
Extending a General-Purpose Streaming System for XML

Mark Mendell, Howard Nasgaard
IBM Canada

{mendell,nasgaard}@ca.ibm.com

Eric Bouillet
IBM Ireland

bouillet@ie.ibm.com

Martin Hirzel, Buğra Gedik
IBM USA

{hirzel,bgedik}@us.ibm.com

ABSTRACT
General-purpose streaming systems support diverse appli-
cation domains with powerful and user-defined stream op-
erators. Most general-purpose streaming systems have their
own, non-XML, internal data representation. However, strea-
ming input is often either a sequence of small XML docu-
ments, or a scan of a huge document. Prior work on XML
streaming focuses on filtering, not transforming, XML, and
does not describe how to integrate with a general-purpose
streaming system. This paper describes how to integrate an
XML transformer with a streaming system by designing a
specification syntax that is both consistent with the exist-
ing system and familiar to XML users. After type-checking
the specification, we compile it to an efficient automaton
driven by SAX events. Our approach extends the underly-
ing streaming system with XML support without changing
its core architecture, and the same technique could be used
for other extensions beyond XML.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability—Data map-
ping ; H.2.3 [Database Management]: Languages—Data
manipulation languages

General Terms
Languages

1. INTRODUCTION
Stream processing systems [1, 2, 3, 8] deliver high-through-

put and low-latency processing to applications in diverse do-
mains such as telecommunications, transportation, finance,
and health-care. Since many applications require domain-
specific processing, general streaming systems support pow-
erful user-defined operators. At the same time, many stan-
dardized data exchange formats are now based on XML, and
streaming XML enables two important use cases: process-
ing a stream of many small XML documents, or processing a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

XMLParse
operator
instance

Source
operator
instance

Stream
operator

graph

Tuples Chunks XML
document(s)

In streaming
system

In external
environment

At compile-time
At runtime

param,
output

Automaton

XMLParse
operator

invocation

XMLParse
operator

generator

Figure 1: Overview of our approach.

huge XML document in a single scan. Our goal is to extend
a general-purpose streaming system with XML support, to
get the best of both worlds in terms of efficiency, generality,
and ease-of-use.

The body of work on streaming XML contains several
optimizations [4, 9, 10, 17], but is not general enough for
our setting, because most of it focuses on filtering XML,
as opposed to transforming it to a format amenable to a
general-purpose streaming system. Work on extending gen-
eral databases for XML processing focuses on a relational
representation with index lookups, but only supports batch
processing, as opposed to streaming XML [5, 7].

Our approach is to add a new operator, XMLParse, to
a general-purpose streaming system. We use InfoSphere
Streams1 as the underlying system, which comes with its
own language SPL2 [13]. In SPL, streaming operators are
implemented by user-defined code generators. Figure 1 illus-
trates our approach. In the program text, each invocation
of the XMLParse operator declaratively specifies a transfor-
mation from XML documents to SPL tuples. By careful
operator design, this specification has a look-and-feel that
is familiar to both XML and SPL users. At compile-time,
the operator invocation is translated into an automaton. At
runtime, the automaton is encapsulated in an operator in-
stance, which reacts to SAX parser events [6] to do efficient
data extraction and transformation. Our approach sepa-
rates the data Source from XMLParse as separate operator
instances, yielding two benefits: one is generality (we uni-
formly support many kinds of sources, such as reading from
files, databases, sockets, etc.), and the other is the ability to
handle either many small XML documents or a single giant
XML document. Furthermore, XMLParse is separated from
the downstream operator graph, which consists of instances
of library operators or user-defined operators, supporting di-
verse application domains. XMLParse is available on Streams

1http://www.ibm.com/software/data/infosphere/streams/
2SPL is short for Streams Processing Language.

