
A Universal Calculus for
Stream Processing Languages

Robert Soulé, Martin Hirzel, Robert Grimm, Buğra Gedik,
Henrique Andrade, Vibhore Kumar, and Kun-Lung Wu

New York University and IBM Research

1

Thursday, March 18, 2010

Stream Processing
Is Everywhere

2

Thursday, March 18, 2010

Stream Processing
Is Everywhere

2

Thursday, March 18, 2010

Stream Processing
Is Everywhere

2

Thursday, March 18, 2010

Stream Processing
Is Everywhere

2

Thursday, March 18, 2010

Stream Processing
Is Everywhere

2

Move large amounts of data
through several computational steps

Thursday, March 18, 2010

Stream Processing
Has Many Flavors

3

Thursday, March 18, 2010

Stream Processing
Has Many Flavors

3

StreamIt:
synchronous
processing

Thursday, March 18, 2010

Stream Processing
Has Many Flavors

3

StreamIt:
synchronous
processing

CQL:
SQL + streams

Thursday, March 18, 2010

Stream Processing
Has Many Flavors

3

StreamIt:
synchronous
processing

CQL:
SQL + streams

Sawzall:
functional data

processing
in the large

Thursday, March 18, 2010

Stream Processing
Has Many Implementations

4

StreamIt:
synchronous
processing

CQL:
SQL + streams

Sawzall:
functional data

processing
in the large

Thursday, March 18, 2010

Variety Breeds Confusion

We want to understand and compare streaming languages

What is their expressiveness?

How to optimize the data processing steps?

How to scale the overall applications? Especially across clusters?

Enter our universal calculus: Brooklet

Formal foundation for answering the above questions

Provably correct optimizations and translations

5

Thursday, March 18, 2010

Outline of This Talk

Motivation

Requirements

The Brooklet Core Calculus

Generality: Translating StreamIt, CQL, and Sawzall to Brooklet

Utility: Optimizing Brooklet to Brooklet

Outlook and Conclusions

6

Thursday, March 18, 2010

Elements of a Streaming App

7

State

Operator
Queue Queue

Thursday, March 18, 2010

Elements of a Streaming App

8

Thursday, March 18, 2010

Elements of a Streaming App

9

Not all operators
have state

Thursday, March 18, 2010

Elements of a Streaming App

10

Operators may
share state

Thursday, March 18, 2010

Requirements for Calculus

11

Thursday, March 18, 2010

Requirements for Calculus

11

Make
explicit

Thursday, March 18, 2010

Requirements for Calculus

11

Make
explicit

Make
explicit

and 1-to-1

Thursday, March 18, 2010

Requirements for Calculus

11

Make
explicit

Make
explicit

and 1-to-1

Make non-
deterministic

Make
trigger non-

deterministic

Thursday, March 18, 2010

Requirements for Calculus

11

Make
explicit

Make
explicit

and 1-to-1

Make non-
deterministic

Make
trigger non-

deterministic

Treat
functions as

opaque

Thursday, March 18, 2010

Brooklet Syntax

12

Sum

$total

volumetrades

(volume, $total) ← Sum(trades, $total)

Thursday, March 18, 2010

Function Environment

13

Sum

$total

volumetrades

F: The function implementations

Sum

Thursday, March 18, 2010

Queue Store

14

Sum

$total

volumetrades

Q: The contents of the queues

volumetrades

Thursday, March 18, 2010

Variable Store

15

Sum

$total

volumetrades

V: The contents of the variables

$total

Thursday, March 18, 2010

Brooklet
Operational Semantics

16

Sum

$total

volumetrades

F┣ <Q, V> → <Q’, V’>

Thursday, March 18, 2010

Complete Calculus

17

4 Robert Soulé et al.

Brooklet syntax:
Pb ::= out in op Brooklet program

out ::= output q ; Output declaration

in ::= input q ; Input declaration

op ::= (q, v) ← f (q, v); Operator

q ::= id Queue identifier

v ::= $ id Variable identifier

f ::= id Function identifier

Brooklet example: IBM market maker.
output result;
input bids, asks;
(ibmBids) ← SelectIBM(bids);
(ibmAsks) ← SelectIBM(asks);
($lastAsk)← Window(ibmAsks);
(ibmSales)← SaleJoin(ibmBids,$lastAsk);
(result,$cnt) ← Count(ibmSales,$cnt);

