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Synonyms

Sliding-window fold; Stream reduce; SWAG

Definition

An aggregation is a function from a collection
of data items to an aggregate value. In sliding-
window aggregation, the input collection consists
of a window over the most recent data items in
a stream. Here, a stream is a potentially infinite
sequence of data items, and the decision on which
data items are most recent at any point in time is
given by a window policy. A sliding-window ag-
gregation algorithm updates the aggregate value,
often using incremental-computation techniques,
as the window contents change over time, as
illustrated in Fig. 1.

Overview

Sliding-window aggregation summarizes a col-
lection of recent streaming data, capturing the
most recent happenings as well as some history.
Including some history provides context for deci-
sions, which would be missing if only the current
data item were used. Using the most recent data
helps identify and react to present trends, which
would be diluted if all data from the beginning of
time were included.

Aggregation is one of the most fundamental
data processing operations. This is true
in general, not just in stream processing.
Aggregation is versatile: it can compute counts,
averages, or maxima, index data structures,
sketches such as Bloom filters, and many more.
In databases, it shows up as a basic relational
algebra operator called group-by-aggregate and
denoted by � (Garcia-Molina et al. 2008). In
spreadsheets, it shows up as a function from a
range of cells to a summary statistic (Sajaniemi
and Pekkanen 1988). In programming languages,
it shows up as a popular higher-order function
called fold (Hutton 1999). In MapReduce,
it shows up as reduce (Dean and Ghemawat
2004), which has been leveraged in many tasks,
including computations that do not diminish the
volume of data.

In stream processing, aggregation plays a sim-
ilarly central role. But unlike the abovementioned
cases, which focus on data at rest, streaming
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aggregation must handle data in motion. In par-
ticular, sliding-window aggregation must handle
inserting new data items into the window as
they arrive and evicting old data items from
the window as they expire. Supporting this effi-
ciently poses algorithmic challenges, especially
for non-invertible aggregation functions such as
max, for which there is no way to “subtract off”
expiring items. From an algorithmic perspective,
handling sliding windows with both insertion and
eviction is more challenging than handling just
insertion. Yet, there are two cases where eviction
does not matter: unbounded and tumbling win-
dows. Unbounded windows appear, for instance,
in CQL (Arasu et al. 2006). Because they grow
indefinitely, it is sufficient to update aggregations
upon insert and not keep the data item itself
around; they never need to call evict. Tumbling
windows are more common; because they clear
the entire contents of the window at the same
time, there is no need to call evict on individual
elements of the window.

Sliding windows are commonly first-in first-
out (FIFO), resembling the behavior of a queue.
What to keep in a sliding window and how often
the aggregation is computed are controlled by
policies, cataloged elsewhere (Gedik 2013); they
may be count-based (e.g., the past 128 elements)
or time-based (e.g., the past 12 min), among oth-
ers. Regardless of policies, FIFO sliding-window
aggregation (SWAG) can be formulated as an ab-
stract data type with the following operations:

• insert.v/ appends the value v to the window.
• evict./ removes the oldest value from the

window.
• query./ returns the aggregation of the values

in the window.

Non-FIFO windows can be supported by ex-
tending the insert operation with a timestamp
argument or storing the timestamps in the data
items themselves.

Metrics of interest in SWAG implementations
are throughput, latency, and memory footprint.
SWAG implementations also differ in general-
ity: to enhance efficiency, aggregation operations,
when feasible, are applied incrementally – that is,
modifying a running product of sort in response
to data items arriving or leaving the window. To
what extent this can be exploited depends on the
nature of the aggregation operation.

