ensure that the
bit masks are properly set. Our prototype can run MongoDB
workloads composed of updates along with aggregate queries,
which use the built-in scan operations internally.

Masks and remsets are stored in memory by the system.
For the bit masks, we maintain a mapping between the record
locations on disk (composed of a disk file identification and
an offset value) and their corresponding masks. Note that
operations on remsets as well as on bit masks, either global
or associated with a record, must be atomic and thread-safe
to avoid inconsistencies if two or more operations occur on
the same record simultaneously. We rely on the concurrent
data structures and atomic operations from the TBB library3,
which proved to be the most efficient in our experiments: we
use a concurrent hash-map for the remset, while bit masks are
represented as bit vectors using TBB’s atomic interface.

IV. EXPERIMENTAL EVALUATION

To assess the effectiveness of VLS when integrated into a
NoSQL store and to better understand the costs associated with
supporting consistent analytics in the presence of updates, in
our experimental evaluation, we compare the performance of
MongoDB-VLS against a standalone MongoDB installation.
We study the impact of the algorithm on update throughput and
latency, as well as on analytics completion time. We also ex-
amine the costs incurred when maintaining the data structures
required by the snapshots, including memory consumption, and
evaluate how the size of the bit vectors impacts our approach.

A. Experimental Setup

Experiments were run on a server running CentOS (4 16-
core 2.3 GHz AMD Opteron 6276 CPUs, 256 GB of RAM,

2Source code is available at https://github.com/ViDA-NYU/mongodb-vls
3https://www.threadingbuildingblocks.org/
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and 4 3TB-SATA drives), using MongoDB 2.5.5 and TBB 4.2
Update 3. We set N to 64, which corresponds to the instruction
width of our server, unless otherwise noted.

We ran two different workloads: one for analytics using an
aggregate query that counts the total number of records being
read, and one for updates. These workloads were generated
and run with YCSB [14], a popular open-source benchmark for
NoSQL stores. We extended YCSB 0.1.4 to include aggregate
queries (using both full and index scans), and ran the bench-
mark using MongoDB’s API. The aggregate query for index
scans is the same as for full scans, but includes a condition
on the indexed attribute, matching records with key greater or
equal to a given input value.

For all experiments, the YCSB client ran on the same
machine as the database server. Workloads were run using 10
threads for updates, and one thread per analytics. We evaluated
the approach for different index rates, indicating how much of
the table is being scanned: 5%, 10%, or 25% of the base table.
The default attempted update rate was set to 10,000 operations
per second (op/s), and keys chosen for the update operations
were generated using a zipfian distribution originally provided
by YCSB. Each experiment—except the one that verifies the
size of the shared remset—was executed 10 times, and both
the mean and standard deviation (error) were computed. All
experiments started with a flushed cache, and we used different
YCSB configurations to vary the table size (10 million and 100
million records) and the number of concurrent analytics. For
all table sizes, each record used 240 bytes.

B. Experimental Results
Query Execution Time. To understand the overhead as-
sociated with the VLS algorithm, we measured the raw
analytics performance with no concurrent updates for both
MongoDB-VLS and MongoDB. Figure 7a shows, in log scale,
the query duration for the two table sizes. For a query that
performs a full scan, the relative overhead added by the VLS
approach is about 5% and 1% for 10 million and 100 million
records, respectively; in absolute numbers, MongoDB-VLS
increases the scan duration from 24.87s to 26.33s (about 1.46s)
for the smaller table, and from 252.85s to 255.37s (about
2.52s) for the larger table. For a query that uses an index
scan, the overhead is under 10% for both tables. Consider,
for example, the index scan that reads 5% of the 10 million-
record table: the overhead added by VLS is 9.67% (from 2.09s
to 2.29s); for the 100 million-record table, it is 5.67% (from
19.95s to 21.08s). As expected, the relative overheads for index
scans are bigger than those for full scans since these require
additional bookkeeping; however, when considering the total
running times, the increase is negligible: in many cases, less
than 1s. We also studied how VLS impacts analytics execution
time in the presence of concurrent updates: not surprisingly,
the duration of a query increases substantially in both systems,
but VLS has a negligible impact for both full and index scans
(Figure 7b). Overall, the experiments on query execution time
indicate that the overheads incurred by VLS are acceptable,
while providing consistent and correct results for analytics.
Update Throughput. Figure 8a shows, for the different
table sizes, how the update throughput changes when the
number of concurrent analytics using full scans increases.
As a baseline, we include the update throughput when no