Brooklet semantics: Fb � �V, Q� −→ �V �, Q��
d, b = Q(qi)

op = (_, _)← f(q, v);
(b

�
, d

�
) = Fb(f)(d, i, V (v))

V � = updateV (op, V, d
�
)

Q� = updateQ(op, Q, qi, b
�
)

Fb � �V, Q� −→ �V �, Q��
(E-FireQueue)

op = (_, v)← f(_, _);

updateV (op, V, d) = [v �→ d]V
(E-UpdateV)

op = (q, _)← f(_, _);
df , bf = Q(qf)

Q� = [qf �→ bf]Q
Q�� = [∀qi∈q : qi �→ Q(qi), bi]Q

�

updateQ(op, Q, qf , b) = Q�� (E-UpdateQ)

Fig. 1. Brooklet syntax and semantics.

3.1 Brooklet Program Example: IBM Market Maker
As an example of a streaming program, we consider a hypothetical application

that trades IBM stock. Data arrives on two input streams, bids(symbol,price)

and asks(symbol,price), and leaves on the result(cnt,symbol,price) output

stream. Since the application is only interested in trading IBM stock, it filters

out all other stock symbols from the input. The application then matches bid

and ask prices from the filtered streams to make trades. To keep the example

simple, we assume that each sale is for exactly one share. The Brooklet program

in the bottom left corner of Fig. 1 produces a stream of trades of IBM stock,

along with a count of the number of trades.

3.2 Brooklet Syntax
A Brooklet program defines a directed, possibly cyclic, graph of operators con-

taining pure functions connected by FIFO queues. It uses variables to explicitly

thread state through operators. Data items on a queue model network packets

in transit. Data items in variables model stored state; since data items may be

lists, a variable may store arbitrary amounts of historical data. The following

line from the market maker application defines an operator:

(ibmSales) ← SaleJoin(ibmBids, $lastAsk);

The operator reads data from input queue ibmBids and variable $lastAsk. It

passes that data as parameters to the pure function SaleJoin, and writes the

result to the output queue ibmSales. Brooklet does not define the semantics of

SaleJoin. Modeling local deterministic computations is well-understood [17, 19],

so Brooklet abstracts them away by encapsulating them in opaque functions.

On the other hand, a Brooklet program does define explicit uses of state. In the

example, the following line defines a window over the stream ibmAsks:

($lastAsk) ← Window(ibmAsks);

The window contains a single tuple corresponding to the most recent ask for an

IBM stock, and the tuple is stored in the variable $lastAsk. Both the Window and

SaleJoin operators access $lastAsk.

The Window operator writes data to $lastAsk, but does not use the data stored

in the variable in its internal computations. Operators that incrementally update

state must both read and write the same variable, such as in the Count operator:

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

18

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

19

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€1>
<FNM,1,€2>

$lastBid = <FNM,0,0>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

20

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€1>
<FNM,1,€2>

$lastBid = <FNM,0,0>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

20

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€1>

<FNM,1,€2>
$lastBid = <FNM,0,0>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

20

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€1><FNM,1,€2>
$lastBid = <FNM,0,0>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

21

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

22

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

23

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

23

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

23

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0
<FNM,1,€2>

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

24

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

25

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

26

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

26

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

27

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

<FNM,1,€2>

$lastBid = <FNM,1,€1>

<FNM,1,€2>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

27

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

<FNM,1,€2>
$lastBid = <FNM,1,€1>

<FNM,1,€2>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

28

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

$lastBid = <FNM,1,€2>

<FNM,1,€2>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

29

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2>

<FNM,1,€2>

$total = 0

$lastBid = <FNM,1,€2>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

29

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2>

<FNM,1,€2>

$total = 0

$lastBid = <FNM,1,€2>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

29

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2>

<FNM,1,€2>

$total = 0

$lastBid = <FNM,1,€2>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

30

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

$lastBid = <FNM,1,€2>

<FNM,1><FNM,1>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

30

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

$lastBid = <FNM,1,€2>

<FNM,1>

<FNM,1>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

31

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 1

<FNM,1>

$lastBid = <FNM,1,€2>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

32

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 1

<FNM,1>

$lastBid = <FNM,1,€2>

Thursday, March 18, 2010

Example:
A Fannie Mae Bid/Ask Join

32

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 1

<FNM,1>

$lastBid = <FNM,1,€2>

Thursday, March 18, 2010

Translations

Demonstrating Brooklet’s generality
by translating three rather diverse streaming languages

