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Abstract

While artificial intelligence (AI) models have improved at understanding large-scale data,
understanding Al models themselves at any scale is difficult. For example, even two mod-
els that implement the same network architecture may differ in frameworks, datasets, or
even domains. Furthermore, attempting to use either model often requires much manual
effort to understand it. As software engineering and Al development share many of the
same languages and tools, techniques in mining software repositories should enable more
scalable insights into AI models and Al development. However, much of the relevant meta-
data around models are not easily extractable. This paper (an extension of our MSR 2020
paper) presents a library called AIMMX for Al Model Metadata eXtraction from software
repositories into enhanced metadata that conforms to a flexible metadata schema. We eval-
uvated AIMMX against 7,998 open-source models from three sources: model zoos, arXiv
Al papers, and state-of-the-art Al papers. We also explored how AIMMX can enable stud-
ies and tools to advance engineering support for Al development. As preliminary examples,
we present an exploratory analysis for data and method reproducibility over the models in
the evaluation dataset and a catalog tool for discovering and managing models. We also
demonstrate the flexibility of extracted metadata by using the evaluation dataset in an exist-
ing natural language processing (NLP) analysis platform to identify trends in the dataset.
Overall, we hope AIMMX fosters research towards better Al development.

Keywords Artificial intelligence - Machine learning - Mining software repositories -
Model mining - Model metadata - Model catalog - Metadata extraction
1 Introduction

Despite recent advances, Al as an engineering practice is still in its early stages with often
unpredictable and costly results (both in terms of time and quality) (Hill et al. 2016) that are
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often difficult to reproduce (Gundersen and Kjensmo 2017). The sheer amount of possible
Al approaches and algorithms (Wan et al. 2019) and recent increase in released Al frame-
works (Braiek et al. 2018) result in a large variety of Al models and representations. For
this paper, we define an Al model as all the software and data artifacts needed to specify the
statistical model for a given task, train its learnable coefficients, and/or deploy the trained
model for prediction in a service or application. Our definition of model includes both tra-
ditional machine learning (ML) and deep learning (DL) models. The sheer variety and lack
of standardization in Al development results in models that are difficult to interact with and
reason across at scale. For example, even if two models use the same Al framework, they
may be in very different domains such as Vision or Natural Language Processing (NLP) or
use different algorithms or datasets. Even when a model’s code is available, often using or
understanding this model requires much manual effort, sometimes even requiring reading
associated papers. This is a barrier for non-experts and hinders mass adoption. We propose
that mining standardized model metadata will reduce this manual effort. We then propose
that further enhancing the extracted metadata with Al model-specific information enables
programmatically analyzing or interacting with models at scale.

One avenue for standardization is that software and Al development share many of the
same languages and tools, such as version control systems. Existing software repository
tools and services, such as GitHub, are popular with Al developers to store model definition
code and development artifacts such as configurations and training logs. In fact, software
repositories are popular methods for disseminating examples of models for these frame-
works, such as model zoos that collect models for a given framework. Enterprise Al systems
also commonly use versioning systems meant for software to store both Al and non-Al
components (Amershi et al. 2019). One possibility is that existing software repository min-
ing techniques such as software analytics techniques (Menzies and Zimmermann 2013) or
bug prediction techniques (Ostrand et al. 2005; Graves et al. 2000) can be adapted or reused
for Al development. However, developing (and mining) Al models presents additional chal-
lenges over traditional software engineering. Al development often requires managing many
model-specific components that are entangled (Amershi et al. 2019; Sculley et al. 2015),
such as code, data, preprocessing, and hyperparameters. The tools that support software
development, such as version control systems, tend to not support representing these entan-
gled components. We expect that mining the repositories of AI models will give insight into
Al development, but often information about these components is not directly accessible.
For example, an image classification model often contains code that defines the model but
information such as the dataset used, papers referred to, and even the domain of the model
is absent or buried in documentation.

We present a library called AIMMX (Al Model Metadata eXtractor) for simplified and
standardized mining of Al model-specific metadata from software repositories. The extrac-
tors take existing software repositories containing Al models, and integrate data from
multiple sources, such as documentation, Python code, model definition files, etc. Our
extractors integrate this data for Al model-specific metadata. Integration also enables further
enhancement via inferring additional model-specific metadata that is not easily available
directly from software repositories. The extraction library contains six main modules to
extract model-specific metadata: model name, paper references, dataset, Al frameworks,
model domain, and ML vs DL. Additionally, the library includes a gatekeeper module
that infers whether a given repository contains an Al model. Further, the library uses the
extracted metadata to infer additional signals called readiness metrics that indicate how
close a given model is to trainability or deployability. The inference modules such as Al,
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domain, and ML vs DL use machine learning themselves to automatically infer properties
of the model. To standardize the extracted metadata, we also provide an Al model meta-
data schema based on model-related steps of the Al development lifecycle (Amershi et al.
2019): model definition, training, and post-training. In contrast to other model metadata
efforts such as ONNX (ONNX 2017), PMML (Guazzelli et al. 2009), and PFA (Pivarski
et al. 2016) that focus on defining the model’s low-level computational graph, our meta-
data schema and mining library are more concerned with higher-level questions such as the
domain or which datasets were used to train a given model or how to use a given model
rather than model definition specifics such as the topology of the neural network the model
uses.

Extracting metadata in a standardized way is useful for furthering engineering support
for Al development. Metadata enables large-scale analysis and tools in research and practice
that manage multiple varying models. We evaluate AIMMX and demonstrate its capabili-
ties by collecting and analyzing 7,998 models from public software repositories from three
sources: 1) 284 “model zoo” example repositories, 2) 3,409 repositories extracted from Al-
related papers, and 3) 4,324 repositories associated with state-of-the-art AI models. After
extraction, the metadata is ready for consumption in both machine-readable and human-
readable views. Using a subset of this dataset, we created test sets and evaluations for each
of our five extraction modules and readiness metrics as mentioned above as well as a holis-
tic evaluation of the entire system. The automatically extracted metadata have an average
precision of 85% and recall of 82%. The evaluation dataset is available as part of the repli-
cation package. Figure 1 gives an overview of the model metadata mining system, dataset
collected, and preliminary usage of the extracted metadata.

