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ABSTRACT
As neural methods are increasingly used to support and automate
software development tasks, code review is a natural next target.
Yet, training models to imitate developers based on past code re-
views is far from straightforward: reviews found in open-source
projects vary greatly in quality, phrasing, and depth depending on
the reviewer. In addition, changesets are often large, stretching the
capacity of current neural models. Recent work reported modest
success at predicting review resolutions, but largely side-stepped
the above issues by focusing on small inputs where comments were
already known to occur. This work examines the vision and chal-
lenges of automating code review at realistic scale. We collect hun-
dreds of thousands of changesets across hundreds of projects that
routinely conduct code review, many of which change thousands
of tokens. We focus on predicting just the locations of comments,
which are quite rare. By analyzing model performance and dataset
statistics, we show that even this task is already challenging, in no
small part because of tremendous variation and (apparent) random-
ness in code reviews. Our findings give rise to a research agenda
for realistically and impactfully automating code review.
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1 INTRODUCTION
Reviewing code contributions is vitally important in both open-
source and enterprise software projects [? ]. Besides certifying the
code’s technical quality, review discussions are an important social-
ization tool for project managers to convey project norms or styles
to contributors [4]. Yet, reviewing also innately requires much time
and effort from project maintainers. Contributions vary tremen-
dously in size: in our dataset of reviews on GitHub, many changes
span dozens of files. Much of this code may not need detailed review
from core members, but reviewers still need to be vigilant because
missing small mistakes can have major consequences.

A natural solution is automation: repeating patterns across code
reviews may be harnessed by intelligent methods to automatically
prioritize, comment on, and improve contributions. This is a major
challenge: across projects, code reviews and contributions are in-
credibly diverse in purpose, size, and scope. We lay the groundwork
for doing so at a realistic scale, specifically presenting early find-
ings on review prioritization (where to comment). Concretely, given
an incoming code contribution (a pull request, or PR), we recom-
mend which part of this PR’s “diff chunks" a reviewer should com-
ment on. We collect PRs from 245 popular, well-reviewed projects,
that change up to 16K tokens of code (~1KLOC+) across up to 16
diff chunks. Importantly, only a few diff chunks per PR received
comments during code review – many received none. We thus tar-
get an imbalanced binary classification problem where the goal
is to recommend whether to comment on a particular diff chunk.
We implement this through a deep learning model that takes into
account reviews from pull requests in the given project’s past, and
contrast this with a strictly “inter-project" setting.

ICSE’21 recently published a related exploration of an orthog-
onal goal (how to revise code given comments) [15], reporting a
modest ability to imitate real developer comments. This work ap-
proached automating code review from the strong assumption that
the area to comment on was already identified and limited to ~100
tokens of code. These constraints, coupled with other filters, led
to using just 17K samples, and the models used were correspond-
ingly small. While such constrained explorations help understand
the potential of models on a new task, they provide little insight
into its challenges in realistic settings. This is a common theme in
“AI4SE" research: most work uses artificially balanced or synthetic
datasets to tackle tasks with imbalanced, complex distributions in
practice, such as bug detection [8, 16] or code generation [1]; yet,
doing so risks a major loss in efficacy in practice [7]. We therefore
approach this goal from the other direction: predicting reviews on
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Table 1: Summary of our filtered & aligned dataset.

Projects PRs Changes (LOC) Comment threads

Java 119 98,801 2,892,840 257,553
Python 136 79,326 4,616,561 330,032
Total 245 178,127 7,509,401 587,585

entire code contributions with minimal filtering. We hope that this
sets a blueprint for other explorations in this space in general.