1

Exchange, a website for sharing InfoSphere Streams code3.
We argue that the design from Figure 1 addresses our re-

quirements. First, it is efficient, because we translate the op-
erator invocation into an automaton at compile-time. Sec-
ond, it is general, because both the source operators and
the downstream operators use an industry-strength, general-
purpose streaming system. And third, it is easy to use, be-
cause we integrate existing syntax from both XML-languages
and SPL to obtain a declarative specification. We increase
ease-of-use further by also providing intuitive defaults for
the data transformation, so that users only need to specify
those parts of a transformation explicitly that differ from
the common-case defaults.

This paper makes the following primary contributions:

• A declarative extension of a general-purpose streaming
system for XML processing.

• An automaton-based approach for efficient transformation
(not just filtering) of XML into native formats.

Our approach combines a declarative operator invocation
with a user-defined code generator to obtain an efficient op-
erator instance. The bigger picture of this work is that it
can serve as a blue-print for extending streaming systems
not just with XML support, but also with other additions.

2. BACKGROUND ON SPL
SPL [13, 14] is the programming language for the general-

purpose stream processing system InfoSphere Streams. An
InfoSphere Streams application is a stream graph, consisting
of operator instances (vertices) and streams (directed edges).
Streams transport conceptually infinite sequences of discrete
data items, which we call tuples. Each operator instance is
push-driven: each time a tuple arrives on an input stream to
an operator instance, it triggers a firing. When an operator
fires, it consumes the triggering tuple from its input stream,
executes some local code, and produces zero or more output
tuples on output streams [19]. This data-flow driven model
of computation makes it easy to exploit task and pipeline
parallelism, and indeed, InfoSphere Streams usually runs on
clusters of several commodity workstations.

Kind Example type Example literal
Bool boolean true
Number int32 42
String rstring "answer"
Tuple tuple<int32 q, rstring a> {q=42, a="?"}
List list<float64> [1.618, 3.141]
Map map<rstring, int32> {"phi": 2, "pi": 3}

Figure 2: A few SPL types.

SPL is strongly typed and statically typed. Figure 2 lists
some representative types in SPL. There are several primi-
tive types (boolean, int32, rstring, etc.), as well as several
composite types (tuple, list, map, etc.). SPL provides a
literal syntax for all types, including composite types: list
literals are written in [. . .], tuple literals are written in
{. . .} with field4 assignments of the form ID = expr , and
map literals are written in {. . .} with mappings of the form

3http://www.ibm.com/developerworks/wikis/display/streams
4The SPL specification refers to fields as attributes, but here
we call them fields to avoid confusion with XML attributes.

1 stream<rstring sym, float64 price> AvgPrice
2 = Aggregate(Quote) {
3 window Quote : sliding, count(8), partitioned;
4 param partitionBy : sym;
5 output AvgPrice : sym = Last(sym),
6 price = Average(price);
7 }

(a) Aggregate operator invocation (SPL).

8 void process(Tuple& tIn, int port) {
9 Partition p = window.getPartition(<%=getKey()%>);

10 Tuple tOld = p.pop_front();
11 <% genStateRemovalCode(tOld) %>
12 p.push_back(tIn);
13 <% genStateAdditionCode(tIn) %>
14 Tuple tOut;
15 <% genOutputAssignmentCode(tOut) %>
16 submit(tOut, 0);
17 }

(b) Simplified Aggregate operator definition (code generator).

18 void process(Tuple& tIn, int port) {
19 Partition p = window.getPartition(tIn.sym);
20 Tuple tOld = p.pop_front();
21 total[tIn.sym]-=tOld.total; count[tIn.sym]--;
22 p.push_back(tIn);
23 total[tIn.sym]+=tIn.total; count[tIn.sym]++;
24 Tuple tOut;
25 tOut.sym=tIn.sym;
26 tOut.price=total[tIn.sym]/count[tIn.sym];
27 submit(tOut, 0);
28 }

(c) Simplified Aggregate operator instance (generated C++).