We demonstrate the capabilities of mining a large collection of Al model metadata by
using the enhanced metadata to perform an exploratory analysis of reproducibility, a sup-
plementary analysis using an existing natural language processing (NLP) analysis platform
called Watson Discovery (IBM 2020), and an example model catalog tool. Reproducibility

Public Al Model Model Metadata
Repositories Extractors (AIMMX)
| Alldentification |
| Model Name |
Model Zoos | I
284 References .
( ) Standardized Descriptive
| Datasets | Extracted Analysis
arXiv Papers > —>1 Model
3,409 Al Frameworks Metadata
( ) | | (7 998) Model Catalog
SoTA Papers | Domain Inference | Tool
(4.324) | MLvsDL |
| Readiness |
| Other I

Fig.1 Overview of Al model metadata mining system
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in Al papers (Gundersen and Kjensmo 2017) and Jupyter Notebooks (Pimentel et al. 2019)
tends to be relatively poor, due to a lack of documentation over method selection, datasets
used, or experiments run. We quantitatively examine our enhanced metadata dataset of 7,998
models for signals of both data (datasets used for an Al model) and method (algorithms
and design decisions for an AI model) reproducibility (Gundersen and Kjensmo 2017). Our
exploratory analysis found that data reproducibility tends to be relatively low at 42% of
models in our sample having extractable information about datasets used. Method repro-
ducibility, proxied by extracted references, is higher than data reproducibility at 72% of
models in our sample, with state-of-the-art models being particularly high at 92%. As a
demonstration of the versatility of our standardized metadata, we feed the 7,998 documents
in the dataset into an existing NLP analysis platform and examine trends in our dataset using
the platform. As an example of a tool that leverages extracted metadata, we also describe an
implementation of a searchable catalog that uses metadata to manage discovering and evalu-
ating collected models. The system is scalable for cataloging thousands of models, allowing
model producers to add their own models in a manner that imposes minimal burden due
to AIMMX enabling automated metadata extraction. In contrast, other model management
systems such as ModelDB (Vartak et al. 2016) require that model producers instrument their
code to support automatic model ingestion. Using AIMMX’s extracted metadata in a cata-
log provides automatic connections between code, datasets, and references which is similar
to the manual connections in the Papers With Code website (Code 2020). These connections
may also enable automated training or deployment in future tools.

This paper is an extension of our previous work (Tsay et al. 2020) presented at the 17th
International Conference on Mining Software Repositories (MSR 2020) which describes an
earlier version of AIMMX and a portion of the features, evaluation, and analyses described
in this paper. As part of the extension, this version of the paper describes the model meta-
data schema in detail. This version also includes three new library modules: 1) a gatekeeper
that uses machine learning to identify whether a given repository is an Al model, 2) a classi-
fier that uses machine learning to infer if a model uses traditional machine learning or deep
learning, and 3) an aggregator that uses extracted metadata to infer readiness for a given
model. Each of these modules also includes an accompanying individual evaluation; the
overall system evaluation has also been updated. This version also demonstrates the flexibil-
ity of our extracted metadata format with an additional analysis of trends using an existing
NLP analysis platform called Watson Discovery. Finally, this version more fully describes
the implementation of the cataloging tool.

This paper makes the following contributions:

— A standardized Al model metadata schema that covers a wide range of model types,
domains, and lifecycle phases (Section 2).

— A tool for extracting standardized Al model-specific metadata from software reposito-
ries with currently eight extraction modules (Section 3).

— An evaluation of our tool against a dataset of 7,998 models (Section 4). This AI model
metadata dataset is also available as part of a replication package.

— Preliminary usage of extracted metadata via an exploratory analysis of the data and
method reproducibility of Al models in our dataset and using an existing NLP platform
(Section 5) and a cataloging tool (Section 6).

All in all, we hope our paper will facilitate research into Al development, with the
ultimate goal of increasing productivity and improving outcomes.
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2 Model Metadata Schema

Al models are diverse, and any attempt to extract standardized information about them must
start with establishing a metadata schema to describe these models and where they come
from. The diversity of Al models spans dimensions such as domain, lifecycle stage, source,
dataset, framework, and so on, where each dimension may significantly affect what a model
does and how to use it (Sculley et al. 2015). Our schema takes a model lifecycle-based
approach, describing models based on what is known about each lifecycle stage. At a high
level, models go through the following lifecycle: pre-training (which includes defining the
code or network for a model and for any pre-processing), training (using the definition to
learn weights and biases from a training dataset), and post-training (the weights and biases
that support making predictions integratable into other applications). The actions that are
available on a model are completely different depending on its lifecycle stage. For example,
although the TensorFlow and Caffe2 model zoos (see Table 1) both contain ResNet-based
models (He et al. 2016), the TensorFlow version is simply code that must undergo training
whereas the Caffe2 version is a post-trained binary. Despite both models being from model
zoos and having the same topology, domain, and purpose, the actions available and therefore
metadata that must be collected differ.

2.1 Schema Description

The model metadata schema consists of a top-level model object with discovery attributes
such as model name, domain, references, and so on as well as a number of subob-
jects that correspond to stages of the model lifecycle: definition (pre-training), training, and
trained_model. There are also subobjects to describe evaluations such as training metrics like
accuracy and a model’s provenance . Figure 2 shows an overview of the schema and its sub-
objects. Note that any given model may have any or none of these subobjects. Although
one might expect a model to strictly accumulate more information throughout its lifecycle,
in practice, any given model may not have information about earlier stages. For example, a
trained model from the Caffe2 model zoo may not have any pre-training code available and
therefore no definition subobject. We represent model metadata using JSON, which is the
most popular data exchange format in web APIs, ahead of XML (Rodriguez et al. 2016).
Consequently, we express its schema in the JSON Schema language (Internet Engineering
Task Force 2018; Pezoa et al. 2016). Our schema is available for viewing online at https://
ibm.biz/ai-model-catalog-emse-schema.

JSON Schema is a popular JSON-based method of describing and validat-
ing the properties of JSON documents in a standardized way. We use JSON
Schema because it is widely supported and is machine and human-readable. It
supports primitive types (e.g., {type’ integer, 'minimum’: 0}  enumerations (e.g.,
{’'enum’: [42, "hello’, null]})’ arrays (e.g., {‘type’: “array’, ’items’: { 'type’: ’num-’string’})’ objects
(e.g., {type’ object, properties’: {’x’: {'type’ ‘number’, 'y {'type’: 'number}}}),),  logi-
cal connectives (not, allOf, anyOf  oneOf), and potentially recursive references (e.g.,
{"$ref’: *#/definitions/foo’} to reusable schema fragments. JSON Schema also has the advan-
tage of being flexible enough to extend to support both relatively complex subobjects and
new features as described below.

