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Synonyms

Continuous query optimization; Stream process-
ing optimization

Definition

Stream query optimization is the process of mod-
ifying a stream processing query, often by chang-
ing its graph topology and/or operators, with
the aim of achieving better performance (such
as higher throughput, lower latency, or reduced
resource usage), while preserving the semantics
of the original query.

Overview

A stream query optimization modifies a stream
query to make it faster. Users want stream queries
to be fast for several reasons. They want to grasp

opportunities or avert risks observable on the
input streams before it is too late. They want any
views derived from the input streams to be up-
to-date and not stale. And they want their system
to keep up with the rate of input streams without
falling behind, which would require shedding
load or saving data to disk for later processing.

Knowing about stream query optimizations
helps developers at all layers. Application
developers who know about stream query
optimizations can get the most out of the
optimizations built into their streaming platform
and can supplement them by hand-optimizing
their application where necessary. Streaming
platform developers can use knowledge about
stream query optimizations to make their
platform faster by implementing additional
optimizations or by generalizing their existing
optimizations to apply in more situations. Finally,
researchers who invent new optimizations need
to know the state-of-the-art optimizations to
channel their efforts into the most innovative
and impactful direction.

The rest of this section introduces some basic
concepts and gives a high-level overview and
categorization of the most common stream query
optimizations.

An optimization should be both safe and
profitable. An optimization is safe if it can be
applied to a stream query without changing
what it computes, as determined by the user’s
requirements. An optimization is profitable if
it makes the stream query faster, as measured
by metrics that matter to the user, such as
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Stream Query Optimization, Fig. 1 Overview of stream query optimizations discussed in this entry

throughput, latency, or resource efficiency. There
is a substantial literature on different stream
query optimizations, with different safety and
profitability characteristics. This entry lists the
most common optimizations along with short
descriptions. More in-depth descriptions can be
found in our survey paper and tutorial on stream
processing optimizations (Hirzel et al. 2014;
Schneider et al. 2013).

Stream query optimizations are best under-
stood with respect to stream graphs. A stream
graph is a directed graph whose edges are streams
and whose nodes are operators. Root and leaf
nodes are called sources and sinks, respectively.
This entry uses terminology that makes only few
assumptions so as not to unnecessarily restrict its
scope. For instance, this entry does not assume
restrictions on the shape of the stream graph:
unless specified otherwise, it does not assume
that stream graphs are acyclic, or are single-
source-single-sink, or are trees. A stream is an
ordered sequence of data items, which are values
that can range from simple numbers to flat tuples
to more elaborate structured data that may be
deeply nested and have variable size. Streams
are conceptually infinite, in the sense that as
the streaming computation unfolds over time, the
sequence of data items is unbounded in length.
Operators are primarily stream transformers but
can also have state and side effects beyond the

output streams they produce. Indeed, sources and
sinks are operators that typically have the side
effect of continuously consuming input from and
producing output to the external world outside of
the stream graph.

Figure 1 lists the most popular stream query
optimizations. Each optimization has a symbol
(e.g., B), a name (e.g., Batching), and two anno-
tations indicating its effect on the graph and the
semantics. The optimizations to the left (shown
in orange and red) leave the stream graph un-
changed. This means the graph still contains
the same nodes and edges, and any changes are
limited to the behavior of individual operators.
The optimizations on the right (shown in blue
and green) change the stream graph. The opti-
mizations on the top (shown in orange and blue)
keep the semantics stable. This means that as
long as their safety preconditions are satisfied,
the observable behavior of the stream query is
the same before and after applying the optimiza-
tion. These optimizations are safe in the sense
discussed above. The extreme case is batching
and fusion at the very top, which are not only
safe, but have safety preconditions that are triv-
ial to satisfy. Only the three optimizations at
the very bottom have unstable semantics: load
shedding, which always changes the semantics,
and algorithm selection and fission, which some-
times change semantics if the algorithm is ap-
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proximate or if the fission perturbs the order
of data items. These forms of semantic changes
are sometimes tolerable depending on application
requirements.