(a) Without Updates (b) With Updates
Fig. 7: Duration, in log scale, of an analytic query.

analytics are running (i.e., number of analytics equals to 0);
note that VLS has little or no impact over the raw update
throughput. When running concurrent analytics, the average
overhead added by MongoDB-VLS varies from 2.84% to
16.36% for different table sizes and number of concurrent
analytic queries. Nonetheless, most of the error bars overlap,
showing that the difference between the average throughput for
the two systems is statistically small. For concurrent analytics
using index scans, most of the overheads are also small. As
Figure 9 shows, the overhead on update throughput for all
index rates varies from 0.70% to 16.28%, again with many
overlapping error bars. We also experimented with other update
rates (e.g., 20,000 op/s, 30,000 op/s, and 100,000 op/s), and
obtained similar and consistent results.

Figures 8a and 9 show interesting trends. First, as expected,
as the number of running queries increases, the higher con-
currency in the system results in longer updates and smaller
throughput. One counter-intuitive feature is that the overall
update throughput for both systems is higher for 8 concurrent
queries than for a single query. We believe that this is due
to the aggressive caching strategy used by MongoDB: with 8
concurrent scans, more records are read and put in memory,
speeding up updates. This is consistent with the latency results
in Figures 8b and 10: updates in the presence of 8 concurrent
queries are faster than in the presence of a single query.

Another interesting behavior is that the performance in both
MongoDB and MongoDB-VLS for 64 concurrent queries is
significantly lower when compared to the other configurations.
This happens mainly due to the higher concurrency in the
database and the increase in resource consumption: for 64
concurrent queries, there is a total of 74 threads (1 per query,
and 10 for updates), which is larger than the number of cores in
our server (64), making experiments more sensitive to resource
contention. Last, Figures 9 and 10 (the latter shows the latency
results discussed later) unveil that higher index rates result in
better performance (i.e., higher update throughput and faster
updates) in both systems. The main reason for such behavior
is the locking mechanism implemented by MongoDB, which
yields locks more often for update operations when reading
larger regions of the table; therefore, more updates are received
and applied while the analytics are running. As the number of
concurrent analytics increases, this is almost unnoticeable due
to the higher concurrency in the database.
Update Latency. We measured the overhead that
MongoDB-VLS adds to the duration of an update. We
report these results in 95th percentiles, i.e., the maximum
latency among 95% of the update operations. Figure 8b
presents, in log scale, the experimental results for different
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(a) Update Throughput (b) 95th Percentile Update Latency

Fig. 8: Results for (a) update throughput and (b) 95th percentile update latency when running a varying number of concurrent
analytics (full scans) in the presence of updates. Update latency results are in log scale.

(a) (b) (c)
Fig. 9: Update throughput for concurrent analytics (index scans) for index rates: (a) 5%, (b) 10%, and (c) 25%.

(a) (b) (c)
Fig. 10: 95th percentile update latency for concurrent analytics (index scans) for index rates: (a) 5%, (b) 10%, and (c) 25%.

table sizes and numbers of concurrent analytics using
full scans. The overhead is most significant when using
MongoDB-VLS in the 10 million-record table with a single
analytic query, where the percentile increases 27.23%, and
with 8 concurrent queries, where there is an increase of
18.64%. However, note that the percentile latency is in a
very fine time granularity: in absolute numbers, the latency
increases from 3.87ms to 4.93ms for a single analytics,
and from 2.34ms to 2.77ms for 8 queries, which can be
acceptable for a number of application scenarios. For all
other configurations, the overhead varies between 1.62% and
15.04% with overlapping error bars for most of the results,
which makes the overhead not statistically significant. Similar
results are obtained for concurrent analytics using index scans
(Figure 10): most of the overheads are under 18% and not
statistically significant. A higher overhead can be noticed for
the smaller table when running 8 and 64 concurrent analytics
that scan 25% of the table (Figure 10c). Nevertheless, besides
the overlapping error bars, the latency increases are small in
absolute numbers: from 5.70ms to 7.17ms for 8 analytics,
and from 152.57ms to 191.81ms for 64 analytics. For other
attempted update rates with which we experimented, ranging
from 20,000 op/s to 100,000 op/s, the overheads are also

negligible, increasing the update latency in at most tens of
milliseconds.
Remset Sharing and Memory Reclamation. To minimize the
additional storage required to support the virtual snapshots, the
VLS algorithm shares a single remset among multiple concur-
rent analytics and performs immediate memory reclamation
when possible. In practice, these features lead to substantial
savings. We measured in the 100 million-record table, for
different number of concurrent queries (8, 16, and 64) and
attempted update rates (10,000 and 100,000 op/s), (i) the size
of the shared remset, (ii) the total size of individual remsets
(one remset per scan), and (iii) the size of a shared remset
without immediate reclamation, i.e., records are only removed
from the remset after the analytics finish. The results are
summarized in Figure 11, which shows how the remset size
(in log scale of number of records) varies over time.