Figure 3: Operator code generation.

expr: expr . The SPL type system is fully nested, mean-
ing that composite types can contain other composite types.
This paper describes how to transform data from XML to
SPL types. We will use the nested composite types and
literals to specify these transformations.

The central concept of SPL is the operator invocation.
An operator invocation specifies topology (input and out-
put streams) and configures an operator (by providing some
or all of the window, param, output, and other clauses). Fig-
ure 3(a) shows an example. The topology has one output
stream AvgPrice and one input stream Quote. Line 1 shows
the type for tuples on the output stream; Line 3 configures
the window for the input stream; Line 4 provides a param-
eter specifying a partitioning key; and Lines 5-6 configure
output assignments for the fields of the output tuple. Note
that this operator invocation is declarative: it specifies only
what the operator should do, but not how it is implemented.
The output assignments call the following generic operator-
specific intrinsic functions:

<any T> T Last(T v) //last value in window
<numeric T> T Average(T v) //average over window

These intrinsics are implemented by code generation.
An operator definition for SPL is a code generator, which

generates different code depending on the configuration in
the operator invocation. Figure 3(b) shows a simplified def-
inition for the Aggregate operator. It consists of C++ code
with blanks, which are fragments of scripting code in <%. . .%>
escapes. When the code generator runs, it copies C++ code
unchanged, whereas for blanks, it runs the script fragments
and replaces them by their output. Figure 3(c) shows the

2

1 stream<rstring d, list<rstring> e> T = XMLParse(X) {
2 param trigger : "/a/b";
3 output T : d = XPath("c/d/text()"),
4 e = XPathList("c/e/text()");
5 }

(a) XMLParse operator invocation (SPL code).

6 <a>
7 <c><d>X</d> <e>11</e> <e>12</e></c>
8 <c><d>Y</d> </c>
9

10 <a>
11 <c><d>Z</d> <e>31</e> </c>
12

(b) Sample input data (XML documents).

13 { d = "X", e = ["11", "12"] }
14 { d = "Y", e = [] }
15 { d = "Z", e = ["31"] }

(c) Sample output data (SPL tuples).

Figure 4: Simple operator invocation.

generated C++ code, where blanks have been filled in based
on the concrete operator invocation. This example shows
only a highly simplified version of the Aggregate operator in
the SPL library. The full implementation generates different
code for different kinds of windows, provides more operator-
specific intrinsics, etc. But the important thing is that this
code generation framework is available to developers of all
operators, including in the standard library, in third-party
libraries, or in special-purpose applications. Invocations for
all operators in SPL, including XMLParse and Aggregate,
use the syntax illustrated in Figure 3(a) to specify topology
and configure the operator.

3. OPERATOR INVOCATIONS
This section describes the API of the XMLParse operator.

3.1 Extracting Flat Tuples
Figure 4(a) shows SPL code that invokes the XMLParse

operator. Line 1 indicates that the input stream with the
raw data is X, and the output stream T carries SPL tuples
with two fields rstring d and list<rstring> e. Line 2
specifies the trigger parameter, which is an absolute XPath
indicating that every /a/b subtree of the XML input should
trigger one SPL tuple as output. This trigger means that in
the example input data in Figure 4(b), Lines 7, 8, and 11
each trigger one tuple. Going back to the SPL code, Lines
3 and 4 specify how the fields d and e of the output tuples
are assigned. The output assignments use operator-specific
intrinsic functions with the following signatures:

rstring XPath(rstring subTrig)
list<rstring> XPathList(rstring subTrig)

The sub-triggers are relative XPaths, which use the main
trigger as the context node. Function XPath() extracts a
primitive item, and XPathList() extracts a list of items.
Figure 4(c) shows the resulting output tuples.

