
C

Continuous Queries

Martin Hirzel
IBM Research, Yorktown Heights, NY, USA

Synonyms

Streaming SQL queries; Stream-relational
queries; StreamSQL queries

Definition

A continuous query in an SQL-like language is a
declarative query on data streams expressed in a
query language for streams derived from the SQL
for databases.

Overview

Just like data that is stored in a relational database
can be queried with SQL, data that travels in a
stream can be queried with an SQL-like query
language. For databases, the relational model
and its language, SQL, have been successful
because the relational model is a foundation for
clean and rigorous mathematical semantics and

because SQL is declarative, specifying what the
desired result is without specifying how to com-
pute it (Garcia-Molina et al. 2008). However, the
classic relational model assumes that data resides
in relations in a database. When data travels in
a stream, such as for communications, sensors,
automated trading, etc., there is a need for contin-
uous queries. SQL dialects for continuous queries
fill this need and inherit the advantages of SQL
and the relational model. Furthermore, SQL-like
streaming languages capitalize on the familiarity
of SQL for developers and of implementation
techniques from relational databases.

There are various different SQL-like stream-
ing languages. This article illustrates concepts us-
ing CQL (the continuous query language, Arasu
et al. (2006)) as a representative example, be-
cause it has clean semantics and addresses the
interplay between streams and relations. Sec-
tion “Findings” explores other SQL-like stream-
ing languages beyond CQL.

SQL-Like Syntax
The surface syntax for streaming SQL dialects
borrows familiar SQL clauses (such as select,
from, and where) and augments them with
streaming constructs (which turn streams into
relations and vice versa). Consider the following
CQL (Arasu et al. 2006) query with extensions
adapted from Soulé et al. (2016):

© Springer International Publishing AG, part of Springer Nature 2018
S. Sakr, A. Zomaya (eds.), Encyclopedia of Big Data Technologies,
https://doi.org/10.1007/978-3-319-63962-8_305-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63962-8_1&domain=pdf
http://link.springer.com/Streaming SQL queries
http://link.springer.com/Stream-relational queries
http://link.springer.com/StreamSQL queries
https://doi.org/10.1007/978-3-319-63962-8_305-1


2 Continuous Queries

1 Quotes : { ticker : string, ask : int } stream;
2 History : { ticker : string, low : int } relation;
3 Bargains : { ticker : string, ask : int , low : int } stream
4 = select istream(*)
5 from Quotes[now], History
6 where Quotes.ticker == History.ticker and Quotes.ask <= History.low;

Line 1 declares Quotes as a stream of
{ ticker , ask } tuples, and Line 2 declares History
as a relation of { ticker , low} tuples. Neither Quotes
nor History is defined with a query in the example.
Lines 3–6 declare Bargains and define it with a
query. Line 3 declares Bargains as a stream of
{ ticker , ask, low } tuples. Line 4 specifies the
output using the istream operator, which creates
a stream from the insertions to a relation, using *
to pick up all available tuple attributes. Line 5
joins two relations, Quotes[now] and History,
where Quotes[now] creates a relation from the

current contents of stream Quotes. Finally, Line 6
selects only tuples satisfying the given predicate,
whereas any tuples for which the predicate is
false are dropped.

The above example illustrates the core features
of CQL, viz.: using operators such as now to
turn streams into relations, using SQL to query
relations, and using operators such as istream to
turn relations into streams. For more detail, the
following paragraphs explain the CQL grammar,
starting with the top-level syntax:

program WWD declC

decl WWD ID ‘:’ tupleType declKind .‘=’query/‹ ‘;’
tupleType WWD ‘{’.ID ‘:’ TYPE/C; ‘}’
declKind WWD ‘relation ’j‘ stream’
query WWD select from where‹groupBy‹

