
Stream Processing with a Spreadsheet

Mandana Vaziri, Olivier Tardieu, Rodric Rabbah,
Philippe Suter, and Martin Hirzel

IBM T.J. Watson Research Center, Yorktown Height, NY, USA
{mvaziri,tardieu,rabbah,psuter,hirzel}@us.ibm.com

Abstract. Continuous data streams are ubiquitous and represent such
a high volume of data that they cannot be stored to disk, yet it is of-
ten crucial for them to be analyzed in real-time. Stream processing is
a programming paradigm that processes these immediately, and enables
continuous analytics. Our objective is to make it easier for analysts, with
little programming experience, to develop continuous analytics applica-
tions directly. We propose enhancing a spreadsheet, a pervasive tool, to
obtain a programming platform for stream processing. We present the
design and implementation of an enhanced spreadsheet that enables vi-
sualizing live streams, live programming to compute new streams, and
exporting computations to be run on a server where they can be shared
with other users, and persisted beyond the life of the spreadsheet. We
formalize our core language, and present case studies that cover a range
of stream processing applications.

1 Introduction

Continuous data streams are ubiquitous: they arise in telecommunications, fi-
nance, health care, and transportation among other domains. They represent
such a high volume of data that they cannot be stored to disk in raw form,
and it is often crucial for the data to be analyzed right away. Stream processing
is a programming paradigm that processes sequences of data immediately, and
enables what is called continuous analytics.

In organizations that require stream processing, domain experts may have
limited programming experience to directly implement their desired solutions.
As a result, they rely on developers for the actual implementation. Our objec-
tive is to make it easier for these end-users to directly prototype and perform
computations on live data. We believe this is an important facilitator for rapid
turnaround and lower development costs that may otherwise hinder streaming
data analysis.

This paper proposes the use of spreadsheets as a stream programming plat-
form. The choice of spreadsheets stems from the fact that they are a pervasive
tool used in many different domains, and are familiar to non-programmers1.

1 There are 9 million Java developers
(http://oracle.com.edgesuite.net/timeline/java/),
and an order of magnitude more Microsoft Excel users.
(http://blog.ventanaresearch.com/tag/microsoft-excel/)

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 360–384, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://oracle.com.edgesuite.net/timeline/java/
http://blog.ventanaresearch.com/tag/microsoft-excel/

Stream Processing with a Spreadsheet 361

Spreadsheets offer a variety of visualization possibilities, and the ability to ana-
lyze, process, or augment source data by entering formulas in cells. They provide
a unique interface where data is in the foreground and the code that produced
it can be viewed in the same place. This is unlike common integrated develop-
ment environments (IDEs) where code appears in a dedicated editor, and data
visualization plays a subordinate and often orthogonal role.

Although spreadsheets are used for many different applications, they do not
readily support online stream processing, which we believe requires the following
essential features:

– Live data in cells: for online processing, one must have the ability to import
live data into cells. Further, as the live data changes, the value of the cell
must change contemporaneously.

– Segmenting streams into windows: some streaming operations are applied
over aggregates of values (e.g., reductions). In spreadsheets, aggregates are
groups of rows and columns called ranges. For online stream processing, an
analogue between spreadsheet ranges and windows over streams is needed.

– Stateful cells: spreadsheets are functional by nature and do not readily sup-
port state or cyclic cell references. However, many stream processing applica-
tions need state to compute summaries or decisions via finite state machines.

This paper presents ActiveSheets, a programming platform for stream pro-
cessing that is based on Microsoft Excel with enhancements to meet the chal-
lenges described above. It provides a language that an end-user can use to easily
populate ranges of cells in a spreadsheet with the desired shape of data, a win-
dowing mechanism that allows computations over windows of streaming data,
and the ability to perform stateful computations by treating stateful and state-
less cells uniformly.ActiveSheets retains and interoperates with familiar Excel
features (e.g., built-in functions and macros, or visualizing live data) but also en-
hances Excel’s native capabilities such that they operate correctly on live data.
An example is the Excel pivot function which classically operates on a snapshot
of cells (i.e., if the cells change, the filtered results do not). In ActiveSheets,
it is possible to continuously pivot as the input cells change.

