
S

Sliding-Window Aggregation
Algorithms

Kanat Tangwongsan1, Martin Hirzel2, and Scott
Schneider2
1Mahidol University International College,
Salaya, Thailand
2IBM Research AI, Yorktown Heights, NY,
USA

Synonyms

Sliding-window fold; Stream reduce; SWAG

Definition

An aggregation is a function from a collection
of data items to an aggregate value. In sliding-
window aggregation, the input collection consists
of a window over the most recent data items in
a stream. Here, a stream is a potentially infinite
sequence of data items, and the decision on which
data items are most recent at any point in time is
given by a window policy. A sliding-window ag-
gregation algorithm updates the aggregate value,
often using incremental-computation techniques,
as the window contents change over time, as
illustrated in Fig. 1.

... ...

...

2 7 6 3 5 3 1 4 7 2 6

max 6

stream
window

aggregation aggregate value

... 2 7 6 3 5 3 1 4 7 2 6

max 5

... ...2 7 6 3 5 3 1 4 2 6

max 7

7

Sliding-Window Aggregation Algorithms, Fig. 1
Sliding-window aggregation definitions

Overview

Sliding-window aggregation summarizes a col-
lection of recent streaming data, capturing the
most recent happenings as well as some history.
Including some history provides context for deci-
sions, which would be missing if only the current
data item were used. Using the most recent data
helps identify and react to present trends, which
would be diluted if all data from the beginning of
time were included.

Aggregation is one of the most fundamental
data processing operations. This is true
in general, not just in stream processing.
Aggregation is versatile: it can compute counts,

© Springer International Publishing AG 2018
S. Sakr, A. Zomaya (eds.), Encyclopedia of Big Data Technologies,
https://doi.org/10.1007/978-3-319-63962-8_157-1

http://link.springer.com/Sliding-window fold
http://link.springer.com/Stream reduce
http://link.springer.com/SWAG
https://doi.org/10.1007/978-3-319-63962-8_157-1


2 Sliding-Window Aggregation Algorithms

averages, or maxima, index data structures,
sketches such as Bloom filters, and many more.
In databases, it shows up as a basic relational
algebra operator called group-by-aggregate
and denoted � (Garcia-Molina et al. 2008). In
spreadsheets, it shows up as a function from a
range of cells to a summary statistic (Sajaniemi
and Pekkanen 1988). In programming languages,
it shows up as a popular higher-order function
called fold (Hutton 1999). In MapReduce,
it shows up as reduce (Dean and Ghemawat
2004), which has been leveraged in many tasks,
including computations that do not diminish the
volume of data.

In stream processing, aggregation plays a sim-
ilarly central role. But unlike the abovementioned
cases, which focus on data at rest, streaming
aggregation must handle data in motion. In par-
ticular, sliding-window aggregation must handle
inserting new data items into the window as
they arrive and evicting old data items from
the window as they expire. Supporting this effi-
ciently poses algorithmic challenges, especially
for non-invertible aggregation functions such as
max, for which there is no way to “subtract off”
expiring items. From an algorithmic perspective,
handling sliding windows with both insertion and
eviction is more challenging than handling just
insertion. Yet, there are two cases where eviction
does not matter: unbounded and tumbling win-
dows. Unbounded windows appear, for instance,
in CQL (Arasu et al. 2006). Because they grow
indefinitely, it is sufficient to update aggregations
upon insert and not keep the data item itself
around; they never need to call evict. Tumbling
windows are more common; because they clear
the entire contents of the window at the same
time, there is no need to call evict on individual
elements of the window.

Sliding windows are most commonly first-
in, first-out (FIFO), resembling the behavior of a
queue. What to keep in a sliding window and how
often the aggregation is computed are controlled
by policies, cataloged elsewhere (Gedik 2013);
they may be count-based (e.g., the past 128
elements) or time-based (e.g., the past 12 min),
among others. Regardless of policies, FIFO
sliding-window aggregation (SWAG) can be

formulated as an abstract data type with the
following operations:

• insert.v/ appends the value v to the window.
• evict./ removes the “oldest” value in the

window.
• query./ returns the aggregation of the values

in the window.

Metrics of interest in SWAG implementations
are throughput, latency, and memory footprint.
SWAG implementations also differ in general-
ity: to enhance efficiency, aggregation operations,
when feasible, are applied incrementally – that
is, modifying a running sum of sort in response
to data items arriving or leaving the window. To
what extent this can be exploited depends on the
nature of the aggregation operation.

