A Universal Calculus for Stream Processing Languages

Robert Soulé, Martin Hirzel, Robert Grimm, Buğra Gedik, Henrique Andrade, Vibhore Kumar, and Kun-Lung Wu

New York University and IBM Research

Stream Processing Is Everywhere

Stream Processing Is Everywhere

WAMSNIRWW

Stream Processing Is Everywhere

WAMSNIRWW

Fannie Mae (Public, NYSE:FNM) Watch this stock

Stream Processing Is Everywhere

Fannie Mae (Public, NYSE:FNM) Watch this stock

1.06	Range	1.06-1.08		
	52 week	0.35-2.13	Div/yield	
	Open	1.08	EPS	-14.63
0.02 (-1.85\%)	Vol / Avg. 6.75M/37.17M		Shares	1.11B
Real-time: 11:26AM EST	Mkt cap	1.19B	Beta	2.99

Real-time 11:26AM EST
NYSE real-time data - Disclaimer
Compare: Enter ticker here Add \square Dow \square S\&P $500 \square$ FRE morew
Zoom: 1d 5d 1 m 3 m 6 m YTD 1y 5y $10 y$ Max
Jan 22, 2009 - Jan 21, $2010+0.33(44.59 \%)$

Stream Processing
 Is Everywhere

Stream Processing Has Many Flavors

Range
1.06-1.08 P/E
0.35-2.13 Div/yield
1.08 EPS -14.63
=0.02 (-1.85\%) Vol/Avg. 6.75M/37.17M Shares 1.11B
Real-time: 11:26AM EST Mkt cap 1.19B Beta 2.99
NYSE real-time data - Disclaimer
Compare: Enter ticker here Add \square Dow \square S\&P $500 \square$ FRE mores
Zoom: 1d 5d 1 m 3 m 6 m YTD 1y 5y $10 y$ Max
Jan 22, 2009 - Jan 21, $2010+0.33(44.59 \%)$

Stream Processing Has Many Flavors

Streamlt:
synchronous
processing

Stream Processing Has Many Flavors

Streamlt:
synchronous
processing

Fannie Mae (Public, NYSE:FNM)
1.06
-0.02(-1.85\%) CQL.
SQL + streams

Government Bailout
Gaanl. Search |Im Feeling Lucky

Stream Processing Has Many Flavors

Streamlt:
synchronous
processing

Fannie Mae (Public, NYSE:FNM)
1.06
-0.02(-1.85) CQL:
SQL + streams

Sawzall: functional data processing in the large

Stream Processing Has Many Implementations

Streamlt:
synchronous
processing
-
1.06
0.0.22 (1.8 CQL:

SQL + streams

Sawzall: functional data processing in the large

Variety Breeds Confusion

\& We want to understand and compare streaming languages
: What is their expressiveness?
B. How to optimize the data processing steps?
\& How to scale the overall applications? Especially across clusters?
\& Enter our universal calculus: Brooklet
B. Formal foundation for answering the above questions
\& Provably correct optimizations and translations

Outine of This Talk

\& Motivation
. Requirements
\& The Brooklet Core Calculus
\& Generality: Translating Streamlt, CQL, and Sawzall to Brooklet
\& Utility: Optimizing Brooklet to Brooklet
A Outlook and Conclusions

Elements of a Streaming App

Requirements for Calculus

Brooklet Syntax

(volume, \$total) \leftarrow Sum(trades, \$total)

Function Environment

Queue Store

Q: The contents of the queues

Variable Store

V: The contents of the variables

Brooklet Operational Semantics

Complete Calculus

Brooklet syntax:

P_{b} ::= out in $\overline{o p}$
out ::= output \bar{q};
in $::=$ input \bar{q};
op $::=(\bar{q}, \bar{v}) \leftarrow f(\bar{q}, \bar{v}) ; \quad$ Operator
$q \quad::=$ id Queue identifier
$v \quad::=\$$ id \quad Variable identifier
$f::=$ id Function identifier
Brooklet example: IBM market maker.
output result;
input bids, asks;
(ibmBids) \longleftarrow SelectIBM(bids);
(ibmAsks) \longleftarrow SelectIBM(asks);
(\$lastAsk) Window(ibmAsks);
(ibmSales) \longleftarrow SaleJoin(ibmBids,\$lastAsk);
(result,\$cnt) \longleftarrow Count (ibmSales,\$cnt);