33

Thursday, March 18, 2010

CQL, StreamIt, Sawzall:
One Translation Approach

34

Expose graph topology

Expose implicit
and explicit state

Functions Queues Variables

Wrap original operators in
higher-order functions

┣ , ><

Thursday, March 18, 2010

CQL, StreamIt, Sawzall:
One Translation Approach

34

Expose graph topology

Expose implicit
and explicit state

Functions Queues Variables

Wrap original operators in
higher-order functions

┣ , >

Make
queues explicit

and 1-to-1

<

Thursday, March 18, 2010

CQL, StreamIt, Sawzall:
One Translation Approach

34

Expose graph topology

Expose implicit
and explicit state

Functions Queues Variables

Wrap original operators in
higher-order functions

┣ , >

Make
state explicit

Make
queues explicit

and 1-to-1

<

Thursday, March 18, 2010

CQL, StreamIt, Sawzall:
One Translation Approach

34

Expose graph topology

Expose implicit
and explicit state

Functions Queues Variables

Wrap original operators in
higher-order functions

┣ , >

Make
state explicit

Make
queues explicit

and 1-to-1Do not
model local

computations

<

Thursday, March 18, 2010

Sum

$total

volumeFNM-trades

Filter
trades

Example: CQL to Brooklet

35

select Sum(shares) from trades
where trades.ticker = “FNM”

CQL

Brooklet

Thursday, March 18, 2010

Sum

$total

volumeFNM-trades

Filter
trades

Example: CQL to Brooklet

35

select Sum(shares) from trades
where trades.ticker = “FNM”

CQL

Brooklet Make
queues explicit

and 1-to-1

Thursday, March 18, 2010

Sum

$total

volumeFNM-trades

Filter
trades

Example: CQL to Brooklet

35

select Sum(shares) from trades
where trades.ticker = “FNM”

CQL

Brooklet

Make
state explicit

Make
queues explicit

and 1-to-1

Thursday, March 18, 2010

$total

volumeFNM-trades

Filter
trades

∑

select Sum(shares) from trades
where trades.ticker = “FNM”

Example: CQL to Brooklet

36

CQL

Brooklet

Thursday, March 18, 2010

$total

volumeFNM-trades

Filter
trades

∑

select Sum(shares) from trades
where trades.ticker = “FNM”

Example: CQL to Brooklet

36

CQL

Brooklet Dynamically
adapt runtime

arguments

Statically
bind the original

function

Thursday, March 18, 2010

Translation
Correctness Theorem

37

CQL/StreamIt Input

Brooklet Input

CQL/StreamIt Output

Brooklet Outputexecute

execute

translatetranslate

Results under CQL and StreamIt semantics are the same as the
results under Brooklet semantics after translation

First formal semantics for Sawzall

Thursday, March 18, 2010

Optimizations

Demonstrating Brooklet’s utility
by realizing three essential optimizations

38

Thursday, March 18, 2010

Operator Fusion:
Eliminate Queueing Delays

39

Look for connected operators,
 whose state isn’t used anywhere else

before

after

Thursday, March 18, 2010

Operator Fission:
Process More Data in Parallel

40

Look for stateless operators

Split Join

before

after

Thursday, March 18, 2010

Operator Reordering:
Filter Data Early

41

Look for operators whose read/write sets
don’t overlap [Ghelli et al., SIGMOD 08]

before

after

Filter

Filter

Thursday, March 18, 2010

Outlook

42

Thursday, March 18, 2010

Outlook

More optimizations

dynamic operator placement, load balancing,
subquery sharing, eliminating spurious synchronization

42

Thursday, March 18, 2010

Outlook

More optimizations

dynamic operator placement, load balancing,
subquery sharing, eliminating spurious synchronization

Richer extended calculus

Types, verify progress, time constraints

42

Thursday, March 18, 2010

Outlook

More optimizations

dynamic operator placement, load balancing,
subquery sharing, eliminating spurious synchronization

Richer extended calculus

Types, verify progress, time constraints

Common execution platform

Practical challenges: data types, library of operators, serialization,
process management, error handling