ActiveSheets is a client-server architecture in which the server publishes
streams and the client, namely the spreadsheet, allows the user to subscribe to
streams and operate on the live data; operations include visualization of streams
and generation of new streams (Fig. 1). The client provides an export feature,
making it possible to share the results with other users, as well as persisting the
computation on the server, beyond the life of the spreadsheet.

We present formal semantics for the core language captured by our user in-
terface, which we call the spreadsheet calculus. This is a reactive programming
model that represents the spreadsheet computation as a combinatorial circuit
derived from cell dependencies and formulas contained within the cells. As input
cells change over time, any dependent cells are automatically recomputed and
updated. Cells that must retain state can be viewed as circuits with latches. This
model hides many common concerns from the programmer, because it offers a
fixed control structure and manages cell updates automatically based on data

362 M. Vaziri et al.

4

A B C

1

2

3

Live spreadsheet

Domain expert Live visualization

Exported computation

Live input data
… …

Live exported data
… … 1.

2. 3.

4.

5.

Fig. 1. ActiveSheets Overview: 1. The server publishes lives streams. 2. The domain
expert subscribes to these streams and prototypes the computation in a spreadsheet.
3. Spreadsheet functionality is readily available, including visualization. 4. Data com-
puted in the spreadsheet may be exported as its own stream. 5. The entire spreadsheet
may be exported to the server, where the computation outlives client shutdown.

dependencies. As a result, the domain expert can focus on the data transforma-
tions they wish to compute.

A spreadsheet enables a live programming platform, meaning that code can
be modified during the execution of the program. This is an essential feature,
because streaming analytics applications cannot be stopped and restarted eas-
ily. The user has to be able to quickly modify computations without stopping
data sources. This feature creates challenges, especially in the face of stateful
computations, and we define its semantics formally in the spreadsheet calculus.
Finally, our extensions to the spreadsheet must preserve its highly interactive
nature, meaning that on every update to a cell, there can only be a bounded
amount of computation and memory usage. We prove this property for our core
language, and show that it is also deterministic, meaning that for any given set
of inputs, the spreadsheet computation always yields the same result.

This paper makes the following contributions:

– A reactive programming model for stream processing based on spreadsheets
and a uniform treatment of stateless and stateful cells.

– Formal semantics for our core language using a new spreadsheet calculus.

– Exporting spreadsheet computation to the server for sharing or persistence.

– A prototype implementation using Microsoft Excel, and case studies covering
a range of stream processing applications.

Stream Processing with a Spreadsheet 363

2 Overview

This section presents an overview of how ActiveSheets works, using a stream-
ing stock bargain calculator as a running example. The bargain calculator takes
two input streams: Trades and Quotes. A stream is an infinite sequence of tuples,
which are sequences of attribute/value pairs. A feed is the infinite sequence of
values corresponding to a single attribute of a stream. Thus a stream is com-
prised of a collection of feeds whose values update synchronously.

The tuples of the Trades stream represent actual trades that have been made,
using attributes sym (a stock symbol), ts (a timestamp), price, and vol. Each of
these attributes defines a feed of values. The bargain calculator first computes
the Volume Weighted Average Price (VWAP). Given a window of prices Pi and
volumes Vi, the VWAP is defined as:

VWAP =

∑
i Pi × Vi∑

i Vi

After computing the VWAP over the Trades stream, the bargain calcula-
tor determines whether or not each price in the Quotes stream is less than the
VWAP. If yes, it outputs a bargain. Various streaming languages are well-suited
to writing this program, such as CQL [4] or SPL [15]. However, end-users are
typically unfamiliar with programming languages, let alone special-purpose lan-
guages such as CQL or SPL. Our objective is to bring stream programming to
the end-user by enhancing the spreadsheet, a tool that is pervasive and familiar.

ActiveSheets is based on Microsoft Excel enhanced with controls for ma-
nipulating live streams as shown in Fig. 2.