A program consists of one or more declara-
tions. Each declaration has an identifier (ID), a
tuple type (one or more attributes specified by
their identifiers and types), a declaration kind
(either relation or stream), and an optional query.
The grammar meta-notation contains superscripts

for optional items (X ‹), repetition (XC), and
repetition separated by commas (XC;). Finally,
a query consists of mandatory select and from
clauses and optional where and group-by clauses.
Next, we look at the grammar for the select
clause, which specifies the query output:

select WWD ‘select’ outputList j‘select’ relToStream ‘(’ outputList ‘)’
relToStream WWD ‘istream’ j ‘dstream’ j ‘rstream’
outputList WWD ‘*’ j projectItemC; j aggrItemC;

projectItem WWD expr .‘as’ID/‹

aggrItem WWD AGGR ‘(’ID�; ‘)’.‘as’ ID/‹

A select clause either specifies an output list
directly or wraps an output list in a relation-
to-stream operator. In the first case, the query
output is a relation, while in the second case, the
query output is a stream. There are three relation-
to-stream operators: istream captures insertions,
dstream captures deletions, and rstream captures

the entire relation at any given point in time.
Here, a relation at a given point in time is a
bag of tuples (i.e., an unordered collection of
tuples that can contain duplicates). A stream is an
unbounded bag of timestamped tuples (pairs of
htimestamp; tuplei). The grammar for outputList
is borrowed from SQL. Next, we look at the



Continuous Queries 3

C

grammar for the from clause, which specifies the
query input:

from WWD ‘from’ inputItemC;

inputItem WWD ID .‘[’ streamToRel ‘]’/‹ .‘as’ ID/‹

streamToRel WWD ‘now’ j ‘unbounded’ j timeWindow j countWindow
timeWindow WWD partitionBy‹ ‘range’ TIME .‘slide’ TIME/‹

countWindow WWD partitionBy‹ ‘rows’ NAT .‘slide’ NAT/‹

partitionBy WWD ‘partition’ ‘by’ IDC;

An input item either identifies a relation di-
rectly or applies a stream-to-relation operator to a
stream identifier. Stream-to-relation operators are
written postfix in square brackets, reminiscent of
indexing or slicing syntax in other programming
languages. There are four such operators: now
(tuples with the current timestamp), unbounded
(tuples up to the current timestamp), range (time-
based sliding window), and rows (count-based
sliding window). Sliding windows can optionally
be partitioned, in which case their size is de-
termined separately and independently for each
unique combination of the specified partitioning
attributes. Sliding windows can optionally spec-
ify a slide granularity. Finally, we look at the
grammar for where and groupBy as examples of
other classic SQL clauses:

where WWD ‘where’ expr
groupBy WWD ‘group’ ‘by’ IDC;

The where clause selects tuples using a predi-
cate expression, and the group-by clause specifies
the scope for aggregation queries. These clauses
in CQL are borrowed unchanged from SQL. For
brevity, we omitted other classic SQL constructs,
such as distinct, union, having, or other types of
joins, which streaming SQL dialects such as CQL
can borrow from SQL as is.

Typically, before execution, queries in SQL or
its derivatives are first translated into a logical
query plan of operators, which is the subject of
the next section.

Stream-Relational Algebra
Whereas the SQL-like syntax of the previous
section is designed to be authored by humans,
this section describes an algebra designed to
be optimized and executed by stream-query en-
gines. The algebra is stream-relational because
it augments with stream operators the relational
algebra from databases. Relational algebra has
well-understood semantics (Garcia-Molina et al.
2008), and the CQL authors rigorously defined
the formal semantics for the additional stream-
ing operators (Arasu and Widom 2004). The
following paragraphs provide only an informal
overview of the operators; interested readers can
consult the literature for formal treatments. The
notation for operator signatures is:

operatorhconfigurationi.input/! output

The configuration of an operator specializes its
behavior. The input to an operator consists of one
or multiple relations or a stream. And the output
of an operator consists of either a relation or a
stream. Relational algebra is compositional, since
the output of one operator can be plugged into
the input of another operator, modulo compatible
kind and type. For instance, the stream-relational
algebra for stream Bargains in the CQL example
from the start of section “SQL-Like Syntax”
is:

istream
�
�hask� lowi

�
‰hQuotes:tickerDHistory:tickeri

�
now.Quotes/;History

���



4 Continuous Queries

Classic relational algebra has operators from
relations to relations (Garcia-Molina et al.
2008):

• �hassignmentsi.relation/! relation
Project each input tuple using assignments

to create a tuple in the output relation.
• �hpredicatei.relation/! relation

Select tuples for which the predicate is true,
and filter out tuples for which it is false.