We defer the description of how the XMLParse operator
works internally to Section 4. For now, we focus on what
interface it provides to the user. From the example, we
can make several observations. First, the code does not re-
quire any extensions to SPL; it only uses language features

familiar from other SPL operators such as Aggregate. Sec-
ond, the code is strongly typed and statically typed. Third,
the code uses familiar syntax for XPath expressions in SPL
strings. And fourth, the semantics are intuitive, with ab-
solute paths for triggers that extract tuples, and relative
paths for sub-triggers that extract fields. There are a few
additional features, which we will discuss below. But first,
we clarify what subset of XPath is supported.

mainTrigger ::= absolutePath
| mainTrigger ‘|’ mainTrigger

subTrigger ::= suffix
| prefix ‘/’ suffix
| subTrigger ‘|’ subTrigger

prefix ::= . | relativePath
suffix ::= ‘@’ ID | ‘text()’
absolutePath ::= ‘/’ relativePath
relativePath ::= ID | relativePath ‘/’ ID

Figure 5: Grammar for the supported XPath subset.

Figure 5 illustrates the syntax allowed for paths in the
main trigger and its sub-triggers. Based on the expected
use cases, we only support the child axis ‘/’, since doing
so simplifies the semantics exposed to the user, and also
leads to a more efficient automaton after code generation.
Possible future extensions could adapt prior work on XML
filtering, such as filter predicates, which would further boost
performance by avoiding the generation of unneeded data. A
sub-trigger can extract either text or an XML attribute. The
or-operator ‘|’ separates alternative triggers. It specifies
that either trigger can match, or when used with XPathList,
that subtrees from both triggers contribute to the SPL list.

3.2 Extracting Nested Tuples
An important advanced use case of the XMLParse operator

is to transform structured XML documents into nested SPL
tuples. This is accomplished by overloading the operator-
specific intrinsic functions with generic binary variants:

<tuple T> T XPath(rstring subTrig, T spec)
<tuple T> list<T> XPathList(rstring subTrig, T spec)

Besides a sub-trigger, these functions use a tuple literal to
specify how fields of the sub-tuple are to be extracted. Fig-
ure 6 illustrates such an example, where field c of the out-
put tuple is itself a tuple with nested fields d and e. Lines
6-7 show how the nested fields are assigned with another
relative sub-trigger. The absolute trigger is the concatena-
tion of the main trigger with the sub-triggers, for example,
"/a" / "c" / "d/text()".

As mentioned before, all this is strongly typed. That may
seem surprising, considering that the output clause holds
a specification of what to extract, but the compiler checks
that it conforms to the type of the actual data to be ex-
tracted. The reason why this works lies deep in SPL’s type
system. First, SPL supports tuple literals, and infers their
type from their fields. We arrange for the tuple literal in
the specification to have the same type as the output tu-
ple. Second, SPL uses structural equivalence, meaning two
tuple types are the same if they have the same fields. And
third, the generic functions infer their result type from the
specification in the second argument. Thanks to the strong
static typing, the compiler yields informative error messages
for mistakes in specifications of XML data transformation.

3

1 stream<rstring b, tuple<int32 d, int32 e> c> T
2 = XMLParse(X) {
3 param trigger : "/a";
4 output T :
5 b = XPath("@b"),
6 c = XPath("c", {d = (int32)XPath("d/text()"),
7 e = (int32)XPath("e/text()")});
8 }

(a) XMLParse operator invocation (SPL code).

9 <c><d>11</d> <e>12</e></c>
10 <c><d>21</d> <e>22</e></c>
11 <c><d>31</d> <e>32</e></c>

(b) Sample input data (XML documents).

12 { b = "X", c = { d = 11, e = 12 } }
13 { b = "Y", c = { d = 21, e = 22 } }
14 { b = "Z", c = { d = 31, e = 32 } }

(c) Sample output data (SPL tuples).

Figure 6: Operator invocation with nested tuples.