The following section will elaborate on each
of the optimizations from Fig. 1 with illustrations,
definitions, and literature references.

Key Research Findings

B 1

Batching

Unchanged graph
Stable semantics

A A'

Batching Definition: Batching reduces over-
head by processing multiple data items together.
This optimization improves throughput by
amortizing the cost of operator-firing and
communication over several data items. However,
this throughput gain is usually at the expense of
additional latency, as an operator cannot fire until

it has received a batch-size number of data items.
References: In the literature, batching is also
called train scheduling (Carney et al. 2003) and
execution scaling (Gordon et al. 2006). Batching
can be dynamic, as in SEDA (Welsh et al. 2001),
or static, as in StreamIt (Gordon et al. 2006).

Fusion combines

Fu 2

Fusion

Changed graph
Stable semantics

BA
q0 q1 q2 A

q0 B
q2

Fusion Definition: Fusion combines smaller op-
erators into a larger one, to avoid the overhead
of data serialization and transport. Operators may
be fused in many ways, for example, by placing
the operators into the same thread or by keeping
operators in separate threads that share a common
address space. Fusion may come at the cost

of decreased pipeline parallelism. References:
StreamIt (Gordon et al. 2002) aggressively fuses
fine-grained operators, followed by fission. In
Aurora, fusion is referred to as superbox schedul-
ing (Tatbul et al. 2003). System S uses the COLA
fusion optimizer (Khandekar et al. 2009), which
balances safety and profitability constraints.

P 3

Placement

Unchanged graph
Stable semantics

B

D
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Placement Definition: Placement assigns oper-
ators to hosts and cores to reduce communica-
tion costs or better utilize available resources.
Frequently, these two goals are at odds. When
multiple operators are placed on the same host,

they communicate at lower cost, but they com-
pete for common resources, such as disk, mem-
ory, or CPU. On the other hand, when operators
are placed on different hosts, that reduces con-
tention but incurs higher communication costs.
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References: StreamIt uses placement to optimize
streaming applications deployed on multi-core
machines with nonuniform memory access (Gor-
don et al. 2002). Pietzuch et al. use metrics

gathered from network conditions to place op-
erators in a distributed setting (Pietzuch et al.
2006). SODA incorporates job admission with
the placement decisions (Wolf et al. 2008).

Ss 4

State
sharing
Unchanged graph
Stable semantics

BA BA

State sharing Definition: State sharing attempts
to avoid unnecessary copies of data. While the
main goal of the optimization is to reduce the
memory footprint of a streaming application, it
can also impact performance by reducing stalls
due to cache misses or disk I/O. References:
State sharing can be applied generally between

streaming operators, such as in the work of Brito
et al. (2008). Or, it can be applied in more
restricted forms, such as in CQL, which shares
only window state (Arasu et al. 2006), or in the
work of Sermulins et al., which shares queue state
between two pipelined operators (Sermulins et al.
2005).

Os 5

Operator
separation
Changed graph
Stable semantics

A2A1A

Operator separation Definition: Operator sep-
aration splits a large computation into smaller
steps. In some cases, this optimization can result
in reduced resource consumption. Often, this op-
timization is used to enable other optimizations,
such as operator reordering. References: Using
algebraic equivalences for separating operators is

a common technique in database query execution
planning (Garcia-Molina et al. 2008). Yu et al.
(2009) present a stream query compiler that uses
explicit annotations to determine when to sep-
arate aggregate operators. Decoupled software
pipelining separates general code by analyzing
data dependencies from first principles (Ottoni
et al. 2005).

Or 6

Operator
reordering
Changed graph
Stable semantics

BA
q0 q1 q2 AB

q0 q1 q2

Operator reordering Definition: A reordering
optimization moves more selective operators,
which reduce the data volume, upstream. This
has the benefit of reducing the data flowing
into downstream computation, thus eliminating
unnecessary work. However, care must be taken

to preserve the desired semantics, and operators
should only be re-ordered if the operations are
commutative. References: Reordering based on
the properties of relational algebra is common
in database query planning (Garcia-Molina
et al. 2008). The Volcano (Graefe 1990) system
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implements a particularly profitable case of
reordering: swapping split and merge operators
in a data-parallel pipeline to avoid choke-points.

