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Variety Breeds Confusion

We want to understand and compare streaming languages

What is their expressiveness?

How to optimize the data processing steps?

How to scale the overall applications? Especially across clusters?

Enter our universal calculus: Brooklet

Formal foundation for answering the above questions

Provably correct optimizations and translations
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Outline of This Talk

Motivation

Requirements

The Brooklet Core Calculus

Generality: Translating StreamIt, CQL, and Sawzall to Brooklet

Utility: Optimizing Brooklet to Brooklet

Outlook and Conclusions
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Elements of a Streaming App
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State

Operator
Queue Queue
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Operators may
share state
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Brooklet Syntax
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$total

volumetrades

(volume, $total) ← Sum(trades, $total)
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Function Environment
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Queue Store
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Variable Store
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Brooklet 
Operational Semantics
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Sum

$total
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F┣ <Q, V> → <Q’, V’>
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Complete Calculus
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4 Robert Soulé et al.

Brooklet syntax:
Pb ::= out in op Brooklet program

out ::= output q ; Output declaration

in ::= input q ; Input declaration

op ::= ( q, v ) ← f ( q, v ); Operator

q ::= id Queue identifier

v ::= $ id Variable identifier

f ::= id Function identifier

Brooklet example: IBM market maker.
output result;
input bids, asks;
(ibmBids) ← SelectIBM(bids);
(ibmAsks) ← SelectIBM(asks);
($lastAsk)← Window(ibmAsks);
(ibmSales)← SaleJoin(ibmBids,$lastAsk);
(result,$cnt) ← Count(ibmSales,$cnt);

Brooklet semantics: Fb � �V, Q� −→ �V �, Q��
d, b = Q(qi)

op = (_, _)← f(q, v);
(b

�
, d

�
) = Fb(f)(d, i, V (v))

V � = updateV (op, V, d
�
)

Q� = updateQ(op, Q, qi, b
�
)

Fb � �V, Q� −→ �V �, Q��
(E-FireQueue)

op = (_, v)← f(_, _);

updateV (op, V, d) = [v �→ d]V
(E-UpdateV)

op = (q, _)← f(_, _);
df , bf = Q(qf )

Q� = [qf �→ bf ]Q
Q�� = [∀qi∈q : qi �→ Q(qi), bi]Q

�

updateQ(op, Q, qf , b) = Q�� (E-UpdateQ)

Fig. 1. Brooklet syntax and semantics.

3.1 Brooklet Program Example: IBM Market Maker
As an example of a streaming program, we consider a hypothetical application

that trades IBM stock. Data arrives on two input streams, bids(symbol,price)

and asks(symbol,price), and leaves on the result(cnt,symbol,price) output

stream. Since the application is only interested in trading IBM stock, it filters

out all other stock symbols from the input. The application then matches bid

and ask prices from the filtered streams to make trades. To keep the example

simple, we assume that each sale is for exactly one share. The Brooklet program

in the bottom left corner of Fig. 1 produces a stream of trades of IBM stock,

along with a count of the number of trades.

3.2 Brooklet Syntax
A Brooklet program defines a directed, possibly cyclic, graph of operators con-

taining pure functions connected by FIFO queues. It uses variables to explicitly

thread state through operators. Data items on a queue model network packets

in transit. Data items in variables model stored state; since data items may be

lists, a variable may store arbitrary amounts of historical data. The following

line from the market maker application defines an operator:

(ibmSales) ← SaleJoin(ibmBids, $lastAsk);

The operator reads data from input queue ibmBids and variable $lastAsk. It

passes that data as parameters to the pure function SaleJoin, and writes the

result to the output queue ibmSales. Brooklet does not define the semantics of

SaleJoin. Modeling local deterministic computations is well-understood [17, 19],

so Brooklet abstracts them away by encapsulating them in opaque functions.

On the other hand, a Brooklet program does define explicit uses of state. In the

example, the following line defines a window over the stream ibmAsks:

($lastAsk) ← Window(ibmAsks);

The window contains a single tuple corresponding to the most recent ask for an

IBM stock, and the tuple is stored in the variable $lastAsk. Both the Window and

SaleJoin operators access $lastAsk.