3.3 Implicit Conversions
So far, we have only seen invocations of the XMLParse

operator where the user explicitly specified how to convert
from XML documents to SPL tuples. But in some cases,
users can keep their code more concise by doing certain con-
versions implicitly, as long as the compiler can infer the con-
versions from the shape of the output tuple. To this end, we
define a default representation for an XML element:

tuple< map<rstring, rstring> _attrs,
rstring _text /*,
additional fields for nested elements */ >

The _attrs field represents all the XML attributes as a map
from names to values, and the _text field represents the
XML element’s text. Any additional SPL fields are mapped
one-to-one to nested XML elements: for example, if the SPL
output tuple has a field tuple<rstring _text> d, it cap-
tures the text of a nested input XML element <d>.

1 type T_a = tuple<map<rstring, rstring> _attrs,
2 rstring _text,
3 rstring d,
4 list<rstring> e>;

(a) T_a type definition (SPL code).

5 stream<T_a> T = XMLParse(X) {
6 param trigger : "/a";
7 flatten : elements;
8 }

(b) XMLParse operator invocation (SPL code).

9
10 va1
11 <d>vd1</d>
12 <e>ve1a</e><e>ve1b</e>

(c) Sample input data (XML document).

13 { _attrs = { "b": "vb1", "c": "vc1" },
14 _text = "va1",
15 d = "vd1",
16 e = ["ve1a", "ve1b"] }

(d) Sample output data (SPL tuple).

Figure 7: Operator invocation with inferred output.

Figure 7 illustrates the default conversion scheme in ac-
tion. The main point to note here is that the type definition
in Figure 7(a) contains all the necessary information so that
the operator invocation in Figure 7(b) does not need any
explicit output assignments. The code generator simply in-
fers implicit output assignments. In general, the user can
also mix and match explicit and implicit specifications: any
missing explicit specification gets automatically filled in by
an implicit specification, assuming the output tuple type has
the matching fields. Either way, the specification is declara-
tive, uses familiar XPath syntax, and supports static typing.

4. DATA TRANSFORMATION AUTOMATON
This section describes the code generated for transforming

XML documents to SPL tuples. The input to the XMLParse

code-generator is an operator invocation, which declaratively
specifies the data transformation. The output of the code-
generator is an operator instance, which implements an au-
tomaton. Whenever the SPL compiler encounters an opera-
tor invocation, it runs the code generator corresponding to
that operator. At launch time, InfoSphere Streams deploys
the generated operator instances on a cluster of commodity
workstations.

A SAX (Simple API for XML) parser transforms an XML
document into a sequence of event handler calls [6]. There
are three kinds of events:

• <x>: A start-tag event has a payload with the element
name x and the XML attributes, if any. The correspond-
ing event handler in XMLParse updates the state, initial-
izes data, and records attributes if needed.

• text(): A character-data event has a payload with char-
acters. The corresponding XMLParse event handler records
the text if needed.

• </x>: An end-tag event has a payload with the element
name x. The corresponding event handler in XMLParse

updates the state, and either assigns or submits buffered
data, depending on whether the event corresponds to a
main-trigger or a sub-trigger.

/

/a/b/c/d

/a

/a/b

/a/b/c /a/b/c/e

<a>

{t.clear()}

<c>
<d>

{s=""}

</d>
{t.set_d(s)}

</e>
{t.get_e().push_back(s)}

</c>

{submit(t)}

text()
{s += ...}

text()
{s += ...}

<e>
{s=""}

Figure 8: Automaton for invocation from Figure 4.

Figure 8 shows an automaton generated for an XMLParse

operator invocation. Ovals are states, labeled with an ab-
solute XPath for the subtree they correspond to. Edges are
state transitions, labeled with a guard and an optional ac-
tion. The guard is a SAX event; for example, guard

checks whether the event is an end tag for element b. The
action is a piece of code; for example, action {submit(t)}

submits tuple t. Because Figure 4 Line 2 specifies the
main trigger as "/a/b", Figure 8 submits a tuple when it
is in state /a/b and sees closing tag . Because Fig-
ure 4 Line 3 assigns d = XPath("c/d/text()"), Figure 8

4

records the text in state /a/b/c/d, and stores it in field t.d

at closing tag </d>. And because Figure 4 Line 4 assigns
e = XPathList("c/e/text()"), Figure 8 records the text
in state /a/b/c/e, and appends it to field t.e at </e>.