Eddies (Avnur et al. 2000) is a dynamic technique
for finding the most profitable ordering of
operators with independent selectivities.

Re 7

Redundancy
elimination
Changed graph
Stable semantics

Dup
Split

A C

A B

C

B

A
Dup
Split

Redundancy elimination Definition: Re-
dundancy elimination eliminates superfluous
computations. This optimization must ensure
that removing a given computation does not
change the resulting output. While, in general,
determining program equivalence is undecidable,
in practice, streaming languages are often based
on an algebra, which makes the optimization

feasible. References: The Rete algorithm
(Forgy 1982) is a highly-influential approach
to detecting and eliminating redundancies
in a multi-tenant system. NiagaraCQ (Chen
et al. 2000) applied similar ideas to processing
streaming XML. Pietzuch et al. (2006) eliminate
redundancy at application launch time.

Lb 8

Load
balancing
Unchanged graph
Stable semantics

A1

A2

A3

Split

A1

A2

A3

Split

Load balancing Definition: Load balancing
attempts to distribute workload evenly across
resources. To be effective, a load-balancing
optimization must adapt to workload skew, e.g.,
when there are many accesses to a popular
data item. References: River uses intelligent
routing for load balancing in a cluster (Arpaci-

Dusseau et al. 1999). Caneill et al. use online
adaptive routing, which considers downstream
communication (Caneill et al. 2016). In contrast,
Amini et al. use operator placement for load
balancing in a cluster (Amini et al. 2006).
StreamIt also uses placement for load balancing,
but targets multi-core machines (Gordon et al.
2002).

As 9

Algorithm
selection
Unchanged graph
Unstable semantics

A A

Algorithm selection Definition: Algorithm se-
lection uses a different algorithm to implement
an operator. There are various reasons to change
the algorithm. For example, one algorithm may

be more general than another. One algorithm may
optimize for different criteria. Or, one algorithm
may perform better than others under different
circumstances. References: Changing the opera-
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tor algorithm for particular workloads is common
in database systems (e.g., using a hash join vs. a
nested loop join Garcia-Molina et al. 2008). In
streaming systems, SEDA allows an operator to
pick a different algorithm to provide degraded

service (Welsh et al. 2001). Borealis allows an
operator to switch to a different algorithm based
on a control input (Abadi et al. 2005). And,
SODA offers algorithm selection at the granular-
ity of entire jobs (Wolf et al. 2008).

Ls 10

Load
shedding
Unchanged graph
Unstable semantics

A Shedder A

Load shedding Definition: Load shedding
copes with high load by dropping data items
to process. Load shedding may change the
expected results of a computation, and therefore
the semantics of the streaming application.
References: Aurora implements priority-based

load shedding (Tatbul et al. 2003). Compact
Shedding Filters perform load-shedding at data-
generating sensors, rather than the server, to avoid
unnecessary network communication (Gedik
et al. 2008).

Fi 11

Fission

Changed graph
Unstable semantics

A
q0 q1

A

A

A

Split Merge
q0 q1

Fission Definition: Fission, often referred
to as data parallelism, attempts to process
multiple data items in parallel by replicating an
operator. Note that when parallelizing operators,
the optimizer must respect ordering or state
constraints to ensure the correctness of the
computation. References: The StreamIt compiler
applies fission to stateless operators with static
selectivity (Gordon et al. 2006). Schneider et al.
explored how to make fission safe in the more
general case of partitioned-stateful and selective
operators (Schneider et al. 2015). Finally, Brito
et al. propose using transactional memory to
make fission safe in the case of arbitrary operator
state (Brito et al. 2008).

Examples of Application

We illustrate the use of the three most popu-
lar optimizations, namely, fission, fusion, and

batching, in the context of real-world streaming
applications from the literature.