The top level of the AIMMX schema contains high-level attributes that are common to
most models regardless of lifecycle stage, such as a model’s name, authors, description, tags,
domain or intended application type, and any related references such as academic papers or
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Top-level Model

*« Name
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* Tags
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* References []
« Extraction []

Definition Training
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¢ Input_data_schema * Hyperparameters
» Output_data_schema » Training_job

* Hyperparameter_schema » Training_output
Trained_Model Evaluations [ ]

* Binaries []

* Input_data_schema Provenance

* Output_data_schema

Fig.2 Model metadata schema overview

blogs. Finally, the top level also stores extraction metadata, such as where a model comes
from and metrics related to automated mining such as completeness and confidence.

The definition subobject contains the pre-training metadata for a model. It contains ref-
erences to code that define the model and associated metadata as well as any metadata
needed to train the model. The main attribute is code, which contains references to source or
repositories that define the model including information such as the frameworks (e.g. Ten-
sorFlow or Caffe2) and the license (e.g. Apache). The subobject also has schemas defining
the shape of input data, output data, and hyperparameters for the model. These schemas are
each implemented as embedded JSON Schemas that are definable by the user. For exam-
ple, the hyperparameter_schema is a JSON Schema that may define hyperparameters such as
batch_size and their shape, such as being an integer with a given minimum and maximum.

The training subobject contains information about the training phase of the model, includ-
ing datasets and hyperparameters that are used to train the model. Whereas the definition
subobject describes metadata that defines the model and how it may be trained, the training
subobject describes the specific training configuration. For example, the definition subobject
contains the hyperparameter schema while the #aining subobject contains actual hyperpa-
rameter values used to train a particular model. Similarly, this subobject contains metadata
about the actual datasets used during training, which includes information such as loca-
tion of the data, train/test/validation splits, and any preprocessing steps. Both datasets and
hyperparameters may be validated against the schemas defined in the definition subobject.
The training subobject also includes information about the training job, such as the service
and/or location and the location of the resulting trained model (but not information about
the resulting trained model itself, which is in the trained_model subobject).

The trained-model subobject contains post-training information about the model weights
and biases and any metadata to integrate the trained model into software applications or
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model ensembles. The main attribute is binaries, with references and information about
learned weights and biases. We separated the information about the model binary from the
training subobject because often, such as in model zoos, there may be information about a
trained model binary but no information available about the training process that creates the
binary. The trained_model subobject also contains schema information about input and/or
output data, again using embedded JSON Schemas.

The evaluations and provenance subobjects respectively contain evaluation metrics and
history of any transformations applied to a given model. Both subobjects are not used by the
current version of AIMMX but are designed for future extractors. The evaluations subobject
is meant for performance metrics such as accuracy from training jobs in the most common
case. However, the schema we define is flexible enough to include annotations for other
subobjects. For example, one may want to evaluate the definition of the data preprocessing
pipeline for bias (Shaikh et al. 2017), or the binaries of the trained model for robustness
against extraction (Tramer et al. 2016). The provenance subobject is meant to track history
of changes. Using the previous examples, if a more fair or more robust model is derived,
this subobject would contain information about the original model and any transformations
applied.

2.2 Schema Features

While the previous section describes the concrete schema, this section explains how to spec-
ify and validate metadata against it, based on standard JSON Schema (Internet Engineering
Task Force 2018) Draft 04 with some extensions.

Some properties of the metadata schema are actually definitions of how data
should be described. For example, in the definition subobject is a property called
hyperparameter_schema that describes what hyperparameters the model definition code
expects and potentially the ranges of these values. In the training subobject, these hyperpa-
rameters are actually defined. Schemas themselves are a natural fit for describing these types
of properties and are implemented in our system by specifying that the relevant attribute
contains an embedded JSON Schema. Note that this is not an extension to JSON Schema,
but simply an unusual usage. Since the JSON Schema is itself specified (meta-circularly)
using a JSON Schema, it is easy to reference and embed.

As in the above example with the hyperparameter_schema and hyperparameters proper-
ties, user-provided embedded schemas may validate other properties. Conceptually, this is
similar to dependent types (Augustsson 1998) in programming language theory: the type
(schema) for part of the data is given by another part of the data. AIMMX implements this
in a backwards-compatible manner by encoding a special $dependent schema property. This
format is JSON Schema conformant, and so existing validators will ignore it without fail-
ing. The following example encodes that the hyperparameter values in the model metadata
should be checked against the schema embedded elsewhere in the model metadata:

“hyperparameters ”: {
"definitions ”: {
”$dependent_schema ”: {
“enum”: [”/definition/hyperparameter_.schema”]
}
}
}
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Using a standardized schema for our schema definition allows for downstream appli-
cations to use standard validators to validate input data against our schema. The catalog
tool described in Section 6 uses the AJV (Ajv 2018) validator. We augment the validator
to support embedded schema validation by first finding all the embedded schema declara-
tions. These are replaced in-memory with a JSON Schema that uses the $allOf combinator
to combine the existing schema with an empty hole. A hole map associates dependent
schema paths (for example, hyperparameter_schema) to a list of holes to fill. Using this mod-
ified schema and hole map, we can now validate data against the schema by first going
through the map and filling the holes in the schema with the corresponding dependent
schema contained in the data. Standard validation then validates the dependent data (for
example, hyperparameters) against the filled schema, which now includes the corresponding
dependent schema.

3 Automated Model Metadata Extraction

The core of AIMMX is a Python library that reads software repositories, specifically from
GitHub (2020), and extracts AI model-related information into standardized model meta-
data in the JSON format that is machine and human readable by following the schema
described in the previous section. This library is open-source at https://github.com/ibm/
aimmx and publicly available for use. AIMMX is meant to be simple to use: once it is
instantiated with a GitHub API key, then the user calls a function with a desired GitHub
URL which then runs the extractors and returns the extracted metadata.