/a/b

<unmatched tag>
{depth = 1}

<*>
{depth++}

/a/b//*
</*>, depth == 1 </*>, depth > 1

{depth−−}

Figure 9: State for skipping unmatched subtree.

The automaton in Figure 8 is simplified: it only shows
states and transitions that are relevant for the data trans-
formation, and omits states and transitions that “skip” un-
matched XML subtrees. Figure 9 shows such an omitted
state /a/b//*. The transition to this state is guarded by
unmatched tags, implemented by an else clause in the gen-
erated code. The state uses an integer depth, which it in-
crements on start-tags and decrements on end-tags. The
transition back from the skip-state to the main automaton
is guarded by </*> for any closing tag and depth==1 to check
that the unmatched subtree is finished.

In general, whereas the main portion of a XMLParse au-
tomaton is a DFA (deterministic finite automaton), the por-
tion for skipping unmatched subtrees is not strictly speaking
a DFA (because it uses counting and predicates on guards),
but still deterministic (because guards are unique and com-
plete). Furthermore, while our automata bear some resem-
blance to prior work on XML filtering [4, 10, 17], our au-
tomata go beyond filtering and also do transformation.

So far, we have seen an example of the generated code,
but we have not yet seen the code-generator algorithm. It
performs the following steps:

• Make implicit conversions explicit. This step implements
the policies from Section 3.3 that infer how to transform
XML entities to SPL fields when the user has omitted an
explicit specification.

• Separate alternative triggers. This step implements or-
operators ‘|’ by expanding them out to all combinations.

• Make sub-triggers absolute. As mentioned in Sections 3.1
and 3.2, a sub-trigger is a relative XPath, whose context
node comes from the main trigger or an enclosing sub-
trigger. This step concatenates these paths as appropriate
to make them all absolute.

• Combine all triggers to a single automaton. This step
loops over all trigger paths, and has an inner loop over
the levels in each path. At each level, it either reuses
an existing automaton state and transition guard or adds
new ones if they do not yet exist, and then adds actions.

• Add skipping states and transitions for unmatched sub-
trees, as illustrated in Figure 9.

• Generate code for the event handlers. This step fills in
the three handlers for <x>, text(), and </x> SAX events.
The generated code for tag-handlers consists of an outer
switch statement with one case for each state, and an
inner if statement with one else-if clause for each guard.
The clauses contain the code for state transitions, data
recording, and tuple submission.

Figure 10 shows another example of a generated automaton.
This automaton transforms nested tuples, not just flat tu-
ples. It corresponds to the operator invocation in Figure 6,

/a/c/d

/

/a

/a/c /a/c/e

<a>
{t.clear(); if(...) t_a.set_b(...)}

<c>
{t_c.clear()}

</d>
{t_c.set_d(toInt(s))}

</e>
{t_c.set_e(toInt(s))}

</c>
{t_a.set_c(t_c)}

{submit(t_a)}

text()
{s += ...}

text()
{s += ...}

<d>
{s=""}

<e>
{s=""}

Figure 10: Automaton for invocation from Figure 6.

which has multiple levels of nested sub-triggers. The actions
buffer the main tuple in t_a, and the nested tuple in t_c.
The transition from state /a/c at guard </c> simply stores
t_c in field t_a.c. Besides nested tuples, this automaton
also illustrates XML attributes. The transition from state
/ at guard <a> checks whether the opening tag contains at-
tribute @b, and if yes, stores it in a field t_a.b.

This section described how to generate efficient automata
for XMLParse invocations. The XMLParse operator is an im-
portant extension for our operator library, but it relies only
on APIs that are available to all operator developers. It thus
demonstrates the versatility of our general-purpose stream-
ing language SPL and its compiler.

