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“Low-overhead temporal profiling”

• Low overhead

– Intended for dynamic optimization systems

– Profile overhead must be recovered by
optimization

• Temporal profiling

– Trend in profiling literature: discover more
causality (path profiling, calling context trees,
etc.)

– Temporal profiles expose more optimization
opportunities
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Arnold-Ryder profiling framework
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• Counter nCheck

• Sampling rate r =
1

nCheck0 + 1

• Implemented in Jikes RVM (Java on PowerPC)
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Why longer bursts

• Arnold-Ryder framework isolates events by loop
back-edges, calls, and returns

• Example:
for(i = 1; i < n; i++)

if(. . .) f();
else g();

• Temporal relationships interesting for optimization:

– Single-entry multiple-exit regions

– Field reordering
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Contributions

• Longer bursts

– Our framework captures temporal relationships
across loop back-edges, calls, and returns.

• x86 binaries

– We report experiences with the framework in
an alternative setting with different advantages
and disadvantages.

• Overhead reduction techniques

– We eliminate some of the checks at procedure
entries and at loop back-edges.
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Talk outline

• Introduction

• Methodology

– Longer bursts

– Overhead reduction by eliminating checks

• Evaluation

– Overhead

– Profile quality

• Conclusion
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Longer bursts
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• Counters nCheck and nInstr

• Sampling rate r =
nInstr0

nCheck0 + nInstr0

• Implemented using Vulcan (x86 binaries) 7



Fewer checks

• Goal: reduce overhead

• Starting point: 6-35% overhead in our setting with
checks on all procedure entries and loop back-edges

• Constraint: never recurse or loop for unbounded
amount of time without check

• Remark: analogous to thread-yield points, gc-safe
points, asynchronous-exception points
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Eliminating entry checks
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Eliminating entry checks
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C =
{
f ∈ N | ¬is leaf(f) ∧ (is root(f)∨

addr taken(f)∨
recursion from below(f))

}
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Eliminating loop back-edge checks

• Tight inner loops

– Checking gets expensive relative to time spent
in original code

– Statically optimized, not much opportunity for
dynamic optimization

• Omit both checking and profiling for tight inner
loops

• k-boring loop:

– No calls

– At most k profiling events of interest
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Evaluation: Overhead

• overhead(r) = basic overhead + r · instr overhead
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Case study: Hot data stream profiles

• data reference: dynamic load, (pc, addr) pair

• data stream: sequence v of data references

• heat of data stream: v.heat = v.length ∗ v.frequency

• hot data stream: when v.heat > heat threshold
(we set the threshold such that all hot data streams
together cover 90% of the profile)

• hot data stream profile: set P of hot data streams
and their heats

• overlap(P,Q) =
∑

v∈P∪Q
min{v.heatP , v.heatQ}
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Evaluation: Overlap
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Evaluation: Overlap
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Related work

• Arnold, Ryder, A framework for reducing the cost of
instrumented code, PLDI 2001

• Temporal profiling

– Ball, Larus, Efficient path profiling, MICRO
1996

– Ammons, Ball, Larus, Exploiting hardware
performance counters with flow and context
sensitive profiling, PLDI 1997

– Larus, Whole program paths, PLDI 1999

– Chilimbi, Efficient representations and
abstractions for quantifying and exploiting data
reference locality, PLDI 2001
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Conclusions

• Bursty tracing can collect temporal profiles online

– General, low-overhead, deterministic

– Flexible trade-off between sampling rate,
overhead, and burst-length

– Temporal

• Future work

– Prefetching hot data streams

– Eliminating more loop back-edge checks

– Improving profile quality further
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