• ‰hpredicatei .relationC;/! relation
Join tuples from input relations as if with a

cross product followed by �hpredicatei.
• �hgroupBy;assignmentsi.relation/! relation

Group tuples and then aggregate within
each group, using the given assignments.

For brevity, we omitted other classic rela-
tional operators, but they could be added trivially,
thanks to the compositionality of the algebra.
CQL can use the well-defined semantics of clas-
sic relational algebra operators by applying them
on snapshots of relations at a point in time. Some
operators, such as � and � , process each tuple
in isolation, without carrying any state from one
tuple to another (Xu et al. 2013). These operators
could be easily lifted to work on streams, and
indeed, some streaming SQL dialects do just that.
But the same is not true for stateful operators
such as ‰ and � . To use these on streams, CQL
first converts streams to relations, using window
operators:

• now.stream/! relation
At each time instant t , all tuples from the

input stream with timestamp exactly t .
• unbounded.stream/! relation

At each time instant t , all tuples from the
input stream with timestamp at most t .

• rangehpartitionBy;size.;slide/‹i.stream/! relation
Use a time-based sliding window on the

input stream as the output relation.
• rowshpartitionBy;size.;slide/‹i.stream/! relation

Use a count-based sliding window on the
input stream as the output relation.

These window operators correspond directly
to the corresponding surface syntax discussed
in section “SQL-Like Syntax”. Gedik surveyed
these and more window constructs and their im-
plementation (Gedik 2013). A final set of opera-
tors turns relations back into streams:

• istream.relation/! stream
Watch input relation for insertions, and

send those as tuples on the output stream.
• dstream.relation/! stream

Watch input relation for deletions, and send
those as tuples on the output stream.

• rstream.relation/! stream
At each time instant, send all tuples cur-

rently in input relation on output stream.

This article illustrated continuous queries in
SQL-like languages using CQL as the concrete
example, because it is clean and well studied. The
original CQL work contains more details and a
denotational semantics (Arasu et al. 2006; Arasu
and Widom 2004). Soulé et al. furnish CQL with
a static type system and formalize translations
from CQL via stream-relational algebra to a cal-
culus with an operational semantics (Soulé et al.
2016).

Findings

CQL was not the first dialect of SQL for
streaming. TelegraphCQ reused the front-end
of PostgreSQL as the basis for its surface
language (Chandrasekaran et al. 2003). Rather
than focusing on surface language innovation,
TelegraphCQ focused on a stream-relational
algebra back-end that pioneered new techniques
for dynamic optimization and query sharing.
Gigascope had its own dialect of SQL called
GSQL (Cranor et al. 2003). Unlike CQL,
GSQL used an algebra where all operators
work directly on streams. As discussed earlier,
this is straightforward for � and � , but not
for ‰ and � . Therefore, GSQL required ‰
and � to be configured with constraints over
ordering attributes that effectively function as
windows. Aurora used a graphical interface for



Continuous Queries 5

C

surface-level programming, but we still consider
it an SQL-like system, because it used a stream-
relational algebra (Abadi et al. 2003). Aurora’s
Stream Query Algebra (SQuAl) contained the
usual operators � , � ,‰, and � , as well as union,
sort, and a resample operator that interpolates
missing values.