The advantages of choosing to use software repositories and GitHub specifically are
that they are already in common use for Al development (Amershi et al. 2019). For exam-
ple, most major Al-related frameworks such as TensorFlow, PyTorch, and Caffe2 have
public model zoos (collections of example or demonstration models) hosted on GitHub.
Another advantage is that software repositories often document more than just code; for
example, there is a culture of rich documentation through README files that are automat-
ically displayed on GitHub repository pages. Depending on the community, data scientists
often spend extra effort to ensure documentation is updated (Trainer et al. 2015). GitHub
also has a rich Application Programming Interface (API) (GitHub 2016) that enables our
tools to integrate with it in a straightforward manner. The extractor supports three forms
of URLs: full repositories, subfolders within a repository, and individual files in reposito-
ries. For example, whereas the TensorFlow model zoo contains multiple folders with one
model each, the Keras model zoo contains a folder with multiple Python files with one
model each. From the GitHub API, information such as the repository name, description,
tags (topics in GitHub), authors (contributors in GitHub), open source license, primary pro-
gramming language, date of last code commit, number of stargazers for the repository (a
popularity metric similar to Likes in Facebook or Twitter (Dabbish et al. 2012)), and list
of files are directly extractable. Then, the extractor optionally mines additional informa-
tion depending on whether the repository contains certain files such as the README file,
Python code, Python-specific configuration files, and certain types of ML or Al framework-
related binary or configuration files. For example, Caffe2 commonly describes the expected
dimensions for input data in value.infojson. Our tools extract this information and encode it
in the metadata as an embedded JSON schema in input-data_schema, Specific binary files
are automatically identified and placed into the input.data_schema subobject based on the
file extension (e.g. . pb for Caffe2, . h5 for Keras, . onnx for ONNX), and Dockerfile
for containerized models.
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An issue with using version control systems meant for traditional software is that Al
model-specific metadata are not directly available through repositories or associated code or
configuration files. However, by analyzing the aggregated metadata, model-specific meta-
data can be extracted or inferred. This metadata can then enhance the aggregated metadata
that are more directly extractable from software repositories, code, and configuration files.
The current version of the extractors contains seven such modules: Al identification, model
name, references, associated datasets, Al frameworks used, model domain inference, and
ML vs DL. We also use our existing metadata to infer readiness signals for how close a
model may be to training or deploying.

3.1 Al Model Identification

A surprisingly difficult task when mining software repositories for Al-related code at a
large scale is identifying Al vs non-Al software projects. Gathering software repositories
for mining often involves indiscriminately gathering repositories through means such as
GitHub search or querying GHTorrent (Gousios 2013) or GH Archive (Archive 2021). Even
for the initial development of this library we had difficulty determining which repositories
contained Al models. Hence, we gathered repositories from sources more likely to contain
Al models (see Section 4.1), yielding fewer repositories than indiscriminate methods.

In response to this difficulty, we developed a gatekeeper module that assists in identifying
and filtering out non-Al repositories out of a large indiscriminate set. This module takes
a given repository and attempts to use its metadata to identify if the repository is an Al
model or not. Al-related tools and frameworks are not considered models in this case. For
the current version of this module, we only analyze the contents of the README file.

To create this classifier module, we needed a ground truth dataset of Al and non-Al
repositories. We used the ML-Universe dataset by Gonzalez et al. (2020), which contains
4,524 Al and 4,101 non-Al repositories, identified manually. We only consider repositories
that were available (as of 9/6/2021) with valid README files, since those are used in the
classification. After balancing for Al and non-Al, we have 4,039 valid repositories for each
case in the dataset (8,072 total). This dataset is then split into training and validation sets
with 80% or 6,462 repositories in the training set and 1,616 in the validation set.

For the current version of this module, we take a bag-of-words approach with the input
model metadata. Specifically, only the README is considered but it is stripped of all tags
and special Markdown characters and then tokenized and vectorized. For all 8,072 reposi-
tories in our dataset, we extract the README and preprocess it as described earlier. After
testing a number of classification approaches, we settled on a logistic regression classifier
that outputs a Boolean indicating whether the repository is an Al model or not.

3.2 Model Name Extraction

This module attempts to extract a more descriptive name for a given model from available
metadata. In many cases, the most obvious choice, the repository name, is insufficient or
suboptimal. Models often exist as part of subfolders or individual files within repositories,
especially in “model zoo” collections, which often cannot directly use the repository name.
Also, the repository name is often a nickname or a non-obvious abbreviation. For example, a
repository may be named “hip-mdp-public” but a more descriptive name would be “Robust
and Efficient Transfer Learning with Hidden Parameter Markov Decision Processes.” To
extract more descriptive names, this module uses a rule-based approach to analyze doc-
umentation for potential names. Specifically, the documentation analyzed depends on the
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repository and what is available. If the model is in a repository subfolder, the subfolder’s
README file is used if available. If the model is a specific Python file, the docstring
(documentation comments at the top of the file) is used if available. If the model is a repos-
itory or other files are not available, the repository-level README is analyzed. Once the
documentation to analyze is determined, the README or docstring is iterated line-by-
line, skipping non-relevant items commonly found at the top of README files such as CI
badges, image banners, heading characters (such as *** or ===), and administrative notes
such as “**NOTE: This repo...”. When the first relevant line is found, it is stripped of Mark-
down or HTML characters and any hyperlinks. This cleaned line is returned as a potential
name. If no potential name is found, the repository name is used as a fallback.

3.3 Reference Extraction

We chose to implement a module to extract references to papers because in preliminary user
testing, data scientists tend to discuss models in terms of corresponding academic papers.
This module uses three rule-based approaches to extract references: 1) regular expressions
to search for common reference formats, 2) search for arXiv IDs with correspond lookups
to the arXiv API, and 3) identifying code blocks containing BibTeX references. The first
approach attempts to find a variety of references that may include various conferences or
even blog posts while the second and third approaches attempt to find specific formats that
are popular with machine learning papers. For all three approaches, the module searches
across README files and docstrings using the same rules as the model name module. In
the case of overlapping references found by multiple approaches, the reference with the
most metadata as measured by fields extracted is kept with a preference for the arXiv and
BibTeX approaches over the pattern-matching approach.

The first approach uses nine regular expression patterns to find both references to aca-
demic papers and links to blog posts and other webpages. The patterns were developed by
examining existing references in documentation for repositories in model zoos. The meta-
data returned for this approach varies depending on the pattern. The simplest example is a
blog post which returns only the article title and the URL while a more complicated pattern
may return the title, list of authors, year, arXiv ID, and URL. This approach is the broadest
in terms of what types of references are allowed, as any conference, journal, or blog post
is potentially valid. However, this approach is limited in that only references that match the
patterns defined will be found.