Fission One application that benefits a lot from
fission is streaming radio astronomy, which forms
evolving imaging maps of radio emission from
the sky over a wide range of frequencies (Biem
et al. 2010b). High-performance processing is a
critical requirement in this application, due to the
sheer volume of sensor data that flow in real-
time from a very large array of antennas, which is
typical of phased array radio telescopes (see SKA
2000). The application’s flow graph is organized
as a split-merge topology. An initial operator
performs frequency mapping and blocking so that
a subsequent operator splits the data into blocks
of frequency channels. Each such block is then
processed in parallel by performing indexing and
convolution operations, forming a costly stateless
parallel region that highly benefits from fission.
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Finally, the results are merged via an aggregation
to form the complete imaging map.

Fusion In Biem et al. (2010a), a streaming ap-
plication is presented for maintaining live traffic
status information using GPS sensor data. The
application processes floating car data originating
from public transportation vehicles to extract up-
to-date traffic information, such as speed and
traffic flow measurements at the level of streets
within a city, traffic volume measurements by
region, estimates of travel times between differ-
ent points, etc. The application is organized as
a graph of streams and operators, where differ-
ent operators perform individual tasks, such as
data parsing and cleaning, snapping GPS points
to roads, aggregation and statistics maintenance,
prediction of travel times, etc. The operators in
the flow graph of the application are grouped into
processing elements, which are then distributed
across machines. The operators that are assigned
to the same processing element are fused inside a
shared address space, in order to reduce the data
transfer latency.

Batching The batching optimization is particu-
larly useful when interacting with external sys-
tems. A common use case for such interaction
is managing state. For instance, LinkedIn, which
is a business- and employment-oriented social
networking service, runs several streaming ap-
plications that manage state, such as user pro-
files and aggregate counts. These applications
include email digest generation, top-k relevant
category detection, and profile update standard-
ization, among others (Noghabi et al. 2017). In
these applications, the state needs to be accessed
from either the local disk-based or remote state
management systems. Similarly, many of these
streaming applications write their output to an ex-
ternal system, such as a message queue. When an
external interaction is to be performed on a per-
tuple basis, batching is an effective optimization
that can amortize the overheads and significantly
improve the performance.

Future Directions for Research

In an ideal world, programmers would code their
streaming applications at the most natural level
of abstraction without having to worry about
runtime performance, and the streaming system
would automatically execute the applications
with consistently high performance. While
stream query optimizations have made significant
advances toward this goal, they still fall short on
automation and predictability.

It is still difficult to fully automate stream-
ing optimizations, because automatic optimizers
may not find the most profitable setting. Finding
the most profitable setting ahead-of-time, be-
fore executing the streaming application, is tricky
because the performance model may be compli-
cated (e.g., when multiple optimizations interact)
or some information required by the performance
model may be missing or hard to predict. An al-
ternative to ahead-of-time optimization is online
feedback-directed optimization, which is subject
to the trade-offs inherent in the SASO properties
of feedback control (stability, accuracy, settling,
and no overshoot) (Hellerstein et al. 2004). Work
such as that of De Matteis and Mencagli, which
uses a control-theoretic approach to perform on-
line adaptations to optimize for latency (De Mat-
teis et al. 2016), is a promising direction.

When streaming applications fall short of their
expected peak performance, programmers often
optimize them by hand. This has the advantage of
giving programmers more control over squeezing
the last bit of performance out of their applica-
tion. Unfortunately, it can also clutter their code,
can make the performance brittle by over-fitting
to the current workload and execution environ-
ment, and may even inhibit automated optimiza-
tions. One approach to address these issues is to
decouple the optimizer hints and directives from
the core application logic (Hirzel et al. 2017).

Overall, there is still much work to be done
in developing more effective optimizations, more
reliable performance models, and more unintru-
sive language features for giving optimizer hints.
This entry represents a snapshot of the state of
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the art, and we encourage the reader to venture
beyond it.

Cross-References

�Continuous Queries
� Introduction to Stream Processing Algorithms
� Sliding-Window Aggregation Algorithms
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