5. RESULTS
We evaluate the use cases of (1) continuous processing of

many small documents and (2) single-scan processing of one
huge document. The case of many small documents is rep-
resented by SIRI (Service Interface for Real-Time Informa-
tion5), a protocol for sending public transport vehicle GPS
positions and arrival times for passenger information dis-
play. We have built a SIRI-based application for the city of
Dublin, which has been running non-stop in production for
several months. Here, we just measure the performance of
the ingest through XMLParse. The case of a huge document
is represented by XMark [18]. The XMark document de-
scribes auctions with people, items, bids, etc. We pick three
representative XMark queries that perform no joins and are
thus a good fit for streaming. The original intent of XMark
is evaluation of mass-storage systems, which typically sepa-
rate loading from processing; on the other hand, we focus on
transformation, hence our measurements include load time.

81.0

34.0 34.8 37.8

52.5

1.0 1.0 1.0 1.0 1.0
0

10
20
30
40
50
60
70
80
90

SIRI XMark
Q2

XMark
Q3

XMark
Q16

Geom.
mean

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Automaton
Baseline

Figure 11: Throughput relative to baseline.

Figure 11 shows the performance of the automaton (the
result of code generation in XMLParse), compared to the per-
formance of a baseline that uses XPath function calls. For
the baseline, we preprocessed the input, so each line con-
tains a document for exactly one main trigger. At runtime,

5http://www.kizoom.com/standards/siri/

5

the baseline parses each line into a DOM tree, and then uses
XQilla functions to evaluate the XPaths for the sub-triggers.
We conducted all experiments with fused operators. For our
experiments, we streamed the data from disk. Even though
the baseline has less work to do, since its input is already
preprocessed, the automaton performs between 34 and 81
times better, since it uses a SAX parser and processes events
in a single scan, whereas the baseline constructs DOM trees
and traverses them.

0.0
0.2
0.4
0.6
0.8
1.0
1.2

64

25
6

1,0
24

4,0
96

16
,38

4

65
,53

6

26
2,1

44

1,0
48

,57
6

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Chunk size in Bytes

SIRI
XMark Q2
XMark Q3
XMark Q16

Figure 12: Effect of chunk size on throughput.

As shown in Figure 1, the Source operator instance sends
the raw input one chunk at a time to the XMLParse operator
instance. Figure 12 shows the effect of the chunk size on
throughput. As chunk size grows, throughput improves, be-
cause operator firing costs and SAX parser boundary cases
are amortized over more data. The point of diminishing re-
turns is around 16KB, at which point larger chunks have lit-
tle impact on throughput. We therefore used 16KB chunks
for the numbers in Figure 11.

6. RELATED WORK
Our work extends a general-purpose streaming language

with a declarative syntax for XML processing, and is hence
related to other efforts on extending languages for XML.
XDuce is a small general-purpose language designed for XML
processing that comes with type system innovations [15].
XJ extends Java with standard-conformant support for both
XML schema and XPath [11]. And LINQ extends C# with
features that have a similar feel as XPath and XQuery [16].
Unlike our paper, the related work does not focus on stream-
ing languages. Furthermore, our approach gets the benefits
of static typing and efficient code generation without requir-
ing changes to our core language SPL.

Our work transforms streaming XML into streams of SPL
tuples, and is hence related to other efforts on streaming
XML processing. NiagaraCQ does many-query filtering, but
instead of streams of XML, it focuses on streams of updates
to XML files [9]. The χαoς algorithm does filtering for any
axes, including backward axes [4]. XSQ uses an automaton
to perform not just filtering, but also simple aggregation, but
not the kind of full-fledged transformation that our work
supports [17]. The XPush machine supports many-query
filtering with predicates [10]. Similarly to the related work,
we translate XPath expressions to automata for streaming
XML processing. But our work focuses on transformation,
not just filtering, to make it usable as an extension to a
general-purpose streaming system. MDQ transforms XML
for data integration, but works on trees, instead of driving
an automaton via SAX events [12].