The second approach searches for arXiv papers. ArXiv is a preprint hosting service par-
ticularly popular with academics in Al fields (1991). Specifically, the approach searches for
links to arXiv papers within the given README and then extracts the arXiv ID from the
link. The ID is then looked up against the arXiv API (2018) for additional information such
as the article title, authors, and publishing date. The advantage of this approach is that arXiv
is popular among machine learning researchers and is commonly used. Using the arXiv
API also allows for extracting reference information in a standardized way that is robust to
differing citation styles. The disadvantage of using arXiv is that its references tend to be
preprints and publishing conference or journal information is often lost or unavailable.

The third approach searches for code blocks within the documentation with BibTeX
references. This particular approach relies on searching for code blocks as defined by the
Markdown language that GitHub uses for README files. The entire code block must be a
valid BibTeX reference (it cannot contain anything except BibTeX). Multiple entries in the
code block are allowed. BibTeX seems to be particularly popular to provide a citation to
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a model repository’s associated paper. The advantage of this approach is that BibTeX is a
well-established and precise format.

3.4 Dataset Extraction

Data management is a hard challenge in engineering Al systems (Amershi et al. 2019; Wan
et al. 2019) and models in software repositories often have no formal descriptions of datasets
used. Our module attempts to automatically extract and link models to the datasets used.
For this version, the module extracts the name of the dataset and potentially a link to the
dataset. The module uses two rule-based approaches: searching for links in the README
and searching for references to common datasets. The first approach allows for finding
arbitrary datasets and the second approach allows for finding commonly used datasets in
machine learning papers. The first approach searches the README for links that contain
dataset-related keywords, specifically “dataset”, “data”, and “corpus.” It then returns the
names and the referenced URLs of the extracted dataset. The second approach uses a set of
640 common dataset names and searches for mentions of these datasets in the README.
To avoid partial matching of short dataset names such as “SQuAD” versus “SQuAD?2.0,”
matching datasets must be their own token(s) and surrounded by whitespace or punctua-
tion. Longer dataset names such as “Fashion-MNIST” are preferred over shorter ones such
as “MNIST” and are resolved first. If this approach finds a match, then only the dataset
name is returned. For cases where both approaches return the same dataset, such as the
“New York Times Corpus,” the extracted metadata is merged by combining the name and
link. This module follows the same rules to the model name module in determining which
documentation file to analyze.

We extracted the list of common datasets using the Papers With Code website (Code
2020), which compiles machine-learning papers and repositories and metadata that links
the two. In the Papers With Code data,! there are common machine-learning tasks such as
Language Modeling and Semantic Segmentation. For each task, there is a list of datasets
and a leaderboard for each dataset with associated papers and associated code repositories
for each paper. For example, the Language Modeling task includes the One Billion Word
dataset (Chelba et al. 2013). The module collected each of the datasets for each of the
tasks (as of 8/20/2019), resulting in 640 total dataset names that the module searches for
in the README. Some dataset names were removed to prevent false positives such as
“Datasets.” Since the datasets are known, future work should add additional metadata for
matched datasets. For example, if “MNIST” is matched, then metadata such as where the
dataset is available and the schema could also be made available.

3.5 Al Framework Extraction

Al frameworks play an important part towards enabling the model development process.
Recent years have seen a spike in the release and adoption of Al frameworks (Braiek
et al. 2018) and framework-related questions are a major category of machine learning-
related topics on Stack Overflow (Bangash et al. 2019). Our module identifies which Al
frameworks a particular model uses by searching the source code. We focus on Python AI
frameworks as they are the most popular (Braiek et al. 2018). The module then concatenates
all Python files (.py) and code cells of Jupyter Notebooks (.ipynb) into a single text string.

1At the time of publishing, their data are available under the CC BY-SA license.
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Once all the code is extracted and merged into a single string, a regular expression is used
to find the name of the modules imported, specifically cases of ‘import module_name’ and
‘from module_name import function_name’ and all its variations (like with ‘as nickname’,
multiple modules at the same line, or functions from submodules). The found module names
are then filtered by a fixed list of well-known frameworks such as Caffe, Keras, Lasagne,
MXNet, NLTK, PyTorch (or torch), TensorFlow, Theano, scikit-learn (or sklearn). The only
exception is the Caffe2 framework which is not a Python module. Therefore, we check the
coexistence of the files init_net.pb and predict_net.pb, and if they exist, we add Caffe2 to the
frameworks list. Table 7 has a full list of Al frameworks for extraction.

3.6 Automated Domain Inference

This module uses machine learning to infer the domain of a given model based on its
available metadata. Here domain refers to the genre or type of activity that the model is
associated with, for example: Computer Vision, Natural Language Processing (NLP), etc.
A general issue with extracting model metadata is that often the domain of a model is not
explicitly defined. However, machine learning practitioners often naturally describe models
by their domain. We use machine learning on a public dataset of model repositories to cre-
ate a machine learning model that takes in model metadata as input, and outputs the model’s
inferred domain and task along with a confidence score.

To create the domain inference model, we created a training and validation dataset of
repositories and their associated domain and task using data from the Papers With Code
website (2020). In this case, domain is a more general category for models whereas rask
is a more specific activity within the category. Given the previous example in the datasets
extractor module, in Papers With Code, Natural Language Processing (NLP) is a domain
and Language Modeling is a task within that domain. We use data from Papers With Code
because it provides ground truth for the domains and tasks for model repositories which is
often unavailable otherwise. We use a total of 2,915 repositories labeled with domains and
tasks from Papers With Code along with 300 repositories written in Python that have noth-
ing to do with machine learning as negative examples for a total of 3,215. These negative
examples were manually gathered from GitHub’s most popular Python repositories. This
dataset is then split into training and validation sets with 70% or 2,237 repositories in the
training set and 978 in the validation set. Similar to the Al model identification module,
the current version of this module takes a bag-of-words approach and only considers the
README, preprocessed by stripping all tags and special Markdown characters and then
tokenizing and vectorizing the words.