Past work (Boykin et al. 2014; Gray et al.
1996; Tangwongsan et al. 2015) cast most
aggregation operations as binary operators,
written ˝, and has categorized them based
on algebraic properties. Table 1 lists common
aggregation operations with their properties and
groups them into categories. An aggregation
operator is invertible if there exists some
function ˛ such that .x ˝ y/˛ y D x for all
x and y. Using ˛, SWAGs can implement
eviction as an undo. A function is associative if
x ˝ .y ˝ ´/ D .x ˝ y/˝ ´ for all x, y, and ´.
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Sliding-Window Aggregation Algorithms, Table 1 Aggregation operations. Check marks (X), crosses (�), and
question marks (?) indicate a property is true for all, false for all, or false for some of the given group, respectively

Invertible Associative Commutative Rank-based

sum-like: sum, count, average, standard deviation, . . . X X X �

collect-like: collect list, concatenate strings, i th-youngest, . . . X X � ?

median-like: median, percentile, i th-smallest, . . . X X X X
max-like: max, min, argMax, argMin, maxCount, . . . � X ? �

sketch-like: Bloom filter (Bloom 1970), CountMin (Cormode
and Muthukrishnan 2005), HyperLogLog (Flajolet et al. 2007)

� X X �

SWAGs can take advantage of associativity by
applying˝ at arbitrary places inside the window.
Without associativity, SWAGs are restricted to
applying ˝ only at the end, upon insertion. A
function is commutative if x ˝ y D y ˝ x for all
x and y. For commutative aggregation operators,
SWAGs can ignore the insertion order of data
items. An aggregation operator is rank-based if it
relies upon an ordering by some attribute of each
data item, for instance, to find the i th-smallest.

Whereas an aggregation operator ˝ is a bi-
nary operator that combines two partial aggre-
gates, a SWAG algorithm maintains the aggregate
of a sliding window as its contents change over
time. When discussing the algorithmic complex-
ity of SWAG algorithms, this article assumes that
each application of a basic aggregation operator
takes constant time and that the result it produces
takes the same amount of memory space as either
one of its inputs.

Table 2 presents an overview of the SWAG
algorithms presented in this article, with their
asymptotic complexity, space usage, and restric-
tions. The most straightforward SWAG algorithm
is called Recalc, since it always recalculates all
values. Upon any insert or evict, Recalc walks
the entire window and recomputes the aggrega-
tion value by using all available elements. Its time
complexity is obviouslyO.n/, where n is the cur-
rent number of elements in the window. Recalc
serves as the baseline comparison for all other
SWAG algorithms. Subtract-on-evict (SOE) is
an O.1/ algorithm, but it is not general: it can
only be used when the aggregation is invertible.
Upon every insert, SOE updates the current ag-
gregation value using ˝, and upon every evict,
SOE updates that value using ˛. The order

statistics tree (OST) adds subtree statistics to the
inner nodes of a balanced search tree (Hirzel et al.
2016). Values are put in both a queue and the tree,
making both insert and evict O.logn/. But
query calls for aggregations such as the median
or pth percentile become O.logn/ because such
information can be derived by traversing a path
that is no longer than the height of the tree.

This section gave a brief overview with back-
ground and some simple aggregation algorithms.
In general, research into SWAG algorithms tries
to avoid O.n/ costs (unlike Recalc) but main-
tain generality (unlike SOE and OST). The next
section will discuss the more sophisticated al-
gorithms from Table 2 that offer improvements
toward this goal.

Key Research Findings

The most successful techniques in speeding
up sliding-window aggregation have been data
structuring and algorithmic techniques that yield
asymptotic improvements. They are the most
effective when the aggregation function meets
certain algebraic requirements. For instance,
there are important aggregation operations that
are associative, but not necessarily invertible nor
commutative.

