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Synonyms
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Definition

A stream processing language is a programming
language for specifying streaming applications.
Here, a stream is an unbounded sequence of data
items, and a streaming application is a com-
puter program that continuously consumes input
streams and produces output streams. This arti-
cle surveys recent streaming languages designed
around the user’s mental model, the stream data
model, or the execution model, as illustrated
in Fig. 1. In addition to specific languages, this
article also discusses abstractions for stream pro-
cessing, which are high-level language constructs
that make it easy to express common stream
processing tasks.

Overview

Continuous data streams arise from many di-
rections, including sensors, communications, and
commerce. Stream processing helps when low-
latency responses are of the essence or when
streams are too big to store for offline analy-
sis. Programmers can of course write stream-
ing applications in a general-purpose language
without resorting to a dedicated domain-specific
language (DSL) for streaming. However, using
a streaming language makes code easier to read,
write, understand, reason about, modularize, and
optimize. Indeed, a suitable streaming language
can help developers conceive of a solution to their
streaming problems.

This article provides definitions, surveys con-
cepts, and offers pointers for more in-depth study
of recent streaming languages. The interested
reader may also want to refer to earlier papers for
historic perspective: the 1997 survey by Stephens
focuses on streaming languages (Stephens 1997),
the 2002 survey by Babcock et al. focuses on ap-
proximate streaming algorithms (Babcock et al.
2002), and the 2004 survey by Johnston et al.
addresses dataflow languages, where streaming is
a special case of dataflow (Johnston et al. 2004).

The central abstractions of stream processing
are streams, operators, and stream graphs. A
stream is an unbounded sequence of data items,
for example, position readings from a delivery
truck. A streaming operator is a stream trans-
former that transforms input streams to output
streams. From the perspective of a streaming
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application, an operator can also have zero input
streams (source) or zero output streams (sink).
Finally, a stream graph is a directed graph whose
nodes are operators and whose edges are streams.
Some literature assumes that the shape of stream
graphs is restricted, e.g., acyclic, but this article
makes no such assumption. While only some
streaming languages make the stream graph ex-
plicit, others use it as an intermediate representa-
tion. For example, the query plan generated from
streaming SQL dialects is a stream graph.

The field of streaming languages is diverse
and fast-moving. To understand where that di-
versity comes from, it is instructional to classify
streaming languages by their raison d’être. Some
streaming languages are based on the attitude
that since streams are data in motion, data is
most central, and the language should be built
around a data model (relational, XML, RDF).
Other streaming languages focus on the exe-
cution model for processing the dataflows effi-
ciently, by enforcing timing constraints or ex-
ploiting distributed hardware (synchronous, big-
data). A third class of streaming languages fo-
cus more on enabling the end user to develop
streaming applications in high-level or famil-
iar abstractions (complex events, spreadsheets,
or even natural language). Section “Findings”
surveys languages in each of these classes, and
section “Examples” gives concrete examples for
two languages.

Findings

This section gives an overview of the field of
stream processing languages by surveying eight
prominent approaches. Each approach is exem-
plified by one concrete language. The approaches
are grouped along the lines of the previous sec-
tion into approaches driven by the data model, by
the execution model, or by the target user.

Data-Model Driven Streaming Languages
The success of the relational data model for
database systems has inspired streaming dialects
of the SQL database language. These dialects
benefit from developers’ familiarity with SQL
and from its relational algebra underpinnings. A
prominent example is the CQL language, which
complements standard relational operators with
operators to transform streams into relations and
vice versa (Arasu et al. 2006). CQL lends itself to
strong static typing, cf. Figure 10 of Soulé et al.
(2016). Efforts toward standardizing streaming
SQL focused on clarifying semantic corner cases
(Jain et al. 2008).

The success of XML as a universal
exchange format for events and messages
has inspired XML-based streaming languages.
These languages take advantage of a rich
ecosystem of XML tools and standards and
of the fact that XML documents are self-
describing. The languages come in different
flavors, from view maintenance over XML
updates in NiagaraCQ (Chen et al. 2000) to
languages that process streams where each data
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item is a (part of an) XML document (Diao et al.
2002; Mendell et al. 2012).

The Resource Description Framework (RDF)
is a versatile data format for integration
and reasoning, based on triples of the form
hsubject, predicate, objecti. A popular language
for querying static RDF knowledge bases is
SPARQL (Prud’hommeaux and Seaborne 2008),
and C-SPARQL (Barbieri et al. 2009) extends
SPARQL for continuous queries, just like
CQL extends SQL. A stream is a sequence of
timestamped triples, but a query can also return a
graph by emitting multiple triples with the same
timestamp.