Through examining the dataset and empirically, we settled on an assembly of support
vector classification models that work in a two-stage process as seen in Fig. 3. The first stage
determines if a given model’s domain is Computer Vision, Natural Language Processing
(NLP), Other, or Unknown (not a model). Depending on the results of the first stage, the
given model is then fed into one of three multiclassification models: 1) Computer Vision
tasks, 2) NLP tasks, or 3) Other domains. The final result is a domain and task, or in the case
of Other domains, just the domain, along with a confidence score. For example, Model A
may be determined to fall under the Computer Vision domain in the first stage and is then fed
into the Computer Vision task model and has Object Detection as the task with a confidence
of 0.68. Model B may be determined to fall under Other domain in the first stage and then is
determined to be in the Medical domain in the second stage with a confidence of 0.72. The
Computer Vision, NLP, and Other domain split was done due to the unbalanced nature of
the ground truth distribution of the dataset. Out of 2,915 labeled model repositories, 1,654
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Fig.3 Domain inference machine learning model ensemble diagram

(56.7%) are Computer Vision and 824 (28.3%) are NLP. The other domains make up 15% of
the dataset with Playing Games the largest at 171 (5.9%). We chose to group domains into
an “Other” category due to a relatively small number of samples, especially compared to
Computer Vision or NLP. Due to the relatively small number of examples for these models,
we chose not to further predict the task for these domains. Appendix A lists all domains and
tasks inferred.

3.7 Machine Learning/Deep Learning (ML-DL) Inference

An often important distinction within Al models is whether it is a machine learning (ML) or
deep learning (DL) model. In this case, although DL is a sub-category of ML, we refer to ML
models as “traditional” machine learning models that do not use deep learning techniques
such as neural networks. This module uses machine learning to infer whether a given Al
model is ML or DL. We train the classification model for this module using the IBM Natural
Language Understanding? service that analyzes text to extract metadata from content such
as concepts, entities, emotion, relations, sentiment among others, as well as the ability to
train a custom classification model.

To create the dataset to train and evaluate this module, we use a dataset of GitHub projects
and use GitHub topics to categorize repositories as either ML or DL. We used an open-
source GitHub crawler® to gather 3,000 ML and DL repositories each. To determine which
category each repository belongs to, we filter via GitHub topics: ML repositories must have
machine-learning but not deep-learning as topics and DL repositories must have deep-learning
but not machine-learning Out of these two mutually exclusive sets of repositories, we gather
3,000 each with the most stars and with valid README files. We applied the same cleanup
to README files as discussed earlier to get plain-text versions. We also removed files with
fewer than 500 characters and trimmed each text to the first 2,000 characters, which is the
maximum length of a sample for the IBM NLU service. After this preprocessing, our dataset
has 2,716 ML repositories and 2,802 DL repositories. We then create a training set with the

2https://cloud.ibm.com/catalog/services/natural-language-understanding
3https://github.com/IBM/github-crawler
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top 2,000 repositories of each category in terms of star count, resulting in a balanced dataset
with a total of 4,000 samples. We create a test set with the next 500 repositories of each
category for a total of 1,000 samples.

We then use the NLU service to train a custom classifier model using the classification
endpoint. The service also provides an analyze endpoint to predict ML/DL classification
given a cleaned README file from a given repository. Our module then uses this endpoint
to infer ML/DL.

3.8 Readiness Metrics

AIMMX also aggregates the extracted metadata to further infer additional signals about a
given Al model. In particular, since much of our metadata is extracted from documenta-
tion, we expect that we should be able to infer how ready to reuse a given model is. We
call these inferred signals readiness metrics and the current version of AIMMX calculates
trainability and deployability metrics for how close a model is to a trainable or deployable
state. “Trainable” in this case refers to the feasibility of running a training job on a given
model which may include acquiring the dataset, formatting and cleaning the dataset, gen-
erating features, and running the training script. “Deployable” refers to feasibly running
prediction or inference on a trained model for some unseen data (rather than just running a
test set).

As described in Section 2.1, our metadata schema follows a lifecycle approach where we
group relevant metadata via subobjects that correspond to stages in the model’s lifecycle.
For example, extracted metadata about datasets used is under the training subobject because
it is relevant metadata about running a training job. We make use of these lifecycle subob-
jects to approximate what stage of the lifecycle a given model is. In the current version of
our system, we calculate trainability as the percentage of defined properties in the definition
and training lifecycle subobjects of the metadata. Deployability is similarly defined as the
percent of properties defined in the trained_model lifecycle subobject. For example, after
extracting metadata for a given project, that project may have code repository, Al frame-
work, code files, and dataset metadata in its metadata document. These properties being
defined comprise 50% of the definition and training subobjects in our schema which then is a
trainability metric of 50%. Adding additional relevant metadata such as the hyperparameter
schema would raise the value further. This percentage approach to calculating the metrics
has an advantage of being inherently normalized because it relies on presence of properties
rather than values. These measures are used in analyses to give a sense of the relative com-
pleteness of the model and the catalog tool described later uses them to recommend steps
towards training or deployment.

4 Evaluation and Preliminary Analysis

We evaluate our automated Al model metadata extractors through a dataset of 7,998 public
models from open source software repositories. We perform individual evaluations for each
of our seven model-specific metadata extraction modules as well as our inferred readiness
metrics. Each of the module evaluations uses its own methodology, subset of the collected
dataset, and evaluation metrics. We also manually evaluate the system as a whole with a
subset of the dataset. The evaluation dataset and each module evaluation data subset are
available in the replication package (https://zenodo.org/record/5655729).
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4.1 Evaluation Dataset

To evaluate our extractors, we collected a dataset of public Al model software repositories
on GitHub. The challenge was to identify repositories on GitHub that contain Al models
rather than just being Al-related. For our dataset, a repository was considered to contain
an Al model if it contains artifacts to define and/or train a model with data, or the result-
ing artifacts of the training process. For example, Al-related frameworks, purely data, or
documentation repositories do not count. To solve this challenge, we gathered repositories
associated with AI models from three sources: 1) 284 “model zoo” example repositories, 2)
3,400 repositories extracted from Al-related papers on arXiv (1991), and 3) 4,324 reposito-
ries associated with state-of-the-art Al models (Code 2020). Table 1 summarizes the dataset.
Since 19 models overlap from multiple sources, the total number of repositories is 7,998.
We note that this dataset was created before implementing the Al Identification module and
this challenge of identifying Al model repositories inspired the module’s creation.