We identify two major challenges for moving this area forward.
The first is data collection: we describe the challenge of creating
an aligned dataset of (old code, comment, new code) triples from
any repository on GitHub and involving arbitrary code changes,
imposing as few artificial “data cleanliness" limitations as possible.
The second challenge is scale: the PRs we study frequently involve
thousands of changed tokens across many diff chunks, of which few
receive comments. We show that this leads to a challenging model-
ing task, where even large models struggle to reach 50% precision,
and reflect on the high degree of ambiguity present in this data
that complicates the task – maintainers apparently comment quite
inconsistently and unpredictably. We conclude with a roadmap
for further research to improve this state, which emphasizes the
need to understand this data better and relax the strict “imitation"
criterion that requires tools to precisely copy developer actions.

2 RELATEDWORK
Our work relates to both the study of technical and social mecha-
nisms of code contributions in GitHub, and the fast-growing body
of work on machine learning for code. Free open-source software
projects have a long history of reviewing open contributions with
benefits such as identifying and reducing defects [11] and newcomer
socialization [5]. In GitHub’s code contribution mechanism of pull
requests, discussions are often opportunities for core members to
mentor and convey project norms [4] or for community members
to negotiate design decisions and project direction with core mem-
bers [14]. The recent GitHub feature of reviewers explicitly sug-
gesting code changes also increases the discussion around changes
and decreases the turnaround time to implement changes [3].

Machine learning and language models have been applied to
study code review acceptance rates [6, 12], generate review com-
ments [13], and predict specific review changes [15]. The latter
uses a deep-learning model to recommend code revisions that a
reviewer should suggest to the contributor. They consider two set-
tings, both of which aim to predict the corrected code after review,
the first just using the faulty/submitted code, while the second uses
both the faulty code and the reviewer comments. Thus the task is
complementary to the one we explore, which is predicting where to
comment. Our data collection approach is also substantially more
comprehensive and may benefit their models in turn.

3 APPROACH
To automate code reviews at a realistic scale requires collecting such
reviews from many projects with as few constraints as possible. We
used the GitHub Archive1 to extract all pull request (PR) related

1https://www.gharchive.org/

events from January 2017 to November 2020. We sort projects by
their total count of PR comments since 2017 and subset the top
1,000 projects. From these, we tentatively focused on Java and
Python projects, which include many popular and well-reviewed
repositories,2 resulting in 117 Java and 128 Python projects and
2,9M total comments.3 We clone these 245 projects and identify all
commits associated with eachmerged pull request. Each commit/PR
contains one or more diff chunks. We chose to analyze reviews in
terms of arbitrary chunks rather than methods (as in [15]) or files
because it is a realistic representation of contributed code, which
ranges from single-line changes to ones spanning multiple files.

The key challenge from a data collection perspective is recon-
structing review triples, of originally submitted code, aligned nat-
ural language comments, and changed code. Each comment has
an associated diff chunk of its own, but this may only partially
capture/overlap with diffs in the final commit, and line numbers
may change due to unrelated changes. Creating an aligned dataset
thus involves a best-effort match of this diff chunk to the corre-
sponding final commit. We implemented a script that reconstructs
these intermediate states by applying diff chunks in reverse, based
on a window around the affected line numbers, finding the minimal
changeset across both the indicated lines and line numbers with
shifts of up to two lines. We are able to align the majority (75%)
of in-line comments with the code this way. We also identified a
surprisingly high rate of comments that led to no changes (23%),
including more than a few where the submitter responded stating
they would make the required change, but never did, as well as
changes in entirely different locations. Such patterns indicate a high
degree of ambiguity and diversity of purposes in these reviews that
we see echoed in model performance as well; this corpus is worth
studying in more depth to understand such human factors.

Overall, we analyzed ca. one TeraByte of compressed data to cre-
ate a corpus with the statistics shown in Table 1. We only consider
comments where we are able to identify aligned code changes.

3.1 Model and Training Setup
Figure 1 shows the high-level modeling approach used in this work.
Wemodel PRs in terms of their diff chunks, each of which contains a
patch for a segment of source code. Each chunk is initially encoded
separately by a Transformer-style architecture [17] to yield a per-
diff embedding, comprised of a hidden state per token. We then
combine those states into a single joined embedding by averaging
over the token dimension. This allows us to attend once more, now
between diff chunks to exchange information and coordinate which
one(s) are likely to receive a comment based on mutual information.
Once completed, we project to a simple binary decision for each
chunk, independently.