Past work (Gray et al. 1996; Tangwongsan
et al. 2015) cast most aggregation operations
as binary operators, written ˚, and has catego-
rized them based on algebraic properties. Table 1
lists common aggregation operations with their
properties and groups them into categories. An
aggregation operator is invertible if there exists
some function � such that .x ˚ y/ � y D x

for all x and y. Using�, SWAGs can implement
eviction as an undo. A function is associative if
x ˚ .y ˚ ´/ D .x ˚ y/˚ ´ for all x, y, and ´.
SWAGs can take advantage of associativity by
applying˚ at arbitrary places inside the window.
Without associativity, SWAGs are restricted to
applying ˚ only at the end, upon insertion. A
function is commutative if x˚ y D y ˚ x for all
x and y. SWAGs are able to ignore the insertion
order of data items for commutative aggregation
operators. An aggregation operator is rank-based
if it relies upon an ordering by some attribute
of each data item, for instance, to find the i th-
smallest.

Table 2 presents an overview of the SWAG
algorithms presented in this article, with their
asymptotic complexity, space usage, and restric-
tions. The most straightforward SWAG algorithm
is called Recalc, since it always recalculates
all values. Upon any insert or evict, Recalc
walks the entire window and recomputes the



Sliding-Window Aggregation Algorithms 3

S

Sliding-Window
Aggregation
Algorithms, Table 1
Aggregation operations.
Check marks (X),
crosses (�), and question
marks (?) indicate that a
property is true for all,
false for all, or false for
some of the given group,
respectively

Invertible Associative Commutative Rank-based

� Sum-like: sum, count, average,
standard deviation, . . .

X X X �

� Collect-like: collect list, concate-
nate strings, i th-youngest, . . .

X X � ?

�Median-like: median, percentile,
i th-smallest, . . .

X X X X

� Max-like: max, min, argMax,
argMin, maxCount, . . .

� X ? �

� Sketch-like: Bloom filter (Bloom
1970), CountMin (Cormode
and Muthukrishnan 2005),
HyperLogLog (Flajolet et al.
2007)

� X X �

Sliding-Window
Aggregation
Algorithms, Table 2
Summary of aggregation
algorithms and their
properties, where n is the
window size and nmax is
the size of the smallest
contiguous range that
contains all the shared
windows

Algorithmic complexity Restrictions

Time Space

Recalc Worst-case
O.n/

O.n/ None

Subtract-on-Evict
(SOE)

Worst-case
O.1/

O.n/ Sum-like or
collect-like

Order Statistics Tree
(OST) (Hirzel et al.
2016)

Worst-case
O.logn/

O.n/ Median-like

Reactive Aggregator
(RA) (Tangwongsan
et al. 2015)

Average
O.logn/

O.n/ Associative

DABA
(Tangwongsan
et al. 2017)

Worst-case
O.1/

O.n/ Associative,
FIFO

B-Int (Arasu and
Widom 2004)

Shared
O.lognmax/

O.nmax/ Associative,
FIFO

FlatFIT (Shein et al.
2017)

Average
O.1/

O.n/ Associative,
FIFO

aggregation value by using all available elements.
Its performance is obviously O.n/, where n is
the current number of elements in the window.
Recalc serves as the baseline comparison for
all other SWAG algorithms. Subtract-on-evict
(SOE) is a O.1/ algorithm, but it is not gen-
eral: it can only be used when the aggregation
is invertible. Upon every insert, SOE updates
the current aggregation value using ˚, and upon
every evict, SOE updates that value using �.
The order statistics tree (OST) adds subtree
statistics to the inner nodes of a balanced search
tree (Hirzel et al. 2016). Values are put in both
a queue and the tree, making both insert and

evictO.logn/. But query calls for aggregations
such as the median or pth percentile become
O.logn/ because such information can be de-
rived by traversing a path that is no longer than
the height of the tree.

This section gave a brief overview with back-
ground and some simple aggregation algorithms.
In general, research into SWAG algorithms tries
to avoid O.n/ costs (unlike Recalc) but main-
tain generality (unlike SOE and OST). The next
section will discuss the more sophisticated al-
gorithms from Table 2 that offer improvements
toward this goal.



4 Sliding-Window Aggregation Algorithms

Key Research Findings

The most successful techniques in speeding
up sliding-window aggregation have been data
structuring and algorithmic techniques that yield
asymptotic improvements. They are the most
effective when the aggregation function meets
certain algebraic requirements. For instance,
there are important aggregation operations that
are associative, but not necessarily invertible nor
commutative.

Pre-aggregation of data items that will be
evicted at the same time is a technique that can
be applied together with all SWAG algorithms
discussed in this article. When data items are
co-evicted, the window need not store them in-
dividually but can instead store partial aggre-
gations, reducing the effective window size n

in Table 2. Pre-aggregation algorithms include
paned windows (Li et al. 2005), paired win-
dows (Krishnamurthy et al. 2006), and Cutty
windows (Carbone et al. 2016). Windows are
sometimes coarsened to enable pre-aggregation,
improving performance at the expense of some
approximation.