42

Thursday, March 18, 2010

Conclusions

Streaming is everywhere

Media, finance, web applications

Need a calculus to understand (distributed) implementations

Minimal, non-deterministic, makes state and communication explicit

Provide a formal and practical foundation for stream programming

Mappings from CQL, StreamIt, and Sawzall

Formalizing of Fusion, Fission, and Reordering

43

Thursday, March 18, 2010

44

http://cs.nyu.edu/brooklet

Thursday, March 18, 2010

45

Thursday, March 18, 2010

CQL Translation Rules

46

A Universal Calculus for Stream Processing Languages 7

4 Language Mappings

We demonstrate Brooklet’s generality by mapping three streaming languages
CQL, StreamIt, and Sawzall to it. Each translation exposes implicit uses of state
as explicit variables; exposes a mechanism for implementing global determinism
on top of an inherently non-deterministic runtime; and abstracts away local
deterministic computations with higher-order wrappers that statically bind the
original function and dynamically adapt the runtime arguments (thus preserving
small step semantics).

4.1 CQL and Stream-Relational Algebra
CQL syntax:

Pc ::= Pcr | Pcs CQL program

Pcr ::= (Relation query)

RName Relation name

| S2R(Pcs) Stream to relation

| R2R(Pcr) Relation to relation

Pcs ::= (Stream query)

SName Stream name

| R2S(Pcr) Relation to stream

RName | SName ::= id Input name

S2R | R2R | R2S ::= id Operator name

CQL example: Bargain finder.
IStream(BargainJoin(Now(quotes), history))

CQL program translation: [[Fc, Pc]]pc = �Fb, Pb�
[[Fc, SName]]pc = ∅, outputSName;inputSName;•

(Tp
c -SName)

[[Fc, RName]]pc = ∅, outputRName;inputRName;•
(Tp

c -RName)

Fb, output qo; input q; op = [[Fc, Pcs]]pc
q�o = freshId() v = freshId()

F �
b = [S2R �→ wrapS2R(Fc(S2R))]Fb

op
� = op, (q�o, v) ← S2R(qo, v);

[[Fc, S2R(Pcs)]]pc = F �
b, output q�o; input q; op

�

(Tp
c -S2R)

Fb, output qo; input q; op = [[Fc, Pcr]]pc
q�o = freshId() v = freshId()

F �
b = [R2S �→ wrapR2S(Fc(R2S))]Fb

op
� = op, (q�o, v) ← R2S(qo, v);

[[Fc, R2S(Pcr)]]pc = F �
b, output q�o; input q; op

�

(Tp
c -R2S)

Fb, output qo; input q; op = [[Fc, Pcr]]pc
n = |Pcr| q�o = freshId() q� = q1, . . . , qn

∀i ∈ 1 . . . n : vi = freshId() op
� = op1, . . . , opn

F �
b = [R2R �→ wrapR2R(Fc(R2R))](∪Fb)

op
�� = op

�, (q�o, v) ← R2R(qo, v);

[[Fc, R2R(Pcr)]]pc = F �
b, output q�o;input q�;op��

(Tp
c -R2R)

CQL domains:

τ∈T Time

e∈T P Tuple

σ∈Σ = bag(T P) Instantaneous relation

r∈R = T → Σ Time-varying relation

s∈S = bag(T P×T) Time-varying stream
. .
CQL operator signatures:

S2R : S × T → Σ
R2S : Σ ×Σ → Σ
R2R : Σn → Σ

. .
CQL operator wrapper signatures:

S2R : (Σ × T)× {1}× S → (Σ × T)× S
R2S : (Σ × T)× {1}×Σ → (Σ × T)×Σ
R2R : (Σ × T)× {1 . . . n}× (2Σ×T)n

→ (Σ × T)× (2Σ×T)n

CQL operator wrappers:
σ, τ = dq s = dv

s� = s ∪ {�e, τ� : e ∈ σ} σ� = f(s�, τ)

wrapS2R(f)(dq, _, dv) = �σ�, τ�, s�

(Wc-S2R)

σ, τ = dq σ� = dv σ�� = f(σ, σ�)

wrapR2S(f)(dq, _, dv) = �σ��, τ�, σ
(Wc-R2S)