Execution-Model Driven Streaming
Languages
Dataflow synchronous languages (Benveniste
et al. 2003) were introduced in the late 1980s
as domain-specific languages for the design
of embedded control systems. A dataflow
synchronous program executes in a succession
of discrete steps, and each step is assumed to be
instantaneous (the synchronous hypothesis). A
programmer writes high-level specifications in
the form of stream functions specifying variable
values at each step or instant. Section “Syn-
chronous Dataflow in Lustre” illustrates this
approach with the language Lustre (Caspi et al.
1987).

Streaming big data is motivated by the
“4 Vs”: a lot of data (volume) streams quickly
(velocity) into the system, which must deal with
diverse data and functionality (variety) and with
uncertainty (veracity). Languages for big-data
streaming let users specify an explicit stream
graph that can be easily distributed with minimal
synchronization and are extensible by operators
in widely adopted general-purpose languages.
Section “Big-Data Streaming in SPL” elaborates
on this for the concrete example of SPL (Hirzel
et al. 2017).

Target-User Driven Streaming Languages
Complex event processing, or CEP, lets
users compose events hierarchically to span
the gap between low-level and high-level
concepts. There are various pattern languages

for CEP that compile to finite automatons.
Recognizing this, the MATCH-RECOGNIZE SQL
extension proposal simply adopts familiar regular
expressions as the CEP pattern language (Zemke
et al. 2007). While the SQL basis focuses on a
relational model, regular expressions can also
be used for CEP in big-data streaming (Hirzel
2012).

Since there are many more spreadsheet users
than software developers, a spreadsheet-based
streaming language could reach more target
users. Furthermore, spreadsheets are reactive:
changes trigger updates to dependent formulas.
ActiveSheets hooks up some spreadsheet cells to
input or output streams, with normal spreadsheet
formulas in between (Vaziri et al. 2014). When
the two-dimensional spreadsheet data model is
too limiting, it can be augmented with windows
and partitioning (Hirzel et al. 2016).

A streaming language based on natural lan-
guage might reach the maximum number of tar-
get users. However, since natural language is am-
biguous, a controlled natural language (CNL) is a
better choice (Kuhn 2014). For instance, the lan-
guage for META is a CNL for specifying event-
condition-action rules, temporal predicates, and
data types (Arnold et al. 2016). The data model
includes events and entities with nested concepts
and can be shown to be equivalent to the nested
relational model (Shinnar et al. 2015).

Examples

This section gives details and concrete code
examples for two out of the eight approaches
for languages surveyed in the previous section:
the synchronous dataflow approach exemplified
by Lustre (Caspi et al. 1987) and the big-data
streaming approach exemplified by SPL (Hirzel
et al. 2017).

When it comes to implementing streaming
languages, there is a spectrum from basic to
sophisticated techniques. At the basic end of the
spectrum are configuration files in some existing
markup format such as XML. The streaming en-
gine interprets the configuration file to construct
and then execute a stream graph. An intermediate



4 Stream Processing Languages and Abstractions

1 node counter ( init , incr : int ; reset : bool) returns (n: int );
2 var pn: int ;
3 let
4 pn = init −> pre n;
5 n = if reset then init else pn + incr ;
6 tel
7
8 node tracker (speed, limit : int ) returns (t : int );
9 var x: bool; cpt : int when x;

10 let
11 x = (speed > limit );
12 cpt = counter((0, 1, false ) when x);
13 t = current(cpt);
14 tel

speed 28 29 32 30 44 53 58 48 33 28 29 . . .
limit 30 30 30 30 55 55 55 30 30 30 30 . . .

x F F T F F F T T T F F . . .
cpt 1 2 3 4 . . .

t 0 0 1 1 1 1 2 3 4 4 4 . . .

Stream Processing Languages and Abstractions, Fig. 2 Lustre code example with a possible execution

point is a domain-specific embedded language
(EDSL or sometimes DSEL) (Hudak 1998). As
the name implies, an EDSL is a domain-specific
language (DSL) that is embedded in some host
language, typically a general-purpose language
(GPL). The line between simple libraries and ED-
SLs is blurred, but in general, EDSLs encourage
a more idiomatic programming style. Recently,
EDSLs have gained popularity as several GPLs
have added features that make them more suitable
for hosting EDSLs. At the sophisticated end of
the spectrum are full-fledged, stand-alone DSLs
with their own syntax, compiler, and other tools.
While stand-alone streaming DSLs are not em-
bedded in a GPL, they often interface with a GPL,
e.g., for user-defined operators.