B-Int (Arasu and Widom 2004), designed
to facilitate sharing across windows, stores a
“shared” window S that contains inside it all the
windows being shared. To facilitate fast queries,
B-Int maintains pre-aggregated values for all base
intervals that lie within S . Base intervals (more
commonly known now as dyadic intervals) are
intervals of the form Œ2`k; 2`.k C 1/ � 1� with
`; k � 0. The parameter ` defines the level of
a base interval. This allows a query between the
i -th data item and j -th data item within S to be
answered by combining at most O.log ji � j j/
pre-aggregated values, resulting in logarithmic
running time.

The Reactive Aggregator (RA) (Tang-
wongsan et al. 2015) is implemented via
a balanced tree ordered by time, where
internal nodes hold the partial aggregations of
their subtrees, and offers O.logn/ amortized
time. Instead of the conventional approach
to implementing balanced trees by frequent
rebalancing, RA projects the tree over a complete
perfect binary tree, which it stores in a flat array.

This leads to higher performance than other tree-
based SWAG implementations in practice, since
it saves the time of rebalancing as well as the
overheads of pointers and fine-grained memory
allocation.

For latency-sensitive applications, the
aggregation algorithm cannot afford a long
pause. DABA (Tangwongsan et al. 2017)
ensures that every SWAG operation takes O.1/
time in the worst-case, not just on average.
This is accomplished by extending Okasaki’s
functional queue (Okasaki 1995) and removing
dependencies on lazy evaluation and automatic
garbage collection. FlatFIT (Shein et al.
2017) is another algorithm that achieves O.1/
time although in the amortized sense. This is
accomplished by storing pre-aggregated values
in a tree-like index structure that promotes reuse,
reminiscent of path compression in the union-find
data structure.

There are a number of other generic
techniques that tend to apply broadly to sliding-
window aggregation. Window partitioning is
sometimes used as a means to maintain group-by
aggregation and obtain data parallelism through
fission (Schneider et al. 2015). When stream
data items arrive out of order, a holding buffer
can be used to reorder them before they enter
the window (Srivastava and Widom 2004).
Alternatively, in the case that the stream is formed
by merging multiple sub-streams, out-of-order
streams may be solved by pre-aggregating each
data source separately and consolidating partial
aggregation results as late as possible when doing
an actual query (Krishnamurthy et al. 2010).

Examples of Application

Many applications of stream processing depend
heavily upon sliding-window aggregation. This
section describes concrete examples of apply-
ing sliding-window aggregation to real-world use
cases. Understanding these examples helps ap-
preciate the problems and guide the design of
solutions.



Sliding-Window Aggregation Algorithms 5

S

Medical service providers want to save lives
by getting early warnings when there is a high
likelihood that a patient’s health is about to de-
teriorate. For instance, the Artemis system an-
alyzes data from real-time sensors on patients
in a neonatal intensive care unit (Blount et al.
2010). Among other things, it counts how often
the blood oxygen saturation and the mean arterial
blood pressure fall below a threshold in a 20-
s sliding window. If the counts exceed another
threshold, Artemis raises an alert.

Financial agents engaged in algorithmic trad-
ing want to make money by buying and selling
stocks or other financial instruments. Treleaven
et al. review the current practice for how that
works technologically (Treleaven et al. 2013).
Streaming systems for algorithmic trading make
their decisions based on predicted future prices.
One of the inputs for these predictions is a mov-
ing average of the recent history of a price, for
example, over a 1-hour sliding window.

Road traffic can be regulated using variable
tolling to implement congestion-pricing policies.
One of the most popular benchmarks for stream-
ing systems, linear road, is based on variable
tolling (Arasu et al. 2004). The idea is to regulate
demand by charging higher tolls for driving on
congested roads. To do this, the streaming system
must determine whether a road is congested. This
works by using sliding-window aggregation to
compute the number and average speed of vehi-
cles in a given road segment and time window.

The above list of use cases is by no means
exhaustive; there are many more applications
of sliding-window aggregation, for instance, in
phone providers, security, and social media.

Future Directions for Research

Research on sliding-window aggregation has fo-
cused mainly on aggregation functions that are
associative and on FIFO windows. Much less
is known for other nontrivial scenarios. Is it
possible to efficiently support associative aggre-
gation functions on windows that are non-FIFO?
Besides associativity and invertibility, what other
properties can be exploited to develop general-

purpose algorithms for fast sliding-window ag-
gregation? How can SWAG algorithms take bet-
ter advantage of multicore parallelism?