Pre-aggregation of data items that will be
evicted at the same time is a technique that can
be applied together with all SWAG algorithms
discussed in this article. When data items are
co-evicted, the window need not store them in-
dividually but can instead store partial aggre-
gations, reducing the effective window size n

in Table 2. Pre-aggregation algorithms include
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Sliding-Window Aggregation Algorithms, Table 2 Summary of aggregation algorithms and their properties, where
n is the window size and nmax is the size of the smallest contiguous range that contains all the shared windows

Algorithmic complexity

Time Space Restrictions

Recalc Worst-caseO.n/ O.n/ None

Subtract-on-evict (SOE) Worst-caseO.1/ O.n/ Sum-like or collect-like

Order statistics tree (OST) (Hirzel et al. 2016) Worst-caseO.logn/ O.n/ Median-like

Reactive Aggregator (RA) (Tangwongsan et al. 2015) AverageO.logn/ O.n/ Associative

DABA (Tangwongsan et al. 2017)
and DABA Lite (Tangwongsan et al. 2021)

Worst-caseO.1/ O.n/ Associative, FIFO

B-Int (Arasu and Widom 2004) SharedO.lognmax/ O.nmax/ Associative, FIFO

FlatFIT (Shein et al. 2017) AverageO.1/ O.n/ Associative, FIFO

FiBA (Tangwongsan et al. 2019) AverageO.log.1C d// O.n/ Associative

paned windows (Li et al. 2005), paired win-
dows (Krishnamurthy et al. 2006), and Cutty
windows (Carbone et al. 2016). Windows are
sometimes coarsened to enable pre-aggregation,
improving performance at the expense of some
approximation. Scotty (Traub et al. 2018) and its
follow-up work (Traub et al. 2019) use careful
pre-aggregation and slicing to enhance the effi-
ciency of out-of-order processing.

B-Int (Arasu and Widom 2004), designed
to facilitate sharing across windows, stores a
“shared” window S that contains inside it all the
windows being shared. To facilitate fast queries,
B-Int maintains pre-aggregated values for all base
intervals that lie within S . Base intervals (more
commonly known now as dyadic intervals) are
intervals of the form Œ2`k; 2`.k C 1/ � 1� with
`; k � 0. The parameter ` defines the level of
a base interval. This allows a query between the
i -th data item and j -th data item within S to be
answered by combining at most O.log ji � j j/
pre-aggregated values, resulting in logarithmic
running time.

The Reactive Aggregator (RA) (Tang-
wongsan et al. 2015) is implemented via
a balanced tree ordered by time, where
internal nodes hold the partial aggregations of
their subtrees, and offers O.logn/ amortized
time. Instead of the conventional approach
to implementing balanced trees by frequent
rebalancing, RA projects the tree over a complete
perfect binary tree, which it stores in a flat array.
This leads to higher performance than other tree-

based SWAG implementations in practice, since
it saves the time of rebalancing as well as the
overheads of pointers and fine-grained memory
allocation.

When the stream is strictly FIFO, Two-Stacks
ensures that every SWAG operation takes O.1/
amortized time. This is accomplished by main-
taining a queue as two stacks and keeping par-
tial aggregates from the bottom of each stack.
L-BiX (Bou et al. 2020) only works on fixed-size
windows and uses half as much space as Two-
Stacks. HammerSlide (Theodorakis et al. 2018)
reduces the space requirement of Two-Stacks and
in conjunction with pre-aggregation techniques,
exposes parallelism opportunities. PBA (Zhang
et al. 2021) only works for fixed-size windows
and computes suffix sums for older parts of the
window in parallel with insertions to the newest
part. Replacing a sequential array with a binary
tree encoding a sequence of FIFO queues, (amor-
tized) MTA (Villalba et al. 2019) allows arbitrary
bulk evictions in O.logn/ time while retain-
ing O.1/ amortized time for single operations.
Additionally, MTA supports using a side stor-
age (e.g., in a key-value store) to keep window
items and partial aggregations. FlatFIT (Shein
et al. 2017) is another algorithm that achieves
O.1/ time in the amortized sense. This is ac-
complished by storing pre-aggregated values in
a tree-like index structure that promotes reuse,
reminiscent of path compression in the union-
find data structure. In special scenarios where
the binary operator always returns either of its
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operands, SlickDeque (Shein et al. 2018) reduces
memory footprint by storing only distinct partial
aggregates.