CQL took a more language-centric approach
than its predecessors. It also inspired work prob-
ing semantic subtleties in SQL-like streaming
languages. Jain et al. precisely define the seman-
tics for the corner case of StreamSQL behav-
ior where multiple tuples have the same times-
tamp (Jain et al. 2008). In that case, there is
no inherent order among these tuples, so tuple-
based windows must choose arbitrarily, leading
to undefined results. Furthermore, if actions are
triggered on a per-tuple basis, there can be mul-
tiple actions at a single timestamp, leading to
spurious intermediate results that some would
consider a glitch. The SECRET paper is also
concerned with problems of time-based sliding
windows (Botan et al. 2010). SECRET stands
for ScopE (which timestamps belong to a win-
dow), Contents (which tuples belong to a win-
dow), REport (when to output results), and Tick
(when to trigger computation). Finally, Zou et
al. explored turning repeated SQL queries into
continuous CQL queries by turning parameters
that change between successive invocations into
an input stream (Zou et al. 2010).

Today, there is still much active research on
big-data streaming systems, but the focus has
shifted from SQL dialects to embedded domain-
specific languages (EDSLs, Hudak 1998). An
EDSL for streaming is a library in a host
language that offers abstractions for continuous
queries. In practice, most EDSLs lack the
rigorous semantics of stand-alone languages
such as CQL but have the advantage of posing
a lower barrier to entry for developers who are
already proficient in the host language, being
easier to extend with user-defined operators,
and not requiring a separate language tool-chain
(compiler, debugger, integrated development
environment, etc.).

Examples

The beginnings of sections “SQL-Like Syntax”
and “Stream-Relational Algebra” show a con-
crete example of the same query in CQL and in
stream-relational algebra, respectively. The most
famous example of a set of continuous queries
written in an SQL-like language is the Linear
Road benchmark. The benchmark consists of
computing variable-rate tolling for congestion
pricing on highways. A simplified version of
Linear Road serves to motivate and illustrate
CQL (Arasu et al. 2006). The full version of Lin-
ear Road is presented in a paper of its own (Arasu
et al. 2004). Both the simplified version and the
full version of the benchmark continue to be
popular, and not just for SQL-inspired streaming
systems and languages (Grover et al. 2016; Hirzel
et al. 2016; Jain et al. 2006; Soulé et al. 2016).

Future Directions for Research

Stream processing is an active area of research,
and new papers often use a streaming SQL foun-
dation to present their results. One challenging
issue for streaming systems is how to handle
out-of-order data. For instance, CEDR suggests a
solution based on stream-relational algebra using
several timestamps per tuple (Barga et al. 2007).
One challenge that is particular to SQL-like lan-
guages is how to extend them with user-defined
operators without losing the well-definedness of
the restricted algebra. For instance, StreamInsight
addresses this issue with an extensibility frame-
work (Ali et al. 2011). Finally, the semantics of
SQL are defined by reevaluating relational oper-
ators on windows whenever the window contents
change. Nobody suggests that this reevaluation is
the most efficient approach, but developing better
solutions is an interesting research challenge. For
instance, the DABA algorithm performs associa-
tive sliding-window aggregation on FIFO win-
dows in worst-case constant time (Tangwongsan
et al. 2017). All three of the abovementioned
research topics (out-of-order processing, extensi-
bility, and incremental streaming algorithms) are
still ripe with open issues.



6 Continuous Queries

Cross-References

�Big SQL
� Stream Processing Languages and Abstractions

References

Abadi DJ, Carney D, Cetintemel U, Cherniack M, Convey
C, Lee S, Stonebraker M, Tatbul N, Zdonik S (2003)
Aurora: a new model and architecture for data stream
management. J Very Large Data Bases (VLDB J)
12(2):120–139

Ali M, Chandramouli B, Goldstein J, Schindlauer R
(2011) The extensibility framework in Microsoft
StreamInsight. In: International conference on data
engineering (ICDE), pp 1242–1253

Arasu A, Widom J (2004) A denotational semantics for
continuous queries over streams and relations. SIG-
MOD Rec 33(3):6