Cross-References

� Adaptive Windowing
� Incremental Sliding Window Analytics
� Stream Query Optimization
� Stream Window Aggregation Semantics and

Optimisation

References

Arasu A, Widom J (2004) Resource sharing in continuous
sliding window aggregates. In: Conference on very
large data bases (VLDB), pp 336–347

Arasu A, Cherniack M, Galvez E, Maier D, Maskey AS,
Ryvkina E, Stonebraker M, Tibbetts R (2004) Linear
road: a stream data management benchmark. In:
Conference on very large data bases (VLDB), pp 480–
491

Arasu A, Babu S, Widom J (2006) The CQL continuous
query language: semantic foundations and query exe-
cution. J Very Large Data Bases 15(2):121–142

Bloom BH (1970) Space/time trade-offs in hash coding
with allowable errors. Commun ACM 13(7):422–426

Blount M, Ebling MR, Eklund JM, James AG, McGregor
C, Percival N, Smith K, Sow D (2010) Real-time anal-
ysis for intensive care: development and deployment of
the Artemis analytic system. IEEE Eng Med Biol Mag
29:110–118

Carbone P, Traub J, Katsifodimos A, Haridi S, Markl V
(2016) Cutty: aggregate sharing for user-defined win-
dows. In: Conference on information and knowledge
management (CIKM), pp 1201–1210

Cormode G, Muthukrishnan S (2005) An improved data
stream summary: the count-min sketch and its applica-
tions. J Algorithms 55(1):58–75

Dean J, Ghemawat S (2004) MapReduce: simplified data
processing on large clusters. In: Symposium on op-
erating systems design and implementation (OSDI),
pp 137–150

Flajolet P, Fusy E, Gandouet O, Meunier F (2007) Hy-
perLogLog: the analysis of a near-optimal cardinality
estimation algorithm. In: Conference on analysis of
algorithms (AofA), pp 127–146

Garcia-Molina H, Ullman JD, Widom J (2008) Database
systems: the complete book, 2nd edn. Pearson/Prentice
Hall, New Dehli

Gedik B (2013) Generic windowing support for extensible
stream processing systems. Softw Pract Exp 44(9):
1105–1128

http://link.springer.com/Adaptive Windowing
http://link.springer.com/Incremental Sliding Window Analytics
http://link.springer.com/Stream Query Optimization
http://link.springer.com/Stream Window Aggregation Semantics and Optimisation


6 Sliding-Window Aggregation Algorithms

Gray J, Bosworth A, Layman A, Pirahesh H (1996) Data
cube: a relational aggregation operator generalizing
group-by, cross-tab, and sub-total. In: International
conference on data engineering (ICDE), pp 152–159

Hirzel M, Rabbah R, Suter P, Tardieu O, Vaziri M (2016)
Spreadsheets for stream processing with unbounded
windows and partitions. In: Conference on distributed
event-based systems (DEBS), pp 49–60

Hutton G (1999) A tutorial on the universality and expres-
siveness of fold. J Funct Program 9(1):355–372

Krishnamurthy S, Wu C, Franklin M (2006) On-the-
fly sharing for streamed aggregation. In: Interna-
tional conference on management of data (SIGMOD),
pp 623–634

Krishnamurthy S, Franklin MJ, Davis J, Farina D,
Golovko P, Li A, Thombre N (2010) Continuous
analytics over discontinuous streams. In: Interna-
tional conference on management of data (SIGMOD),
pp 1081–1092

Li J, Maier D, Tufte K, Papadimos V, Tucker PA (2005)
No pane, no gain: efficient evaluation of sliding-
window aggregates over data streams. ACM SIGMOD
Rec 34(1):39–44

Okasaki C (1995) Simple and efficient purely func-
tional queues and deques. J Funct Program 5(4):
583–592

Sajaniemi J, Pekkanen J (1988) An empirical analysis of
spreadsheet calculation. Softw Pract Exp 18(6):583–
596

Schneider S, Hirzel M, Gedik B, Wu KL (2015) Safe data
parallelism for general streaming. IEEE Trans Comput
64(2):504–517

Shein AU, Chrysanthis PK, Labrinidis A (2017) FlatFIT:
accelerated incremental sliding-window aggregation
for real-time analytics. In: Conference on scientific and
statistical database management (SSDBM), pp 5:1–
5:12

Srivastava U, Widom J (2004) Flexible time management
in data stream systems. In: Principles of database
systems (PODS), pp 263–274

Tangwongsan K, Hirzel M, Schneider S, Wu KL
(2015) General incremental sliding-window aggrega-
tion. In: Conference on very large data bases (VLDB),
pp 702–713

Tangwongsan K, Hirzel M, Schneider S (2017) Low-
latency sliding-window aggregation in worst-case con-
stant time. In: Conference on distributed event-based
systems (DEBS), pp 66–77

Treleaven P, Galas M, Lalchand V (2013) Algorithmic
trading review. Commun ACM 56(11):76–85


	Sliding-Window Aggregation Algorithms
	Synonyms
	Definition
	Overview
	Key Research Findings
	Examples of Application
	Future Directions for Research
	Cross-References
	References
	References