For clarity of exposition, the following exam-
ples use stand-alone streaming languages. Stand-
alone languages are the norm for synchronous
dataflow, because self-contained code is easier
to reason about. On the other hand, for big-data
streaming, EDSLs that specify an explicit stream
graph are popular, because they are easier to
implement. But as the example below illustrates,
once implemented, stand-alone languages also
have advantages for big-data streaming.

Synchronous Dataflow in Lustre
Synchronous dataflow languages were introduced
to ease the design and certification of embedded
systems by providing a well-defined mathemat-
ical framework that combines a logical notion
of time and deterministic concurrency. It is then
possible to formally reason about the system,
simulate it, prove safety properties, and generate
embedded code. The synchronous dataflow lan-
guage Lustre is the backbone of the industrial
language and compiler Scade (Colaco et al. 2017)
routinely used to program embedded controllers
in many critical applications.

In Lustre a program is a set of equations
defining streams of values. Time proceeds by dis-
crete logical steps, and at each step, the program
computes the value of each stream depending
on its inputs and possibly previously computed
values. Consider the example of Fig. 2 adapted
from Bourke et al. (2017). The function counter
takes three input streams, two integer streams
init and incr , and one boolean stream reset. It
returns the cumulative sum of the values of incr
initialized with init and similarly reset when reset
is true (Line 5). The variable pn (Line 4) stores
the value of the counter n at the previous step
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using the initialization operator (�>) and the non-
initialized delay pre.

A stream is not necessarily defined at each
step. The clock of a stream is a boolean se-
quence giving the instants where it is defined.
Streams with different clocks can be combined
via sampling (when) or stuttering (current). For
instance, the tracker function of Fig. 2 tracks the
number of times the speed of a vehicle exceeds
the speed limit. The when operator samples a
stream according to a boolean condition. The
function counter is thus only activated when x is
true (Line 12). The current operator completes
a stream with the last defined value when it is
not present (Line 13). The value of t is thus
sustained when x is false. The execution of such a
program can be represented as a timeline, called
a chronogram (illustrated in Fig. 2), showing the
sequence of values taken by its streams at each
step.

Specific compilation techniques for syn-
chronous languages exist to generate efficient
and reliable code for embedded controllers.
Compilers produce imperative code that can
be executed in a control loop triggered by
external events or on a periodic signal (e.g.,
every millisecond). The link between logical and
real time is left to the designer of the system.

Since the seminal dataflow languages Lus-
tre (Caspi et al. 1987) and Signal (Le Guernic
et al. 1991), multiple extensions of the dataflow
synchronous model were proposed. Lucid Syn-
chrone (Pouzet 2006) combines the dataflow syn-
chronous approach with functional features à la
ML, the n-synchronous model (Mandel et al.
2010) relaxes the synchronous hypothesis by al-
lowing communication with bounded buffers, and
Zélus (Bourke and Pouzet 2013) is a Lustre-
like language extended with ordinary differential
equations to define continuous-time dynamics.

Recent efforts focus on the compilation, ver-
ification, and test of dataflow synchronous pro-
grams. New techniques have been proposed to
compile Lustre programs for many-core systems
(Rihani et al. 2016) or improve the computation
of the worst-case execution time (WCET) of the
compiled code (Bonenfant et al. 2017; Forget
et al. 2017). Kind2 (Champion et al. 2016) is a

verification tool based on SMT solvers to model-
check Lustre programs, and the Vélus compiler
(Bourke et al. 2017) tackles the problem of ver-
ifying the compiler itself using a proof assistant.
Lutin (Raymond and Jahier 2013) (and its indus-
trial counterpart, the Argosim Stimulus tool Ar-
gosim 2015) is a DSL to design non-deterministic
test scenarios for Lustre programs.

Big-Data Streaming in SPL
Big-data streaming languages are designed to
handle high-throughput streams while at the same
time being expressive enough to handle diverse
data formats and streaming operators. A popular
way to address the requirement of high through-
put is to make it easy to execute the streaming
application not just on a single core or even a
single computer, but on a cluster of computers.
And a popular way to address the requirement
of high expressiveness is to make it easy for
programmers to define new streaming operators,
possibly using a different programming language
than the stream processing language they use for
composing operators into a graph.