Brooklet program
Output declaration
Input declaration

Brooklet semantics: $F_{b} \vdash\langle V, Q\rangle \longrightarrow\left\langle V^{\prime}, Q^{\prime}\right\rangle$

$$
\begin{aligned}
& d, b=Q\left(q_{i}\right) \\
& o p=\left(__{-},\right) \leftarrow f(\bar{q}, \bar{v}) ; \\
& \left(\bar{b}^{\prime}, \bar{d}^{\prime}\right)=F_{b}(f)(d, i, V(\bar{v})) \\
& V^{\prime}=\text { update } V\left(o p, V, \bar{d}^{\prime}\right) \\
& \frac{Q^{\prime}=u p d a t e Q\left(o p, Q, q_{i}, \bar{b}^{\prime}\right)}{F_{b} \vdash\langle V, Q\rangle \longrightarrow\left\langle V^{\prime}, Q^{\prime}\right\rangle} \\
& \frac{o p=\left({ }_{-}, \bar{v}\right) \leftarrow f\left(_{-},{ }_{-}\right) ;}{\text {updateV }(o p, V, \bar{d})=[\bar{v} \mapsto \bar{d}] V} \\
& o p=\left(\bar{q},{ }_{-}\right) \leftarrow f\left(\left(_{-},\right)_{-}\right) ; \\
& d_{f}, b_{f}=Q\left(q_{f}\right) \\
& Q^{\prime}=\left[q_{f} \mapsto b_{f}\right] Q \\
& \frac{Q^{\prime \prime}=\left[\forall q_{i} \in \bar{q}: q_{i} \mapsto Q\left(q_{i}\right), b_{i}\right] Q^{\prime}}{\text { update } Q\left(\text { op }, Q, q_{f}, \bar{b}\right)=Q^{\prime \prime}} \text { (E-UPDATEQ) }
\end{aligned}
$$

Example:
 A Fannie Mae Bid/Ask Join

Example:
 A Fannie Mae Bid/Ask Join

Example:
 A Fannie Mae Bid/Ask Join

Example:
 A Fannie Mae Bid/Ask Join

\$lastAsk $=<$ FNM, $0, \infty>$
\$total $=0$

Example:
 A Fannie Mae Bid/Ask Join

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€1>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€1>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€1>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€1>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€1>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€1>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€1>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€1>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€1>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€1>

Example:
 A Fannie Mae Bid/Ask Join

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€2>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€2>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€2>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€2>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€2>

Example:
 A Fannie Mae Bid/Ask Join

\$lastAsk = <FNM,1,€2>
<FNM,1>
\$total = 0

\$lastBid = <FNM,1,€2>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€2>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€2>

Example:
 A Fannie Mae Bid/Ask Join

\$lastBid = <FNM,1,€2>

Translations

Demonstrating Brooklet's generality
by translating three rather diverse streaming languages

CQL, Streamit, Sawzall: One Translation Approach

Expose graph topology

Wrap original operators in higher-order functions

Expose implicit and explicit state

CQL, Streamlt, Sawzall:
 One Translation Approach

Make
Expose graph topology queues explicit and 1-to-1

Expose implicit and explicit state

CQL, Streamlt, Sawzall:
 One Translation Approach

Make
Expose graph topology queues explicit and 1-to-1

Expose implicit and explicit state

Wrap original operators in higher-order functions

Make state explicit

Functions $1<$ Queues

,

Variables

CQL, Streamlt, Sawzall:
 One Translation Approach

Make
Expose graph topology queues explicit and 1-to-1 model local computations

Wrap original operators in higher-order functions

Expose implicit and explicit state

Make state explicit

Example: CQL to Brooklet

select Sum(shares) from trades
 where trades.ticker = "FNM"

CQL
Brooklet

Example: CQL to Brooklet

select Sum(shares) from trades
 where trades.ticker = "FNM"

CQL

Example: CQL to Brooklet

select Sum(shares) from trades where trades.ticker = "FNM"

CQL

Example: CQL to Brooklet

select Sum(shares) from trades
 where trades.ticker = "FNM"

CQL
Brooklet

Example: CQL to Brooklet

select Sum(shares) from trades

 where trades.ticker $=$ "FNM Statically

Translation
 Correctness Theorem

CQL/Stream/t Input execute CQL/Streamlt Output

a Results under CQL and Streamlt semantics are the same as the results under Brooklet semantics after translation
a First formal semantics for Sawzall