Model zoos are good candidates for evaluation because these repositories tend to be well-
documented and maintained. We gather 284 models from six model zoos of popular Al
frameworks: TensorFlow, Caffe2, Keras, PyTorch, MXNet, and the Model Asset Exchange.
In this case, the six model zoos are either a single GitHub repository with multiple fold-
ers each containing a model or a collection of multiple GitHub repositories. We expand
our dataset by collecting software repositories associated with Al-related papers, assuming
that these repositories are more likely to contain Al models. From over 41,000 academic
papers on a dataset of Al-related arXiv (1991) papers published on the Kaggle competition
service (Shah 2019), we gathered 3,409 repositories by using bulk paper access to search
the papers for GitHub links. After processing the extracted GitHub links to ensure unique-
ness and removing malformed or irrelevant links (e.g. links to GitHub itself rather than
repositories), the dataset contained 3,938 links. After attempting to extract metadata from
this dataset and removing inaccessible and dead repositories, the arXiv dataset contains
3,409 repositories. Additionally, whereas the model zoo dataset mostly uses deep learn-
ing, the arXiv dataset contains both deep learning and traditional machine learning models.
Lastly, we gather 4,324 repositories associated with state-of-the-art (SotA) Al papers using
the curated Papers With Code website (2020). The website lists various machine learning
tasks with associated datasets and leaderboards of the performance of Al papers for these

Table 1 Evaluation dataset summary

Model source/Zoo #Models URL

TensorFlow Models 73 https://github.com/tensorflow/models

Caffe2 Model Repository 87 https://github.com/caffe2/models

PyTorch Examples 12 https://github.com/pytorch/examples

Keras examples directory 42 https://github.com/keras-team/keras/tree/master/examples
MXNet examples directory 38 https://github.com/apache/incubator-mxnet/tree/master/example
Model Asset Exchange 32 https://developer.ibm.com/code/exchanges/models/
Model Zoo Dataset 284

arXiv Paper Dataset 3,409

SotA Paper Dataset 4,324

Total 7,998 (19 overlap)
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datasets. One or more software repositories are linked with each of these papers. We used
data from this website to train our domain inference module because it contains model-
related metadata that is curated and annotated. We also use this labeled metadata to evaluate
some of our modules. Since the metadata extracted by our model-specific modules are not
directly available, evaluating these modules often requires manual labels available through
their public data.

The rest of this section presents a detailed evaluation, for which Table 2 gives a short
summary.

4.2 Al Model Identification

To train the AI model identification module (Section 3.1, we held out 20% (or 1,616 out of
8,072 total) repositories as a test set. Half of the repositories are known to be AI models and
half are non-Al. Evaluating the module on this test set resulted in an accuracy of 0.915 and
an F1 score of 0.915. This evaluation is a standard classification task so we report accuracy.

4.3 Model Name Extraction

To evaluate the model name extraction module (Section 3.2), we created a test set that is
a random sample of 400 repositories or 5% of the collected dataset of 7,998. Due to the
nature of the model name extractor, there is a lack of ground truth for model names in
the dataset, necessitating a manual evaluation. Model names in particular are difficult to
evaluate automatically because it is possible for multiple model names to be descriptive or
correct for a given model. For this evaluation, one of the researchers manually examined the
extracted names in the test set. A name is considered correct if it is more descriptive than the
default repository name. For example, “gan” versus “Dist-GAN.” The name must also not
include any formatting characters such as “###Model Name.” If the extracted name matches
the default repository name, it is considered incorrect unless the default repository name is
the full name of a model or approach. For example, “BERT” is correct for the BERT model
(Devlin et al. 2018) because that is the full name according to the repository. The percentage
correct of the test set was 85.3% or 341 of 400 repositories. We chose correctness as a metric
due to the qualitative nature of the evaluation.

Table 2 Evaluation results

summary Evaluation Count Metric Value
Al Identification 1,616 Accuracy 0.915
Model Name 400 Correctness 0.853
Reference 4,094 Precision 0.655
Dataset 160 F1 0.757
Framework 252 Precision 1.000
Domain Inference 978 Domain Accuracy 0.859
Task Accuracy 0.723

ML-DL Classifier 1,000 Accuracy 0.820
Readiness 80 Trainability 0.800
Deployability 0.450

System 80 Precision 0.858
Recall 0.829
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4.4 Reference Extraction

To evaluate the reference extraction module (Section 3.3), we created a test set with 4,094
pairs of paper references and model software repositories. For this evaluation, we needed
repositories with known connections to references. We used the SofA dataset described
earlier from Papers With Code (2020) as it links together paper references with software
repositories. We assume that the link should also work in reverse: each Al model software
repository should point back to its paper. Papers in the test set may be associated with mul-
tiple repositories and repositories may be associated with multiple papers. We chose to use
precision as the metric due to the direction of the labeled data available. Whereas our extrac-
tion has a one-to-many relationship between repositories and references, the labeled data
has a one-to-many relationship between references and repositories. To reconcile the two,
we identify pairs of references and repositories and examine if the extracted metadata for
the repository contains the associated reference. Specifically, we count the pair as correct if
the title of the reference in the test set matches one of the references in the extracted model
metadata for the repository. The precision of our evaluation was that 2,682 or 65.5% of the
pairs in test set were correct.

4.5 Dataset Extraction

To evaluate the dataset extraction module (Section 3.4), we created a test set that is a random
sample of 160 repositories out of the collected dataset of 7,998. We performed a manual
evaluation because we lacked ground truth for datasets associated with models. One of the
researchers manually examined each of the repositories in the random sample to create a
ground truth dataset of available datasets for each repository. The researcher had access to
the same documentation artifacts that the dataset extractor had access to: the README file
in most cases or the docstring if the model is a single Python file. Using that documentation,
the researcher had to determine which datasets the model used to either train or evaluate.
For example, a given image classification model may use “ImageNet” to train the model
and evaluate the model on “CIFAR-10.” For each repository in the sample, we then com-
pare the names of extracted datasets to the manually created ground truth set. The precision
of our evaluation was 76.9%, the recall was 76.0%, and the F1 score was 75.8%. In fur-
ther inspection of the evaluation sample, 86 or 53.8% of the repositories had no extracted
datasets with the F1 score of this subsample at 80.2%. In the 74 (46.2%) repositories with
extracted datasets, the F1 score was 70.5%. We report F1 score and not accuracy for this
evaluation because both incorrectly identifying datasets and incorrectly including datasets
are sources of error for this extractor.