Arasu A, Cherniack M, Galvez E, Maier D, Maskey AS,
Ryvkina E, Stonebraker M, Tibbetts R (2004) Linear
road: a stream data management benchmark. In: Con-
ference on very large data bases (VLDB), pp 480–491

Arasu A, Babu S, Widom J (2006) The CQL continu-
ous query language: semantic foundations and query
execution. J Very Large Data Bases (VLDB J) 15(2):
121–142

Barga RS, Goldstein J, Ali M, Hong M (2007) Consistent
streaming through time: a vision for event stream
processing. In: Conference on innovative data systems
research (CIDR), pp 363–373

Botan I, Derakhshan R, Dindar N, Haas L, Miller RJ,
Tatbul N (2010) SECRET: a model for analysis of
the execution semantics of stream processing systems.
In: Conference on very large data bases (VLDB),
pp 232–243

Chandrasekaran S, Cooper O, Deshpande A, Franklin MJ,
Hellerstein JM, Hong W, Krishnamurthy S, Madden
S, Raman V, Reiss F, Shah MA (2003) TelegraphCQ:
continuous dataflow processing for an uncertain world.
In: Conference on innovative data systems research
(CIDR)

Cranor C, Johnson T, Spataschek O, Shkapenyuk V (2003)
Gigascope: a stream database for network applications.
In: International conference on management of data
(SIGMOD) industrial track, pp 647–651

Garcia-Molina H, Ullman JD, Widom J (2008) Database
systems: the complete book, 2nd edn. Pearson/Prentice
Hall, London, UK

Gedik B (2013) Generic windowing support for extensible
stream processing systems. Softw Pract Exp (SP&E)
44:1105–1128

Grover M, Rea R, Spicer M (2016) Walmart & IBM revisit
the linear road benchmark. https://www.slideshare.
net/RedisLabs/walmart-ibm-revisit-the-linear-road-ben
chmark (Retrieved Feb 2018)

Hirzel M, Rabbah R, Suter P, Tardieu O, Vaziri M (2016)
Spreadsheets for stream processing with unbounded
windows and partitions. In: Conference on distributed
event-based systems (DEBS), pp 49–60

Hudak P (1998) Modular domain specific languages and
tools. In: International conference on software reuse
(ICSR), pp 134–142

Jain N, Amini L, Andrade H, King R, Park Y, Selo P,
Venkatramani C (2006) Design, implementation, and
evaluation of the linear road benchmark on the stream
processing core. In: International conference on man-
agement of data (SIGMOD), pp 431–442

Jain N, Mishra S, Srinivasan A, Gehrke J, Widom J,
Balakrishnan H, Cetintemel U, Cherniack M, Tibbets
R, Zdonik S (2008) Towards a streaming SQL standard.
In: Conference on very large data bases (VLDB), pp
1379–1390

Soulé R, Hirzel M, Gedik B, Grimm R (2016) River:
an intermediate language for stream processing. Softw
Pract Exp (SP&E) 46(7):891–929

Tangwongsan K, Hirzel M, Schneider S (2017) Low-
latency sliding-window aggregation in worst-case con-
stant time. In: Conference on distributed event-based
systems (DEBS), pp 66–77

Xu Z, Hirzel M, Rothermel G, Wu KL (2013) Testing
properties of dataflow program operators. In: Confer-
ence on automated software engineering (ASE), pp
103–113

Zou Q, Wang H, Soulé R, Hirzel M, Andrade H,
Gedik B, Wu KL (2010) From a stream of relational
queries to distributed stream processing. In: Confer-
ence on very large data bases (VLDB) industrial track,
pp 1394–1405

http://link.springer.com/Big SQL
http://link.springer.com/Stream Processing Languages and Abstractions
https://www.slideshare.net/RedisLabs/walmart-ibm-revisit-the-linear-road-benchmark

	Continuous Queries
	Synonyms
	Definition
	Overview
	SQL-Like Syntax
	Stream-Relational Algebra

	Findings
	Examples
	Future Directions for Research
	Cross-References
	References
	References