For latency-sensitive applications that cannot
afford a long pause, DABA (Tangwongsan et al.
2017) ensures that every SWAG operation takes
O.1/ time in the worst-case, not just on average.
This is accomplished by extending Okasaki’s
functional queue (Okasaki 1995) and removing
dependencies on lazy evaluation and automatic
garbage collection. Two-Stacks Lite and DABA
Lite streamline Two-Stacks and DABA, respec-
tively, to use half as much space and speed up
their execution time (Tangwongsan et al. 2021).

In settings that involve out-of-order process-
ing, a holding buffer can be used to reorder data
items before they enter the window (Srivastava
and Widom 2004). When the stream is formed
by merging multiple sub-streams, out-of-order
streams may be solved by pre-aggregating each
data source separately and consolidating partial
aggregation results as late as possible when doing
an actual query (Krishnamurthy et al. 2010).
Alternatively, FiBA (Tangwongsan et al. 2019),
an aggregation algorithm specially designed for
out-of-order streams, handles a data item’s arrival
in O.log.1 C d// amortized time, where d is
the distance of that data item to the window’s
boundary. The bound is asymptotically optimal
and is accomplished by enhancing a constant
time rebalancing B-tree with finger searching and
position-aware partial aggregates. Using FiBA, a
whole-window query takes O.1/ worst-case time
and a range query between the i -th data item
and j -th data item takes O.log ji � j j/ time plus
the time required to locate the start and end data
items.

There are a number of other generic
techniques that tend to apply broadly to sliding-
window aggregation. Window partitioning is
sometimes used as a means to maintain group-by
aggregation and obtain data parallelism through
fission (Schneider et al. 2015).

Examples of Application

Many applications of stream processing depend
heavily upon sliding-window aggregation. This
section describes concrete examples of apply-
ing sliding-window aggregation to real-world use
cases. Understanding these examples helps ap-
preciate the problems and guide the design of
solutions.

Medical service providers want to save lives
by getting early warnings when there is a high
likelihood that a patient’s health is about to de-
teriorate. For instance, the Artemis system an-
alyzes data from real-time sensors on patients
in a neonatal intensive care unit (Blount et al.
2010). Among other things, it counts how often
the blood oxygen saturation and the mean arterial
blood pressure fall below a threshold in a 20-s
sliding window. If the counts exceed another
threshold, Artemis raises an alert.

Financial agents engaged in algorithmic trad-
ing want to make money by buying and selling
stocks or other financial instruments. Treleaven
et al. review the current practice for how that
works technologically (Treleaven et al. 2013).
Streaming systems for algorithmic trading make
their decisions based on predicted future prices.
One of the inputs for these predictions is a mov-
ing average of the recent history of a price, for
example, over a 1-h sliding window.

Road traffic can be regulated using variable
tolling to implement congestion-pricing policies.
One of the most popular benchmarks for stream-
ing systems, linear road, is based on variable
tolling (Arasu et al. 2004). The idea is to regulate
demand by charging higher tolls for driving on
congested roads. To do this, the streaming system
must determine whether a road is congested. This
works by using sliding-window aggregation to
compute the number and average speed of vehi-
cles in a given road segment and time window.

The above list of use cases is by no means
exhaustive; there are many more applications
of sliding-window aggregation, for instance, in
phone providers, security, and social media.
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Future Directions for Research

Research on sliding-window aggregation has fo-
cused mainly on aggregation functions that are
associative and on FIFO windows. Less is known
for other nontrivial scenarios. Besides associativ-
ity and invertibility, what other properties can be
exploited to develop general-purpose algorithms
for fast sliding-window aggregation? How can
SWAG algorithms take better advantage of mul-
ticore parallelism?

Cross-References

�Adaptive Windowing
� Incremental Sliding Window Analytics
� Stream Query Optimization
� Stream Window Aggregation Semantics and

Optimization
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