To implement this, we first subtokenize inputs using byte-pair-
encoding [10] with a vocabulary size of 25K. Each token is then
embedded and encoded by the initial, intra-diff encoder, for which
we considered a “tiny" (4 layers × 256 dimensions), small (8 × 512),
and medium (12 × 768)-sized Transformer. We consider PRs with
up to 16 diff chunks and up to 1,024 tokens per diff chunk, padding
2Based on the primary language. We did not filter PRs based by file types changed to
preserve realism; our dataset also includes PRs (partly) involving READMEs, configu-
ration files, and some code in other languages such as JavaScript.
3Many in longer “threads"; we focus just on the presence of a comment, e.g. in Table 1
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@@ 47,1 47,3 @@
if (ix > 0) {

return arr[ix];
}
...

@@ -16,13 + 16,10 @@
package io.client;
import common.Set;
...

...
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Figure 1: Overview of the modeling approach in our work.
From bottom to top: we treat a PR as a series of diffs, some
of which are known to receive comments; we first encode
each part of a PR separately, then pool their states and at-
tend across diffs, and finally predict a decision per chunk.

smaller samples to this size (ensuring proper treatment of masked
tokens in pooling and attention operations). To manage such large
inputs with attention-based methods, which connect every token
to every other and are thus quadratic in complexity, we used the
Nyström approximation, which pools token states into landmarks
to decompose the attention product into more tractable terms [18].
This allows us to move beyond the typical upper bound of 512
tokens [8, 9]. Finally, we mean-pool (average) across (non-padding)
token embeddings within each diff chunk to obtain 16 embeddings,
one per diff chunk. We apply a second Transformer with 4 layers
of (regular) attention on these, and project the resulting state to
a single sigmoid-activated probability prediction per diff chunk.4
These are trained with binary cross entropy loss to encourage the
model to retrieve the original, binary (“has-comment") labels.

The average PR contains 1,172 tokens across 5.5 diff chunks. This
distribution is skewed: half of PRs contain less than 4 chunks and
10% contain 12 or more. PRs with comments are converted into two
samples: the before-review state and the submitted (correct) state.
This forces our model to detect the (very) small changes during
review. We process these in batches at a rate of 4 PRs per device
across 4 NVIDIA RTX8000 GPUs in parallel. As such, each batch
contains 256 diff chunks and up to ca. a quarter million tokens.

4 RESULTS
We train each model until held-out accuracy (at a per-diff level)
stagnates. This typically happened early in training, within about
one epoch on average, even with a low learning rate. This signals

4We also experimented with using the aforementioned diff-chunk embeddings directly,
without another attention block, but that model performed far worse.

Figure 2: Precision-Recall trade-off of each model when
ranking all diffs in the test set, focusing on the high-
precision domain.

that the model derives more benefit from memorization than from
finding generalizable patterns, perhaps due to a significant degree
of randomness or ambiguity in the labeling [2].

The primary use of our models is for review prioritization: given
a PR with a series of changes, identify which (if any) should be
inspected first. Our model outputs a probability for each diff-chunk
of needing a comment; this naturally lends itself to such ranking.
We consider two settings for our models: history-based and cross-
project. The former learns from reviews in a project’s history and
reserves the final 50 (or 10%, if fewer) to test on, thus allowing the
models to learn from historical decisions. The second trains and
evaluates on strictly non-overlapping sets of projects.

First, Figure 2 shows the precision/recall response when ranking
diff-chunks across the full test set, which reflects the entire range
of the models’ probability assignments. Here, we focus just on
the high-precision/low-recall domain, where predictions are most
likely to be useful; all curves converge to the ∼10% “random" base
precision at 100% recall (as ∼10% of diff chunks have comments).
The history-based models consistently perform better than those
operating only across project boundaries. Furthermore, some deeper
models attain a slight edge in terms of top precision. At the same
time, all models fail to break 50% precision. While that is five times
better than random guessing,5 it is far from practically useful. In
addition, model capacity translates poorly into performance gain:
in the cross-project setting, the smallest model (about the size of
the largest model used in related work [15]) performs best!