The maximum size of the shared remset in the presence of
8 concurrent queries with an attempted update rate of 10,000
op/s (Figure 11a) is around 4.3 million records (1.04 GB).
In contrast, when using 8 individual remsets, the number of
records reaches almost 34 million (8.20 GB), i.e., 7.9 times
bigger than the shared remset. As expected, for a larger update
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(a) (b) (c) (d)

Fig. 11: Remset size (in log scale) for different configurations of number of concurrent queries and attempted update rate in the
100 million-record table. The shaded region shows the additional time that memory is held when early reclamation is not used.

rate (Figure 11b), the queue size increases, but the effective-
ness of our solution is similar: the shared remset reaches 4.5
million records (1.08 GB), while, for 8 individual remsets,
the size is 35 million records (8.44 GB). When running more
concurrent queries, the savings are even greater: the number of
records when using 16 individual remsets is about 15.9 times
bigger compared to the shared remset (Figure 11c and 11d); for
64 analytics, the shared remset reduces the size by a factor of
about 60 (results not depicted due to lack of space). Note that
the remset size for 16 concurrent analytics is smaller than for
8 queries, which is an expected result: the higher the number
of analytics, the higher the concurrency, and as a consequence,
less updates are applied to the database. Figure 11 also shows
additional savings (the shaded section) attained by the early
reclamation of unused records compared to a reclamation that
only takes place after a scan finishes.
Varying the Size of Bit Vectors. Since the VLS algorithm
relies on bit operations and bit vectors, it is important to
understand how the size of such vectors (N ) impacts the
performance. We compared, for the 100-million record table,
the results on query execution time, throughput, and latency for
two values of N : 64 bits (value used in the aforementioned
experiments) and 128 bits; our server’s registers are 64 bits
wide; due to lack of space, we do not present plots for
the comparison. When using 128-bit vectors, the duration
of an analytics without concurrent updates increases by 9%
compared to the performance for 64-bit vectors, while it
increases by 6% in the presence of concurrent updates. Overall,
the overheads on update throughput when using 128-bit vectors
increases by at most 9% for different number of concurrent
analytics when compared to the 64-bit results; with respect
to update latency, the overhead is bigger—at most 30%—
but in absolute numbers, the latency increases by no more
than 1.20ms. These results show that, as expected, setting
N to the same number as the CPU’s register and instruction
width (in our case, 64) provides the best results, since native
machine instructions can be used more efficiently. Note that,
although the overheads are higher for 128-bit vectors, they
are still negligible: most of these results, in particular for
update throughput and latency, have overlapping error bars
when compared to MongoDB. It is worth mentioning that
there are servers with up to 512-bit registers4, thus enabling
the maintenance of up to 512 snapshots concurrently; to run
a number of concurrent analytics larger than N , an approach
that allows snapshots to be shared by multiple queries could
be used, as discussed in Section III-A.

4Modern Intel CPUs have a width of up to 256 bits, and CPUs that have
the AVX-512 extension support 512-bit operations.

V. RELATED WORK

The impact of long-running queries on updates has long
been acknowledged as an important issue. Replication can
be used to segregate workloads, with long-running queries
executing on a replica. This reduces the impact on updates at
the cost of higher space requirements and analytics computed
on stale information. In regard to this issue, Krishnan et
al. [15] propose an alternative model to get approximate (yet
fresh) results for analytics from stale views using techniques
akin to data cleaning. DBMSs can also trade consistency for
performance using cursor stability [4], which avoids blocking
updates by locking one row at a time during scans. Our
approach can be thought of as a way to provide consistent
results with performance approaching that of cursor stability.