4.6 Framework Extraction

To evaluate the framework extraction module (Section 3.5), we use 284 models from model
zoos as ground truth as most zoos are associated with a particular deep learning framework
as seen in Table 1. The precision of the module can be assessed by whether the Al frame-
works extracted from models match the framework the zoo is associated with. For example,
a model from the TensorFlow zoo should have the TensorFlow framework in its extracted
metadata. A total of 252 models are from these framework-associated model zoos which
are summarized in Table 3 along with all of the extracted frameworks. For all cases we see
that the expected framework is extracted for a precision of 100%. We use precision and
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Table 3 Frameworks extracted

from model zoos models Model zoo Count Framework(s)
Caffe2 87 Caffe2
Keras 42 Keras, TensorFlow, Theano, scikit-learn
MXNet 38 MXNet, Keras, Caffe, PyTorch, scikit-learn
PyTorch 12 PyTorch
TensorFlow 73 TensorFlow, Keras, NLTK, scikit-learn

not recall because our ground truth dataset for this evaluation only identifies one particular
framework that a model should have rather than the entire set of frameworks.

4.7 Automated Domain Inference

To train the domain inference module (Section 3.6), we created a training dataset from a
subset of the SotA dataset along with non-model software repositories. Ground truth labels
are from the Papers With Code website as described ealier. From the 3,215 repositories
labeled with domain information, we reserved 30% or 978 for a test set. Each of the repos-
itories in the test set was labeled with a domain consisting of: Computer Vision, Natural
Language Processing (NLP), Other, or Unknown (not a model). Repositories labeled with
Computer Vision or NLP domains are also labeled with an associated task. Repositories
labeled with Other domain are also labeled with a more specific domain such as Medical,
Playing Games, etc. We used stratified sampling to create the test set to ensure that each
domain and task are represented to mitigate biases. For the evaluation, we determine the
accuracy for both the domain stage and the task/other domain stage of the domain infer-
ence ensemble. As Unknown domain models do not go to the task/other domain stage, they
are not included in the accuracy calculation for that stage. The domain stage accuracy for
the test set is 0.859 and the task stage accuracy for the test set is 0.723. Table 4 breaks
down the results by domains. The domain stage performs better than the task/other domain
stage. Similarly, Computer Vision performs better than NLP which performs better than
Other domains, perhaps due to having more examples in the training set. This evaluation is
a standard classification task so we report accuracy.

4.8 Machine Learning/Deep Learning (ML-DL) Inference

We trained the classification model in our ML-DL inference module (Section 3.7) with the
Watson NLU service and held out 20% of the dataset as a test set or 1,000 repositories out
of 5,000 total. Half of the repositories in the test set are ML models and half are DL. This
service also provides an API endpoint to analyze new samples, so we use it to classify our

Table4 Domain inference

evaluation result summary with Dataset Size Domain accuracy Task accuracy
breakdown by domain
Test Set 978 0.859 0.723
Computer Vision 502 0.940 0.785
NLP 252 0.802 0.583
Other 134 0.597 0.597
Unknown 90 0.956
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test set. Evaluating this test set resulted in an accuracy of 0.82 and an F1 score of 0.8199.
This evaluation is a standard classification task so we report accuracy.

4.9 Readiness Metrics

To evaluate our inferred readiness metrics of trainability and deployability (Section 3.8), we
manually evaluated the feasibility of training and deploying a random sample of 80 reposi-
tories of the collected dataset of 7,998 and compared against the reported readiness metrics.
We first manually created a random sample of 80 repositories consisting of four partitions of
20 repositories each: low trainability | high trainability | 1ow deployability - and high deployability .
We consider a repository “low” trainability if the metric is 35 or less and “high” if the metric
is 50 or higher. We consider a repository “low” deployability if the metric is 50 or less and
“high” if the metric is 70 or higher. These thresholds were chosen by examining the distri-
bution of readiness metrics for repositories in our sample. We chose thresholds that would
roughly divide the repositories in half. Each repository must be primarily Python with a
README file (if it exists) in English. For each of the repositories in the set, a researcher
manually created a ground truth dataset by examining the repository and using domain
knowledge to determine the feasibility of training and deployment. The researcher did not
have access to the readiness score of the repository. Training here is defined as a reposi-
tory that has enough information to run a training job which includes feasibly acquiring the
dataset used, formatting and cleaning the dataset, generating features, and running the train-
ing scripts. Deployability here is defined as a repository that has enough information to run
prediction or inference on a pre-trained model (or provide a method for training the model).
Specifically, the repository must provide for a method of performing inference on unseen
data rather than simply evaluating the trained model on a test set. In both cases, software
dependencies (with versions) also must be stated explicitly, usually in the README file
or in requirements.ixt as is common in Python projects. Partial dependencies that cover the
primary dependencies (such as TensorFlow = 1.13) were allowed. For the ground truth set,
each repository is marked as trainable or not and deployable or not.

Table 5 reports the percentage of trainable repositories for the trainability set and the
deployable respositories for the deployability set. For both trainability and deployability, the
“high” case had higher percentages of reusability than the “low” cases. For trainability,
80% of the “high” set were feasibly trainable compared to 30% in the “low” set, suggesting
that the metric mostly correctly indicates reusability in terms of training. The deployability
metric performs less well as only 45% of the “high” set were feasibly deployable.

4.10 System Evaluation

To evaluate the entire extraction system holistically, we manually evaluated extracted meta-
data for a random sample of 80 repositories of the collected dataset of 7,998. We first

Table5 Summary of readiness

metric evaluation Readiness Level Percentage
Trainability Low 30%
High 80%
Deployability Low 25%
High 45%
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manually created a ground truth dataset from this sample. The researcher who created the
ground truth dataset had access to the same sources as the automated extraction: GitHub
repository, README files, and Python code. Using domain knowledge, the researcher man-
ually annotated the extracted model metadata sample by comparing to this ground truth
dataset, listing two cases of errors: properties that are present but incorrect and properties
that are missing. For example, the automated extractor may extract three properties from a
model: name is “MNIST model”, dataset is “MNIST”, and the model has three authors: A,
B, and C. The ground truth dataset may then note that the authors list is actually A, B, and
D and that the README file also has references to two papers. In this case, there are two
errors: 1 property (authors list) is incorrect and 1 property (references) is missing. Our eval-
uation weighs each property equally, regardless of whether the property is a single value or
list. This is done to prevent biasing in favor of properties with multiple values. As the pre-
vious example demonstrates, list properties are counted as one property as it gives a more
conservative indication of the performance of the extraction; any error in the list