Fig. 2. ActiveSheets Controls. Buttons from left to right: connect to and disconnect
from the server, add a stream (‘+’ icon), pause a stream (pause symbol), disconnect
from a stream (‘−’ icon), export data back to the server (flash symbol), stop data
export (crossed out flash symbol), export computation (movie symbol), and lastly,
debug mode (light bulb), used to debug the implementation of ActiveSheets.

Fig. 3 shows the bargain calculator program in ActiveSheets. We now ex-
plain how the user can obtain this program step by step.

Connecting to the server. To start using ActiveSheets, the user first clicks
on the connect button. This prompts for the address to the server and connects
to it. The server publishes several streams that the client may subscribe to,
visualize, and work with. Depending on the server’s installation, these streams
could come from existing stream processing programs, live feeds, static data that
is streamed, or exported streams from other ActiveSheets clients. In the case
of this example, the server publishes the two input streams Trades and Quotes.

364 M. Vaziri et al.

Fig. 3. Bargain Calculator in ActiveSheets

Subscribing to a stream. The next step is to subscribe to a stream. To do this, the
user first chooses a window in the spreadsheet, then presses the subscribe button
(‘+’), and enters the stream name at the prompt. The selected stream is then
displayed in the window that the user selected with one column per attribute
(feed), and the values scroll from bottom to top. A visual indicator comes on if
the user did not select a wide enough range of cells. At any given moment in time,
the user sees a window of data that gets updated continuously. In the example,
the user first subscribes to the Trades input stream. Fig. 4 shows the Trades

input streaming into the spreadsheet in columns A through D over a window of
size 20. The data fills the window from bottom to top and continues scrolling.
The chosen window size not only specifies how much of the stream is shown at
any given moment in time, it also determines the window of data over which the
VWAP will be computed. The user may pause a stream by choosing a cell in it,
and pressing the pause button. This causes all the feeds in that stream to stop
until the user presses pause again to resume, which causes ActiveSheets to
display the latest live data.

Adding new feeds. The user can create new data by entering formulas in cells
directly, which creates new feeds. Fig. 5 shows how the user enters a standard
Excel formula to compute the price times the volume in cell G3. Notice that, in
this figure, the timestamp column has been deleted because it is not needed. The
user then copies and pastes the formula in the rest of column G with familiar
Excel gestures. Even though familiar controls are used to populate column G, the
result is live in ActiveSheets: as the values of price and volume are updated,
their product is recomputed. Fig. 5 further shows how the user can compute
the sum for the volume and price-times-volume columns (cells C24 and G24),

Stream Processing with a Spreadsheet 365

Fig. 4. The Trades input streaming in

and enter a formula for the VWAP (cell I3). Each feed in ActiveSheets gets
updated at specific points in time, which we call its tick. For example, the sum
of two cells gets updated whenever either of the cells are updated.

Adding new streams. In addition to entering formulas in cells one at a time,
the user can also populate a range of cells with a stream (synchronous feeds)
using ActiveSheets’ query language. This language is relational in flavor,
and includes operators for projection, selection, deduplication, sorting, pivoting,
and aggregation. It also supports a simple mechanism for stateful computation.
Queries are entered by selecting a window in the spreadsheet and pressing the
‘+’ icon. The simplest query is giving the name of a stream to display all of its
attributes. The user may use a selection to filter tuples in Trades with a price
greater than a certain value

select(Trades, price > 200)

which would populate a range of cells with formulas to produce the desired re-
sult: a stream with all the attributes of Trades but with tuples having a price
greater than 200.

Bargain computation. Notice that the output of a query can still be a single feed:
a projection, for example, can be used to view a single attribute of a stream. In
cell E3 of Fig. 3, the user has added the Quotes input stream, using a query that
only shows the price attribute:

project(Quotes, price = Quotes.price)

This query takes the Quotes stream and produces a new stream that has a single
attribute named price. The new stream ticks synchronously with Quotes. Finally,
the user enters an Excel conditional to determine whether or not the quoted price
is a bargain (cell I7 in Fig. 3).