σ, τ = dq d�i = di ∪ {�σ, τ�}
∀j �= i ∈ 1 . . . n : d�j = dj

∃j ∈ 1 . . . n : �σ : �σ, τ� ∈ dj

wrapR2R(f)(dq, i, d) = •, d
�

(Wc-R2R-Wait)

σ, τ = dq d�i = di ∪ {�σ, τ�}
∀j �= i ∈ 1 . . . n : d�j = dj

∀j ∈ 1 . . . n : σj = aux(dj , τ)

wrapR2R(f)(dq, i, d) = �f(σ), τ�, d
�

(Wc-R2R-Ready)

�σ, τ� ∈ d

aux(d, τ) = σ
(Wc-R2R-Aux)

Fig. 2. CQL semantics on Brooklet.

CQL, the Continuous Query Language, is a member of the StreamSQL family
of languages. StreamSQL gives developers who are familiar with SQL’s select-
from-where syntax an incremental learning path to stream programming. This
paper uses CQL to represent the entire StreamSQL family, because it has a clean
design, has made significant impact [1], and has a formal semantics [2].

A Universal Calculus for Stream Processing Languages 7

4 Language Mappings

We demonstrate Brooklet’s generality by mapping three streaming languages
CQL, StreamIt, and Sawzall to it. Each translation exposes implicit uses of state
as explicit variables; exposes a mechanism for implementing global determinism
on top of an inherently non-deterministic runtime; and abstracts away local
deterministic computations with higher-order wrappers that statically bind the
original function and dynamically adapt the runtime arguments (thus preserving
small step semantics).

4.1 CQL and Stream-Relational Algebra
CQL syntax:

Pc ::= Pcr | Pcs CQL program

Pcr ::= (Relation query)

RName Relation name

| S2R(Pcs) Stream to relation

| R2R(Pcr) Relation to relation

Pcs ::= (Stream query)

SName Stream name

| R2S(Pcr) Relation to stream

RName | SName ::= id Input name

S2R | R2R | R2S ::= id Operator name

CQL example: Bargain finder.
IStream(BargainJoin(Now(quotes), history))

CQL program translation: [[Fc, Pc]]pc = �Fb, Pb�
[[Fc, SName]]pc = ∅, outputSName;inputSName;•

(Tp
c -SName)

[[Fc, RName]]pc = ∅, outputRName;inputRName;•
(Tp

c -RName)

Fb, output qo; input q; op = [[Fc, Pcs]]pc
q�o = freshId() v = freshId()

F �
b = [S2R �→ wrapS2R(Fc(S2R))]Fb

op
� = op, (q�o, v) ← S2R(qo, v);

[[Fc, S2R(Pcs)]]pc = F �
b, output q�o; input q; op

�

(Tp
c -S2R)

Fb, output qo; input q; op = [[Fc, Pcr]]pc
q�o = freshId() v = freshId()

F �
b = [R2S �→ wrapR2S(Fc(R2S))]Fb

op
� = op, (q�o, v) ← R2S(qo, v);

[[Fc, R2S(Pcr)]]pc = F �
b, output q�o; input q; op

�

(Tp
c -R2S)

Fb, output qo; input q; op = [[Fc, Pcr]]pc
n = |Pcr| q�o = freshId() q� = q1, . . . , qn

∀i ∈ 1 . . . n : vi = freshId() op
� = op1, . . . , opn

F �
b = [R2R �→ wrapR2R(Fc(R2R))](∪Fb)

op
�� = op

�, (q�o, v) ← R2R(qo, v);

[[Fc, R2R(Pcr)]]pc = F �
b, output q�o;input q�;op��

(Tp
c -R2R)

CQL domains:

τ∈T Time

e∈T P Tuple

σ∈Σ = bag(T P) Instantaneous relation

r∈R = T → Σ Time-varying relation

s∈S = bag(T P×T) Time-varying stream
. .
CQL operator signatures:

S2R : S × T → Σ
R2S : Σ ×Σ → Σ
R2R : Σn → Σ

. .
CQL operator wrapper signatures:

S2R : (Σ × T)× {1}× S → (Σ × T)× S
R2S : (Σ × T)× {1}×Σ → (Σ × T)×Σ
R2R : (Σ × T)× {1 . . . n}× (2Σ×T)n

→ (Σ × T)× (2Σ×T)n

CQL operator wrappers:
σ, τ = dq s = dv

s� = s ∪ {�e, τ� : e ∈ σ} σ� = f(s�, τ)

wrapS2R(f)(dq, _, dv) = �σ�, τ�, s�

(Wc-S2R)