7. CONCLUSIONS
This paper presents the XMLParse operator, which bridges

the gap from XML inputs to general-purpose streaming sys-
tems. The operator is easy to use, because its syntax is fa-
miliar, declarative, and strongly typed. The operator is fast,
because it uses code generation to synthesize an automaton.
Since the implementation does not require changes to the
core architecture of the streaming system, it can serve as a
sample for other extensions.

8. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The
design of the Borealis stream processing engine. In Conference
on Innovative Data Systems Research (CIDR), 2005.

[2] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King,
P. Selo, Y. Park, and C. Venkatramani. SPC: A distributed,
scalable platform for data mining. In Workshop on Data
Mining Standards, Services and Platforms (DM-SSP), 2006.

[3] A. Arasu, S. Babu, and J. Widom. The CQL continuous query
language: Semantic foundations and query execution. Journal
on Very Large Data Bases (VLDB J.), 15(2), 2006.

[4] C. Barton, P. Charles, D. Goyal, M. Raghavachari,
M. Fontoura, and V. Josifovski. Streaming XPath processing
with forward and backward axes. In International Conference
on Data Engineering (ICDE), 2003.

[5] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger,
and J. Teubner. MonetDB/XQuery: A fast XQuery processor
powered by a relational engine. In Demo at International
Conference on Management of Data (SIGMOD-Demo), 2006.

[6] D. Brownell. SAX2. O’Reilly, 2002.

[7] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:
Optimal XML pattern matching. In International Conference
on Management of Data (SIGMOD), 2002.

[8] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden,
V. Raman, F. Reiss, and M. A. Shah. TelegraphCQ: Continuous
dataflow processing for an uncertain world. In Conference on
Innovative Data Systems Research (CIDR), 2003.

[9] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A
scalable continuous query system for internet databases. In
International Conference on Management of Data
(SIGMOD), 2000.

[10] A. K. Gupta and D. Suciu. Stream processing of XPath queries
with predicates. In International Conference on Management
of Data (SIGMOD), 2003.

[11] M. Harren, M. Raghavachari, O. Shmueli, M. G. Burke,
R. Bordawekar, I. Pechtchanski, and V. Sarkar. XJ: Facilitating
XML processing in Java. In International World Wide Web
Conferences (WWW), 2005.

[12] M. Hentschel, L. Haas, and R. Miller. Just-in-time data
integration in action. In Demo at Very Large Data Bases
(VLDB-Demo), 2010.

[13] M. Hirzel, H. Andrade, B. Gedik, V. Kumar, G. Losa,
M. Mendell, H. Nasgaard, R. Soulé, and K.-L. Wu. SPL
Streams Processing Language Specification. Technical Report
RC24897, IBM Research, 2009.

[14] M. Hirzel and B. Gedik. Streams that compose using macros
that oblige. In Workshop on Partial Evaluation and Program
Manipulation (PEPM), 2012.

[15] H. Hosoya and B. C. Pierce. XDuce: A typed XML processing
language. In International World Wide Web Conferences
(WWW), 2000.

[16] E. Meijer, B. Beckman, and G. M. Bierman. LINQ: Reconciling
objects, relations, and XML in the .NET framework. In
Industrial Sessions at the International Conference on
Management of Data (SIGMOD), 2006.

[17] F. Peng and S. S. Chawathe. XPath queries on streaming data.
In International Conference on Management of Data
(SIGMOD), 2003.

[18] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu,
and R. Busse. XMark: A benchmark for XML data
management. In Very Large Data Bases (VLDB), 2002.

[19] R. Soulé, M. Hirzel, R. Grimm, B. Gedik, H. Andrade,
V. Kumar, and K.-L. Wu. A universal calculus for stream
processing languages. In European Symposium on
Programming (ESOP), 2010.

6