Snapshot semantics can be implemented with MVCC
(Multi-Version Concurrency Control) either by storing multiple
versions of the database or by dynamically reconstructing an
earlier snapshot of the data using the database log [16]–[18]. In
contrast, our approach focuses on enabling snapshot semantics
for analytics without the need of full-fledged versioning to limit
storage usage. VLS shares similarities with transient versioning
techniques [8]–[10], [19], [20], since they rely on versions
created specifically to support consistency for OLAP queries.
However, these approaches often assume the presence of a
transaction manager, making it hard to adapt to current NoSQL
stores. In addition, some of these techniques [19] are designed
in the context of main-memory databases, while others [9],
[20] have significant initialization and communication costs,
and implement versioning at the page—instead of record—
level, which potentially creates unnecessary duplicates and
space management problems. VLS can be seen as a snapshot
isolation technique [7], [21] that is lightweight and amenable
for implementation in NoSQL systems, since it does not
require any transaction manager; differently from Padhye and
Tripathi [21], our goal is to neither bring the entire transac-
tion semantics to NoSQL stores, nor rely on native database
versioning.

There has been renewed interest in systems that support
both OLAP and OLTP workloads. HyPer [22] is an in-memory
database that supports snapshots for OLAP-style queries
through the fork system call. SAP HANA [23] propagates
records through different stages, including a write-optimized
storage format (for OLTP) and a read-optimized storage format
(for OLAP). Hekaton [24] is a memory-optimized OLTP
engine for SQL Server that uses an MVCC approach to
isolate read-only transactions from updates. HYRISE [25]
is a main-memory store that focuses on providing different
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physical designs for different workloads, but it does not handle
aspects related to consistency for hybrid workloads. Note
that these systems are specific to in-memory stores, which
have fundamentally different requirements from disk-resident
storage [26]. Last, R-Store [27] relies on database versioning
to support real-time OLAP with OLTP in the same system; it
extends HBase as their versioned storage backend, and uses
HStreaming to maintain a real-time data cube.

VI. CONCLUSION AND FUTURE WORK

As a step towards closing the gap between big and fast
data, we proposed virtual lightweight snapshots (VLS), a
technique that supports consistent analytics without blocking
concurrent updates. VLS enables analytics and updates to run
in the same system, leading to fresh results that are also
correct and consistent. VLS does not require native support
for transactions or database versioning, and thus, it can be
combined with a number of NoSQL systems. We integrated
VLS with MongoDB and performed a detailed experimental
evaluation that showed that the overheads incurred by VLS
are low and have little impact on query evaluation time,
update throughput, and latency. These results suggest that VLS
can bring consistency to analytics—while producing correct
results—at a low cost, being a practical and efficient solution
to support OLTP and OLAP in the ODM Insights middleware.

As future steps, we have plans to include MongoDB-VLS
in ODM Insights so as to provide consistency in a future
release of the middleware. Although many current use sce-
narios are non-distributed, we are extending our approach to
provide support for distributed data: each node would have
their own remset and copies for the global masks, and these
copies would have to be synchronized whenever a scan begins
and ends. However, the synchronization costs and the impact
on the index structure are still being investigated. Finally, we
are considering additional improvements to the underlying data
structures (e.g., using compression to further reduce memory
usage) and to the algorithm design (e.g., adapting concepts
behind parallel garbage collection to parallelize the approach,
and allowing several queries to share a single snapshot).

ACKNOWLEDGMENTS

This work was supported in part by a Google Faculty
Award, an IBM Faculty Award, the Moore-Sloan Data Science
Environment at NYU, DARPA, and NSF awards CNS-1229185
and CNS-1405927.

REFERENCES

[1] G. Mishne, J. Dalton, Z. Li, A. Sharma, and J. Lin, “Fast Data in
the Era of Big Data: Twitter’s Real-time Related Query Suggestion
Architecture,” in SIGMOD’13, 2013, pp. 1147–1158.

[2] Y. Pavlidis, M. Mathihalli, I. Chakravarty, A. Batra, R. Benson, R. Raj,
R. Yau, M. McKiernan, V. Harinarayan, and A. Rajaraman, “Anatomy
of a Gift Recommendation Engine Powered by Social Media,” in
SIGMOD’12. ACM, 2012, pp. 757–764.

[3] M. Arnold, D. Grove, B. Herta, M. Hind, M. Hirzel, A. Iyengar,
L. Mandel, V. Saraswat, A. Shinnar, J. Siméon, M. Takeuchi, O. Tardieu,
and W. Zhang, “META: Middleware for Events, Transactions, and
Analytics,” IBM Journal of Research and Development, 2016.

[4] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil,
“A Critique of ANSI SQL Isolation Levels,” in SIGMOD’95. ACM,
1995, pp. 1–10.
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