Optimizations

Demonstrating Brooklet's utility
by realizing three essential optimizations

Operator Fusion: Eliminate Queueing Delays

before
after

Look for connected operators,

 whose state isn't used anywhere else
Operator Fission: Process More Data in Parallel

Look for stateless operators

Operator Reordering: Filter Data Early

before
after

> Look for operators whose read/write sets don't overlap [Ghelli et al., SIGMOD 08]

Outlook

Outlook

\& More optimizations
: dynamic operator placement, load balancing, subquery sharing, eliminating spurious synchronization

Outlook

a More optimizations
\& dynamic operator placement, load balancing, subquery sharing, eliminating spurious synchronization

B Richer extended calculus
\& Types, verify progress, time constraints

Outlook

a More optimizations
\& dynamic operator placement, load balancing, subquery sharing, eliminating spurious synchronization
\& Richer extended calculus
\& Types, verify progress, time constraints
: Common execution platform
\& Practical challenges: data types, library of operators, serialization, process management, error handling

Conclusions

Streaming is everywhere
\& Media, finance, web applications
a Need a calculus to understand (distributed) implementations
. Minimal, non-deterministic, makes state and communication explicit
\& Provide a formal and practical foundation for stream programming
\& Mappings from CQL, Streamlt, and Sawzall
: Formalizing of Fusion, Fission, and Reordering

http://cs.nyu.edu/brooklet

CQL Translation Rules

CQL program translation: $\llbracket F_{c}, P_{c} \rrbracket_{c}^{p}=\left\langle F_{b}, P_{b}\right\rangle$
$\llbracket F_{c}$, SName $\rrbracket_{c}^{p}=\emptyset$, outputSName; inputSName; \bullet
(T_{c}^{p}-SNAME)
$\llbracket F_{c}, R N a m e \rrbracket_{c}^{p}=\emptyset$, output RName; input RName; \bullet
(T_{c}^{p}-RNAME)
F_{b}, output q_{o}; input $\bar{q} ; \overline{o p}=\llbracket F_{c}, P_{c s} \rrbracket_{c}^{p}$

$$
q_{o}^{\prime}=\operatorname{freshId}() \quad v=\text { freshId }()
$$

$F_{b}^{\prime}=\left[S 2 R \mapsto \operatorname{wrapS2R}\left(F_{c}(S 2 R)\right)\right] F_{b}$
$\frac{\overline{o p}^{\prime}=\overline{o p},\left(q_{o}^{\prime}, v\right) \leftarrow S 2 R\left(q_{o}, v\right) ;}{\llbracket F_{c}, S 2 R\left(P_{c s}\right) \rrbracket_{c}^{p}=F_{b}^{\prime} \text {, output } q_{o}^{\prime} ; \text { input } \bar{q} ; \overline{o p}^{\prime}}$
(T_{c}^{p}-S2R)
F_{b}, output q_{o}; input $\bar{q} ; \overline{o p}=\llbracket F_{c}, P_{c r} \rrbracket_{c}^{p}$
$q_{o}^{\prime}=$ freshId () $\quad v=$ freshId ()
$F_{b}^{\prime}=\left[R 2 S \mapsto \operatorname{wrap}^{\prime} 2 S\left(F_{c}(R 2 S)\right)\right] F_{b}$
$\overline{o p}^{\prime}=\overline{o p},\left(q_{o}^{\prime}, v\right) \leftarrow R 2 S\left(q_{o}, v\right) ;$
$\overline{\llbracket F_{c}, R 2 S\left(P_{c r}\right) \rrbracket_{c}^{p}=F_{b}^{\prime} \text {, output } q_{o}^{\prime} \text {; input } \bar{q} ; \overline{o^{\prime}}}$
($\mathrm{T}_{\mathrm{c}}^{p}$-R2S)