We are especially interested in the ranking quality within a given
PR. Figure 3 provides a breakdown of this behavior for both All pull
requests, many of which have no comments, and only those with
Comments, ordered by the number of diff chunks per PR. Here, we
focus on perfect ranking accuracy, wherein all diffs with comments
should be ranked strictly higher than ones without (by probability);
we naturally omit single-chunk PRs, where the notion of ranking is
moot. Both the historical and cross-project models clearly outper-
form a random baseline,6 especially on PRs with comments. This
task grows substantially more challenging with larger PRs, which
5Based on an average of 1 comment per 10 diff chunks in our dataset.
6Which does not track 1/#bins due to variations in number of comments by size.
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Figure 3: Per-PR ranking quality of the 12-layer historical
(H) and cross-project (C) models and a random (R) baseline,
grouped by PR size. “Comments" (bottom 3 red lines) con-
sider only PRs with at least one comment.

tend to contain more comments. We also considered the accuracy
of predicting just a single diff chunk that should receive a comment
as the top prediction (for the with-comments setting); there, the
model achieved ca. 40% accuracy among larger PRs.

5 IMPLICATIONS AND RESEARCH AGENDA
As AI4SE research has begun to turn to code review [15], we argue
for doing so in a way that closely mimics its use in practice. We
present a reality check on the challenge of this domain: even large
models struggle to merely rankwhich parts of a changeset to review,
achieving little to no gain over smaller architectures, nor with more
training time, or with project-specific history. In a field that often
trains and assesses its models on artificially balanced data, our work
stresses the importance of focusing on realistic data distributions.
That does not imply sacrificing the ability to learn – in this work,
our models were able to prioritize reviews 5-10× better than a
random base-rate; yet, since comments occur rarely and with little
regularity, there is still a significant challenge ahead.

Our work makes two contributions towards this goal of realism:
we provide a data collection method that is not reliant on any other
tool than a GitHub event archive and is able to align a large propor-
tion of comments with the eventually submitted code to reconstruct
a contribution timeline. We also train models to capture the bulk of
the range of changeset sizes seen in practice, going up to 16K tokens.
This required adopting novel attention mechanisms not yet used
in SE research. Our dataset and results provide a realistic baseline
for research towards automating code review: evidently, achieving
even modest precision in few cases is highly challenging.

Based on our findings, we propose the following research steps:
Quantify ambiguity: both an anecdotal analysis of our data and
empirical results of the models’ inability to achieve high precision
signal a high degree of uncertainty in practical code reviews. To
automate this process, it is essential to identify how much of this
uncertainty is contextual (e.g. could be resolved by constructing a
detailed profile of the reviewer, including information from other
conversations, etc.) vs. inherent (due to random inspection orders,

day-to-day priorities, concentration levels, etc.). This may require
human subject studies. Models can also help provide a signal by
ablating architectures with and without such information sources.
Modeling Priorities: deep learning is often heavily supervised,
forcing it to imitate developers exactly. This need for a fine-grained
signal leads to studies using synthetic, highly limited, or artificially
balanced data for tasks where this is not realistic (e.g., bug detection:
bugs are very rare in practice). Automating code review should
avoid falling into these same traps of “tailoring the task to the
model". Concretely, given the apparent ambiguity and complexity
of this task, research should focus on developers’ needs, rather
than actions. For instance, imitating the exact wording or even
placement for a particular comment may rarely be necessary, but
a more useful task may be to predict the ultimate effect of such a
comment (e.g., correcting a mistake). Identifying such needs may
require human studies; once properly identified, training signals
can be designed to respond to these needs.
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