The Window operator writes data to $lastAsk, but does not use the data stored

in the variable in its internal computations. Operators that incrementally update

state must both read and write the same variable, such as in the Count operator:
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Correctness Theorem
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CQL/StreamIt Input

Brooklet Input

CQL/StreamIt Output

Brooklet Outputexecute

execute

translatetranslate

Results under CQL and StreamIt semantics are the same as the 
results under Brooklet semantics after translation

First formal semantics for Sawzall
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Optimizations

Demonstrating Brooklet’s utility
by realizing three essential optimizations

38

Thursday, March 18, 2010



Operator Fusion:
Eliminate Queueing Delays

39
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Operator Fission:
Process More Data in Parallel
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Operator Reordering:
Filter Data Early

41
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More optimizations
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Richer extended calculus

Types, verify progress, time constraints

Common execution platform

Practical challenges: data types, library of operators, serialization, 
process management, error handling
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Conclusions

Streaming is everywhere

Media, finance, web applications

Need a calculus to understand (distributed) implementations

Minimal, non-deterministic, makes state and communication explicit

Provide a formal and practical foundation for stream programming

Mappings from CQL, StreamIt, and Sawzall

Formalizing of Fusion, Fission, and Reordering
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A Universal Calculus for Stream Processing Languages 7

4 Language Mappings

We demonstrate Brooklet’s generality by mapping three streaming languages
CQL, StreamIt, and Sawzall to it. Each translation exposes implicit uses of state
as explicit variables; exposes a mechanism for implementing global determinism
on top of an inherently non-deterministic runtime; and abstracts away local
deterministic computations with higher-order wrappers that statically bind the
original function and dynamically adapt the runtime arguments (thus preserving
small step semantics).

4.1 CQL and Stream-Relational Algebra
CQL syntax:

Pc ::= Pcr | Pcs CQL program

Pcr ::= (Relation query)

RName Relation name

| S2R(Pcs) Stream to relation

| R2R(Pcr) Relation to relation

Pcs ::= (Stream query)

SName Stream name

| R2S(Pcr) Relation to stream

RName | SName ::= id Input name

S2R | R2R | R2S ::= id Operator name

CQL example: Bargain finder.
IStream(BargainJoin(Now(quotes), history))

CQL program translation: [[ Fc, Pc ]]pc = �Fb, Pb�
[[ Fc, SName ]]pc = ∅, outputSName;inputSName;•

(Tp
c -SName)

[[ Fc, RName ]]pc = ∅, outputRName;inputRName;•
(Tp

c -RName)

Fb, output qo; input q; op = [[ Fc, Pcs ]]pc
q�o = freshId() v = freshId()

F �
b = [S2R �→ wrapS2R(Fc(S2R))]Fb

op
� = op, (q�o, v) ← S2R(qo, v);

[[ Fc, S2R(Pcs) ]]pc = F �
b, output q�o; input q; op

�

(Tp
c -S2R)

Fb, output qo; input q; op = [[ Fc, Pcr ]]pc
q�o = freshId() v = freshId()

F �
b = [R2S �→ wrapR2S(Fc(R2S))]Fb

op
� = op, (q�o, v) ← R2S(qo, v);

[[ Fc, R2S(Pcr) ]]pc = F �
b, output q�o; input q; op

�

(Tp
c -R2S)

Fb, output qo; input q; op = [[ Fc, Pcr ]]pc
n = |Pcr| q�o = freshId() q� = q1, . . . , qn

∀i ∈ 1 . . . n : vi = freshId() op
� = op1, . . . , opn

F �
b = [R2R �→ wrapR2R(Fc(R2R))](∪Fb)

op
�� = op

�, (q�o, v) ← R2R(qo, v);

[[ Fc, R2R(Pcr) ]]pc = F �
b, output q�o;input q�;op��

(Tp
c -R2R)

CQL domains:

τ∈T Time

e∈T P Tuple

σ∈Σ = bag(T P) Instantaneous relation

r∈R = T → Σ Time-varying relation

s∈S = bag(T P×T ) Time-varying stream
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CQL operator signatures:

S2R : S × T → Σ
R2S : Σ ×Σ → Σ
R2R : Σn → Σ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CQL operator wrapper signatures:

S2R : (Σ × T )× {1}× S → (Σ × T )× S
R2S : (Σ × T )× {1}×Σ → (Σ × T )×Σ
R2R : (Σ × T )× {1 . . . n}× (2Σ×T )n

→ (Σ × T )× (2Σ×T )n

CQL operator wrappers:
σ, τ = dq s = dv

s� = s ∪ {�e, τ� : e ∈ σ} σ� = f(s�, τ)

wrapS2R(f)(dq, _, dv) = �σ�, τ�, s�

(Wc-S2R)