$$
\begin{aligned}
& \overline{F_{b}, \text { output } q_{o} \text {; input } \bar{q} ; \overline{o p}}=\overline{\llbracket F_{c}, P_{c r} \rrbracket_{c}^{p}} \\
& n=\left|\overline{P_{c r}}\right| \quad q_{o}^{\prime}=\operatorname{freshId}() \quad \bar{q}^{\prime}=\bar{q}_{1}, \ldots, \bar{q}_{n} \\
& \forall i \in 1 \ldots n: v_{i} \stackrel{ }{=} \operatorname{freshId}() \quad \overline{o p}^{\prime}=\overline{o p}_{1}, \ldots, \overline{o p}_{n} \\
& F_{b}^{\prime}=\left[R 2 R \mapsto \text { wrapR2R }\left(F_{c}(R 2 R)\right)\right]\left(\cup \overline{F_{b}}\right) \\
& \overline{o p}^{\prime \prime}=\overline{o p}^{\prime},\left(q_{o}^{\prime}, \bar{v}\right) \leftarrow R 2 R\left(\overline{q_{o}}, \bar{v}\right) ; \\
& \llbracket F_{c}, R 2 R\left(\overline{P_{c r}}\right) \rrbracket_{c}^{p}=F_{b}^{\prime} \text {, output } q_{o}^{\prime} ; \text { input } \bar{q}^{\prime} ; \overline{o p}^{\prime \prime}
\end{aligned}
$$

CQL operator wrappers:

$$
\begin{aligned}
& \frac{\sigma, \tau=d_{q} \quad \sigma^{\prime}=d_{v} \quad \sigma^{\prime \prime}=f\left(\sigma, \sigma^{\prime}\right)}{\operatorname{wrapR}^{2 S}(f)\left(d_{q},{ }_{-}, d_{v}\right)=\left\langle\sigma^{\prime \prime}, \tau\right\rangle, \sigma} \\
& \quad\left(\mathrm{W}_{c}-\mathrm{R} 2 \mathrm{~S}\right) \\
& \sigma, \tau=d_{q} \quad d_{i}^{\prime}=d_{i} \cup\{\langle\sigma, \tau\rangle\} \\
& \forall j \neq i \in 1 \ldots n: d_{j}^{\prime}=d_{j} \\
& \exists j \in 1 \ldots n: \nexists \sigma:\langle\sigma, \tau\rangle \in d_{j} \\
& \operatorname{wrapR2R(f)(d_{q},i,\overline {d})=\bullet ,\overline {d}^{\prime }}
\end{aligned}
$$

$$
\left(\mathrm{W}_{c} \text {-R2R-WAIT }\right)
$$

$$
\sigma, \tau=d_{q} \quad d_{i}^{\prime}=d_{i} \cup\{\langle\sigma, \tau\rangle\}
$$

$$
\forall j \neq i \in 1 \ldots n: d_{j}^{\prime}=d_{j}
$$

$$
\frac{\forall j \in 1 \ldots n: \sigma_{j}=a u x\left(d_{j}, \tau\right)}{\operatorname{wrapR2R}(f)\left(d_{q}, i, \bar{d}\right)=\langle f(\bar{\sigma}), \tau\rangle, \bar{d}^{\prime}}
$$

(W_{c}-R2R-READY)

$$
\frac{\langle\sigma, \tau\rangle \in d}{\operatorname{aux}(d, \tau)=\sigma}
$$

$$
\left(\mathrm{W}_{c}-\mathrm{R} 2 \mathrm{R}-\mathrm{Aux}\right)
$$

$$
\begin{aligned}
& \text { (} \mathrm{W}_{c} \text {-S2R) }
\end{aligned}
$$

Operator Fission

$$
\begin{gathered}
o p=\left(q_{o u t}\right) \leftarrow f\left(q_{\text {in }}\right) ; \\
\forall i \in 1 \ldots n: q_{i}=\text { freshId }() \quad \forall i \in 1 \ldots n: q_{i}^{\prime}=\text { freshId }() \\
F_{b}^{\prime}, o p_{s}=\llbracket \emptyset, \text { split roundrobin, } \bar{q}, q_{i n} \rrbracket_{s}^{p} \\
\forall i \in 1 \ldots n: o p_{i}=\left(q_{i}^{\prime}\right) \leftarrow f\left(q_{i}\right) ; \\
F_{b}^{\prime \prime}, o p_{j}=\llbracket \emptyset, \text { join roundrobin, } q_{o u t}, \bar{q}^{\prime} \rrbracket_{s}^{p} \\
\left\langle F_{b}, o p\right\rangle \longrightarrow{ }_{s p l i t}^{N}\left\langle F_{b} \cup F_{b}^{\prime} \cup F_{b}^{\prime \prime}, o p_{s} \overline{o p} o p_{j}\right\rangle
\end{gathered}
$$