SPL is a big-data streaming language designed
for distribution and extensibility (Hirzel et al.
2017). It was invented in 2009 and is being
actively used in industry (IBM 2008). An SPL
program is an explicit stream graph of streams
and operators. Unlike dataflow synchronous lan-
guages, and like other big-data streaming lan-
guages, SPL uses only minimal synchronization:
an operator can fire whenever there is data avail-
able on any of its input ports, following seman-
tics formalized in the Brooklet calculus (Soulé
et al. 2010). Since synchronization across differ-
ent cores and computers is hard to do efficiently,
reducing synchronization simplifies distribution,
giving the runtime system more flexibility for
which operators to co-locate in the same core or
computer. There is no assumption of simultaneity
between different operator firings. When down-
stream operators cannot keep up with the data
rate, they implicitly throttle upstream operators
via back-pressure.

Figure 3 shows an example SPL program.
Line 1 defines a stream Calls as the output of
invoking an operator CallsSource. In SPL, streams
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1 stream<float64 len, rstring caller> Calls = CallsSource() { }
2
3 stream<float64 len, int32 num, rstring who> CallStats = Aggregate(Calls) {
4 window Calls: sliding , time(24.0 ∗ 60.0 ∗ 60.0), time(60.0);
5 output CallStats: len = Max(Calls.len),
6 num = MaxCount(Calls.len),
7 who = ArgMax(Calls.len, Calls.caller );
8 }

Stream Processing Languages and Abstractions, Fig. 3 SPL code example

carry tuples that are strongly and statically typed
and whose fields can hold simple numbers or
strings as in the example but can also hold nested
lists and tuples. The CallsSource operator has no
further configuration (empty curly braces); for
this example, assume it is user-defined elsewhere.
Programmers can define their own operators ei-
ther in SPL or in other languages such as C++
or Java. Lines 3–8 define a stream CallStats by in-
voking an operator Aggregate. The code configures
the operator with an input stream Calls, with a
window clause for a 24-h sliding window with
1-minute granularity, and with an output clause.
While many operators support these and other
clauses, they can also contain code restricted
to the operator at hand. The Aggregate opera-
tor in SPL’s standard library supports intrinsic
functions for Max, MaxCount, and various other
aggregations. Programmers can extend SPL with
new operators that, like Aggregate, support vari-
ous configurations and operator-specific intrinsic
functions.

SPL was influenced by earlier big-data
streaming systems such as Borealis (Abadi
et al. 2005) and TelegraphCQ (Chandrasekaran
et al. 2003), generalizing them to be less
dependent on relational data and more extensible.
Various other streaming systems after SPL, such
as Storm (Toshniwal et al. 2014) and Spark
Streaming (Zaharia et al. 2013), also target big-
data streaming. Like SPL, they use explicit
stream graphs as their core abstraction, but
unlike SPL, they use embedded (not stand-alone)
domain-specific languages.

While the examples of Lustre and SPL draw
a stark contrast between synchronous dataflow
and big-data streaming, there are also commonal-

ities. For instance, the StreamIt language is syn-
chronous, but like big-data streaming languages,
it uses an explicit stream graph as its core ab-
straction (Thies et al. 2002). And Soulé et al.
show how to reduce the dependence of StreamIt
on synchrony (Soulé et al. 2013).

Future Directions for Research

The landscape of streaming languages is far from
consolidating on any dominant approach. New
languages keep coming out to address a variety
of open issues. One active area of research is
the interaction between streams (data in mo-
tion) and state (data at rest). While CQL gave
a conceptually clean answer (Arasu et al. 2006),
people are debating alternative approaches, such
as the Lambda architecture (Marz 2011) and the
Kappa architecture (Kreps 2014). Another active
area of research is how to handle uncertainty,
such as out-of-order data, missing fields, erro-
neous sensor readings, approximate algorithms,
or faults. On this front, streaming languages have
not yet reached the clarity of databases with
their ACID properties. When it comes to im-
plementation strategies, there has been a recent
surge in embedded domain-specific languages.
But while EDSLs have fewer tooling needs and
are less intimidating for users familiar with their
host language, they are less self-contained and
offer less static optimization and error-checking
than stand-alone languages. We hope this article
inspires innovation in streaming languages that
are well-informed by those that came before.
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