
Bursty Tracing: A Framework for
Low-Overhead Temporal Profiling

Martin Hirzel
hirzel@colorado.edu

Trishul Chilimbi
trishulc@microsoft.com

FDDO4 December 2001 Austin, Texas



“Low-overhead temporal profiling”

• Low overhead

– Intended for dynamic optimization systems

– Profile overhead must be recovered by
optimization

• Temporal profiling

– Trend in profiling literature: discover more
causality (path profiling, calling context trees,
etc.)

– Temporal profiles expose more optimization
opportunities

2



Arnold-Ryder profiling framework

A

B

original
procedure

(a)

A’

B’

instrumented
code

checking
code

back−
edge
check

entry
check

modified procedure (Arnold−Ryder)

A

B

(b)

• Counter nCheck

• Sampling rate r =
1

nCheck0 + 1

• Implemented in Jikes RVM (Java on PowerPC)
3



Why longer bursts

• Arnold-Ryder framework isolates events by loop
back-edges, calls, and returns

• Example:
for(i = 1; i < n; i++)

if(. . .) f();
else g();

• Temporal relationships interesting for optimization:

– Single-entry multiple-exit regions

– Field reordering

4



Contributions

• Longer bursts

– Our framework captures temporal relationships
across loop back-edges, calls, and returns.

• x86 binaries

– We report experiences with the framework in
an alternative setting with different advantages
and disadvantages.

• Overhead reduction techniques

– We eliminate some of the checks at procedure
entries and at loop back-edges.

5



Talk outline

• Introduction

• Methodology

– Longer bursts

– Overhead reduction by eliminating checks

• Evaluation

– Overhead

– Profile quality

• Conclusion

6



Longer bursts

A

B

original
procedure

(a)

A’

B’

instrumented
code

checking
code

back−
edge
check

entry
check

modified procedure (longer bursts)

A

B

(b)

• Counters nCheck and nInstr

• Sampling rate r =
nInstr0

nCheck0 + nInstr0

• Implemented using Vulcan (x86 binaries) 7



Fewer checks

• Goal: reduce overhead

• Starting point: 6-35% overhead in our setting with
checks on all procedure entries and loop back-edges

• Constraint: never recurse or loop for unbounded
amount of time without check

• Remark: analogous to thread-yield points, gc-safe
points, asynchronous-exception points

8



Eliminating entry checks

substitute

check

match

expand

main

join

delete_digram

insert_after

~symbols

9



Eliminating entry checks

substitute

check

match

expand

main

join

delete_digram

insert_after

~symbols

4

3

2

1

0

3

2

1

3

C =
{
f ∈ N | ¬is leaf(f) ∧ (is root(f)∨

addr taken(f)∨
recursion from below(f))

}
10



Eliminating loop back-edge checks

• Tight inner loops

– Checking gets expensive relative to time spent
in original code

– Statically optimized, not much opportunity for
dynamic optimization

• Omit both checking and profiling for tight inner
loops

• k-boring loop:

– No calls

– At most k profiling events of interest

11



Evaluation: Overhead

• overhead(r) = basic overhead + r · instr overhead
or

ig
E

L
E

C
E

N
L

4
L

10
L

N
E

C
+

L
4

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

40

35

30

25

20

15

10

5

0

181.mcf

% basic overhead

252.eon 300.twolf 305.espresso boxsim

all checks intact
no checks on entry to leaf procedures
call−graph technique
no checks on entry to any procedures
4−boring loop technique
10−boring loop technique

call−graph and 4−boring loop techniques
no checks on any loop back−edges

orig
EL
EC
EN
L4
L10

EC+L4
LN

12



Case study: Hot data stream profiles

• data reference: dynamic load, (pc, addr) pair

• data stream: sequence v of data references

• heat of data stream: v.heat = v.length ∗ v.frequency

• hot data stream: when v.heat > heat threshold
(we set the threshold such that all hot data streams
together cover 90% of the profile)

• hot data stream profile: set P of hot data streams
and their heats

• overlap(P,Q) =
∑

v∈P∪Q
min{v.heatP , v.heatQ}

13



Evaluation: Overlap

50
00

:5
0

10
00

:5
0

20
00

:1
0

10
00

:1
0

20
0:

10
20

0:
1

10
0:

1
20

:1

50
00

:5
0

10
00

:5
0

20
00

:1
0

10
00

:1
0

20
0:

10
20

0:
1

10
0:

1
20

:1

50
00

:5
0

10
00

:5
0

20
00

:1
0

10
00

:1
0

20
0:

10
20

0:
1

10
0:

1
20

:1

50
00

:5
0

10
00

:5
0

20
00

:1
0

10
00

:1
0

20
0:

10
20

0:
1

10
0:

1
20

:1

50
00

:5
0

10
00

:5
0

20
00

:1
0

10
00

:1
0

20
0:

10
20

0:
1

10
0:

1
20

:1

50

40

30

20

10

0

181.mcf 252.eon 300.twolf 305.espresso boxsim

% overlap
60

• nCheck0:nInstr0

14



Evaluation: Overlap

nCheck0:nInstr0 = 1000:50
or

ig
E

L
E

C
E

N
L

4
L

10
L

N
E

C
+

L
4

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

all checks intact
no checks on entry to leaf procedures
call−graph technique
no checks on entry to any procedures
4−boring loop technique
10−boring loop technique

call−graph and 4−boring loop techniques
no checks on any loop back−edges

orig
EL
EC
EN
L4
L10

EC+L4
LN

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

0

181.mcf 252.eon 300.twolf 305.espresso boxsim

10

20

30

40

50

% overlap60

15



Related work

• Arnold, Ryder, A framework for reducing the cost of
instrumented code, PLDI 2001

• Temporal profiling

– Ball, Larus, Efficient path profiling, MICRO
1996

– Ammons, Ball, Larus, Exploiting hardware
performance counters with flow and context
sensitive profiling, PLDI 1997

– Larus, Whole program paths, PLDI 1999

– Chilimbi, Efficient representations and
abstractions for quantifying and exploiting data
reference locality, PLDI 2001

16



Conclusions

• Bursty tracing can collect temporal profiles online

– General, low-overhead, deterministic

– Flexible trade-off between sampling rate,
overhead, and burst-length

– Temporal

• Future work

– Prefetching hot data streams

– Eliminating more loop back-edge checks

– Improving profile quality further

17


	``Low-overhead temporal profiling''
	Arnold-Ryder profiling framework
	Why longer bursts
	Contributions
	Talk outline
	Longer bursts
	Fewer checks
	Eliminating entry checks
	Eliminating entry checks
	Eliminating loop back-edge checks
	Evaluation: Overhead
	Case study: Hot data stream profiles
	Evaluation: Overlap
	Evaluation: Overlap
	Related work
	Conclusions