σ, τ = dq σ� = dv σ�� = f(σ, σ�)

wrapR2S(f)(dq, _, dv) = �σ��, τ�, σ
(Wc-R2S)

σ, τ = dq d�i = di ∪ {�σ, τ�}
∀j �= i ∈ 1 . . . n : d�j = dj

∃j ∈ 1 . . . n : �σ : �σ, τ� ∈ dj

wrapR2R(f)(dq, i, d) = •, d
�

(Wc-R2R-Wait)

σ, τ = dq d�i = di ∪ {�σ, τ�}
∀j �= i ∈ 1 . . . n : d�j = dj

∀j ∈ 1 . . . n : σj = aux(dj , τ)

wrapR2R(f)(dq, i, d) = �f(σ), τ�, d
�

(Wc-R2R-Ready)

�σ, τ� ∈ d

aux(d, τ) = σ
(Wc-R2R-Aux)

Fig. 2. CQL semantics on Brooklet.

CQL, the Continuous Query Language, is a member of the StreamSQL family
of languages. StreamSQL gives developers who are familiar with SQL’s select-
from-where syntax an incremental learning path to stream programming. This
paper uses CQL to represent the entire StreamSQL family, because it has a clean
design, has made significant impact [1], and has a formal semantics [2].
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4 Language Mappings

We demonstrate Brooklet’s generality by mapping three streaming languages
CQL, StreamIt, and Sawzall to it. Each translation exposes implicit uses of state
as explicit variables; exposes a mechanism for implementing global determinism
on top of an inherently non-deterministic runtime; and abstracts away local
deterministic computations with higher-order wrappers that statically bind the
original function and dynamically adapt the runtime arguments (thus preserving
small step semantics).

4.1 CQL and Stream-Relational Algebra
CQL syntax:

Pc ::= Pcr | Pcs CQL program

Pcr ::= (Relation query)

RName Relation name

| S2R(Pcs) Stream to relation

| R2R(Pcr) Relation to relation

Pcs ::= (Stream query)

SName Stream name

| R2S(Pcr) Relation to stream

RName | SName ::= id Input name

S2R | R2R | R2S ::= id Operator name

CQL example: Bargain finder.
IStream(BargainJoin(Now(quotes), history))

CQL program translation: [[ Fc, Pc ]]pc = �Fb, Pb�
[[ Fc, SName ]]pc = ∅, outputSName;inputSName;•

(Tp
c -SName)

[[ Fc, RName ]]pc = ∅, outputRName;inputRName;•
(Tp

c -RName)

Fb, output qo; input q; op = [[ Fc, Pcs ]]pc
q�o = freshId() v = freshId()

F �
b = [S2R �→ wrapS2R(Fc(S2R))]Fb

op
� = op, (q�o, v) ← S2R(qo, v);

[[ Fc, S2R(Pcs) ]]pc = F �
b, output q�o; input q; op

�

(Tp
c -S2R)

Fb, output qo; input q; op = [[ Fc, Pcr ]]pc
q�o = freshId() v = freshId()

F �
b = [R2S �→ wrapR2S(Fc(R2S))]Fb

op
� = op, (q�o, v) ← R2S(qo, v);

[[ Fc, R2S(Pcr) ]]pc = F �
b, output q�o; input q; op

�

(Tp
c -R2S)

Fb, output qo; input q; op = [[ Fc, Pcr ]]pc
n = |Pcr| q�o = freshId() q� = q1, . . . , qn

∀i ∈ 1 . . . n : vi = freshId() op
� = op1, . . . , opn

F �
b = [R2R �→ wrapR2R(Fc(R2R))](∪Fb)

op
�� = op

�, (q�o, v) ← R2R(qo, v);

[[ Fc, R2R(Pcr) ]]pc = F �
b, output q�o;input q�;op��

(Tp
c -R2R)

CQL domains:

τ∈T Time

e∈T P Tuple

σ∈Σ = bag(T P) Instantaneous relation

r∈R = T → Σ Time-varying relation

s∈S = bag(T P×T ) Time-varying stream
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CQL operator signatures:

S2R : S × T → Σ
R2S : Σ ×Σ → Σ
R2R : Σn → Σ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CQL operator wrapper signatures:

S2R : (Σ × T )× {1}× S → (Σ × T )× S
R2S : (Σ × T )× {1}×Σ → (Σ × T )×Σ
R2R : (Σ × T )× {1 . . . n}× (2Σ×T )n

→ (Σ × T )× (2Σ×T )n

CQL operator wrappers:
σ, τ = dq s = dv

s� = s ∪ {�e, τ� : e ∈ σ} σ� = f(s�, τ)

wrapS2R(f)(dq, _, dv) = �σ�, τ�, s�

(Wc-S2R)

σ, τ = dq σ� = dv σ�� = f(σ, σ�)

wrapR2S(f)(dq, _, dv) = �σ��, τ�, σ
(Wc-R2S)

σ, τ = dq d�i = di ∪ {�σ, τ�}
∀j �= i ∈ 1 . . . n : d�j = dj

∃j ∈ 1 . . . n : �σ : �σ, τ� ∈ dj

wrapR2R(f)(dq, i, d) = •, d
�

(Wc-R2R-Wait)

σ, τ = dq d�i = di ∪ {�σ, τ�}
∀j �= i ∈ 1 . . . n : d�j = dj

∀j ∈ 1 . . . n : σj = aux(dj , τ)

wrapR2R(f)(dq, i, d) = �f(σ), τ�, d
�

(Wc-R2R-Ready)

�σ, τ� ∈ d

aux(d, τ) = σ
(Wc-R2R-Aux)

Fig. 2. CQL semantics on Brooklet.

CQL, the Continuous Query Language, is a member of the StreamSQL family
of languages. StreamSQL gives developers who are familiar with SQL’s select-
from-where syntax an incremental learning path to stream programming. This
paper uses CQL to represent the entire StreamSQL family, because it has a clean
design, has made significant impact [1], and has a formal semantics [2].
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Theorem 1 (CQL translation correctness). For all CQL function environ-
ments Fc, programs Pc, and inputs Ic, the results under CQL semantics are the
same as the results under Brooklet semantics after translation [[ Fc, Pc ]]pc .

Theorem 2 (StreamIt translation correctness). For all StreamIt function
environments Fs, programs Ps, and inputs Is, the results under StreamIt se-
mantics are the same as the results under Brooklet semantics after translation
[[ Fs, Ps ]]ps.

5 Optimizations

The previous section used our calculus to understand how a language maps to
an execution platform. This section uses our calculus to specify how to use three
vital optimizations: data-parallel computation, operator fusion, and operator re-
ordering. Each optimization comes with a correctness theorem; for space reasons,
we leave the proofs to an extended technical report [22].
5.1 Data Parallelism
If an operation is commutative across data items, then the order in which the
data items are processed is irrelevant. MapReduce uses this observation to ex-
ploit the collective computing power of a cluster for analyzing extremely large
data sets [5]. The input data set is partitioned, and copies of the map operator
process the partitions in parallel. In general, the challenge in exploiting such
data parallelism is determining if an operator commutes. Sawzall and StreamIt
solve this challenge by restricting the programming model. In Brooklet, commu-
tativity analysis can be performed with a simple code inspection. Since a pure
function always commutes4, and all state in Brooklet is explicit in an operator’s
signature, a sufficient condition for introducing data-parallelism is that an oper-
ator does not access variables. The transformation must ensure that the output
data is combined in the same order that the input data was partitioned. Brooklet
can use the round-robin splitter and joiner described in the StreamIt transla-
tion for this purpose. Thus, the operator (out)←wrapMap-LatLong(q); can be
parallelized with N = 3 copies like this:
(q1, q2, q3, $sc) ← Split(q, $sc);
(q4) ← wrapMap-LatLong(q1);
(q5) ← wrapMap-LatLong(q2);
(q6) ← wrapMap-LatLong(q3);
(out, $v4, $v5, $v6, $jc) ← Join(q4, q5, q6, $v4, $v5, $v6, $jc);

The following rule describes how to create the new program with N duplicates
of the parallelized operator.

op = (qout)← f(qin);
∀i ∈ 1 . . . n : qi = freshId() ∀i ∈ 1 . . . n : q�

i = freshId()
F �

b, ops = [[ ∅, split roundrobin, q, qin ]]ps
∀i ∈ 1 . . . n : opi = (q�

i)← f(qi);
F ��

b , opj = [[ ∅, join roundrobin, qout , q
� ]]ps

�Fb, op� −→N
split �Fb ∪ F �

b ∪ F ��
b , ops op opj�

(Ob-Split)

4 At least in the mathematical sense; in systems, floating point operations do not
always commute.
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