σ, τ = dq σ� = dv σ�� = f(σ, σ�)

wrapR2S(f)(dq, _, dv) = �σ��, τ�, σ
(Wc-R2S)

σ, τ = dq d�i = di ∪ {�σ, τ�}
∀j �= i ∈ 1 . . . n : d�j = dj

∃j ∈ 1 . . . n : �σ : �σ, τ� ∈ dj

wrapR2R(f)(dq, i, d) = •, d
�

(Wc-R2R-Wait)

σ, τ = dq d�i = di ∪ {�σ, τ�}
∀j �= i ∈ 1 . . . n : d�j = dj

∀j ∈ 1 . . . n : σj = aux(dj , τ)

wrapR2R(f)(dq, i, d) = �f(σ), τ�, d
�

(Wc-R2R-Ready)

�σ, τ� ∈ d

aux(d, τ) = σ
(Wc-R2R-Aux)

Fig. 2. CQL semantics on Brooklet.

CQL, the Continuous Query Language, is a member of the StreamSQL family
of languages. StreamSQL gives developers who are familiar with SQL’s select-
from-where syntax an incremental learning path to stream programming. This
paper uses CQL to represent the entire StreamSQL family, because it has a clean
design, has made significant impact [1], and has a formal semantics [2].

Thursday, March 18, 2010

Operator Fission

47

A Universal Calculus for Stream Processing Languages 15

Theorem 1 (CQL translation correctness). For all CQL function environ-
ments Fc, programs Pc, and inputs Ic, the results under CQL semantics are the
same as the results under Brooklet semantics after translation [[Fc, Pc]]pc .

Theorem 2 (StreamIt translation correctness). For all StreamIt function
environments Fs, programs Ps, and inputs Is, the results under StreamIt se-
mantics are the same as the results under Brooklet semantics after translation
[[Fs, Ps]]ps.

5 Optimizations

The previous section used our calculus to understand how a language maps to
an execution platform. This section uses our calculus to specify how to use three
vital optimizations: data-parallel computation, operator fusion, and operator re-
ordering. Each optimization comes with a correctness theorem; for space reasons,
we leave the proofs to an extended technical report [22].
5.1 Data Parallelism
If an operation is commutative across data items, then the order in which the
data items are processed is irrelevant. MapReduce uses this observation to ex-
ploit the collective computing power of a cluster for analyzing extremely large
data sets [5]. The input data set is partitioned, and copies of the map operator
process the partitions in parallel. In general, the challenge in exploiting such
data parallelism is determining if an operator commutes. Sawzall and StreamIt
solve this challenge by restricting the programming model. In Brooklet, commu-
tativity analysis can be performed with a simple code inspection. Since a pure
function always commutes4, and all state in Brooklet is explicit in an operator’s
signature, a sufficient condition for introducing data-parallelism is that an oper-
ator does not access variables. The transformation must ensure that the output
data is combined in the same order that the input data was partitioned. Brooklet
can use the round-robin splitter and joiner described in the StreamIt transla-
tion for this purpose. Thus, the operator (out)←wrapMap-LatLong(q); can be
parallelized with N = 3 copies like this:
(q1, q2, q3, $sc) ← Split(q, $sc);
(q4) ← wrapMap-LatLong(q1);
(q5) ← wrapMap-LatLong(q2);
(q6) ← wrapMap-LatLong(q3);
(out, $v4, $v5, $v6, $jc) ← Join(q4, q5, q6, $v4, $v5, $v6, $jc);

The following rule describes how to create the new program with N duplicates
of the parallelized operator.

op = (qout)← f(qin);
∀i ∈ 1 . . . n : qi = freshId() ∀i ∈ 1 . . . n : q�

i = freshId()
F �

b, ops = [[∅, split roundrobin, q, qin]]ps
∀i ∈ 1 . . . n : opi = (q�

i)← f(qi);
F ��

b , opj = [[∅, join roundrobin, qout , q
�]]ps

�Fb, op� −→N
split �Fb ∪ F �

b ∪ F ��
b , ops op opj�

(Ob-Split)

4 At least in the mathematical sense; in systems, floating point operations do not
always commute.

Thursday, March 18, 2010