366 M. Vaziri et al.

Fig. 5. Computing VWAPs

Exporting data. The user may want to export data back to the server. This can
be accomplished by selecting the quoted price and whether or not it is a bargain
(cells I3 and I6), and pressing the flash button. ActiveSheets will prompt for
a name for this new stream (e.g., Bargains), and will start sending this data
to the server. The tick of the new stream is the union of the ticks of the feeds
that comprise it: i.e., whenever one of the feeds is updated, a new tuple with
all the data is sent to the server. Other ActiveSheets users will then be able
to subscribe to it. Since the data is computed in the spreadsheet, when the
spreadsheet is closed, the stream will no longer be published to the server.

Exporting computation. When the user is ready to deploy the application, he or
she can export the computation by pressing the movie button. This feature takes
a snapshot of all formulas in the entire spreadsheet and sends it to the server.
Each spreadsheet has a single output stream (visible to other users). During
export, the user selects the cells that comprise attributes of the output stream.
Multiple exports result in separate snapshots on the server. Once computation
is exported, it runs at the server side, and exists even after the user closes
the spreadsheet. There is a trade-off between data and computation export. In
data export, the user may compute new data locally using custom macros and
libraries, but the computation disappears when the spreadsheet is closed. In
computation export, only a subset of Excel built-in features are supported (at
the server), but the computation persists beyond the life of the spreadsheet.

Working with state. In this example, the user wants to keep count of the number
of quotes that are bargains. Fig. 6 illustrates how this works. Cell I11 is set to 1
if there is a bargain, and 0 otherwise. Cell I14 is set to the old bargain count

Stream Processing with a Spreadsheet 367

Fig. 6. Stateful computation using PRE

plus cell I11, so it increments iff there is a bargain. And Cell I19 obtains the old
bargain count by using the PRE function. Function PRE(v, t, v0) is formalized
later in this paper; intuitively, it obtains the previous value of v, using the tick
of t, and using value v0 as the default when v is not yet defined. Note that the
bargain count computation is cyclic (the new count depends on the old count and
vice versa). As we shall see, this is well defined as long as every cycle contains a
call to PRE.

Discussion. Fig. 7 shows the VWAP calculation in IBM’s Streams Processing
Language (SPL) [15]. The Aggregate operator invocation in Lines 6-10 consumes
stream Trades and produces stream PreVwaps. Just like the ActiveSheets ver-
sion, it uses a window of 20 tuples that slide at granularity 1. It sets attribute
priceVol to

∑
i Pi × Vi and attribute vol to

∑
i Vi. The Functor operator in-

vocation in Lines 11-13 consumes stream PreVwaps and produces stream Vwaps.
It sets attribute vwap to priceVol / vol. Whereas ActiveSheets users always
have concrete data to look at, developing code in a streaming language like SPL
feels more decoupled from the data. Furthermore, writing code in a language
like SPL requires familiarity with programming, which is arguably beyond the
reach of an end-user.

Compared to the code in Fig. 7, the ActiveSheets experience makes com-
puting with streams accessible to the end-user. It provides a reactive program-
ming model with a fixed control structure: new tuples cause dependent cells
to be recomputed and refreshed. The user is freed to focus on the data and
its transformations without having to think about unfamiliar programming lan-
guage syntax. The interface makes it easy to express computations on a window
of data from the same stream, and allows computation export for deployment.

368 M. Vaziri et al.

type
Trade = tuple<rstring sym, timestamp ts, float64 price, float64 vol>;
PreVwap = tuple<rstring sym, float64 priceVol, float64 vol>;
Vwap = tuple<rstring sym, float64 vwap>;

graph
stream<PreVwap> PreVwaps = Aggregate(Trades) {

window Trades: sliding, count(20), count(1);
output PreVwaps: priceVol = Sum(price * vol),

vol = Sum(vol);
}
stream<Vwap> Vwaps = Functor(PreVwaps) {

output Vwaps: vwap = priceVol / vol;
}

Aggregate

Functor

Trades

PreVwaps

Vwaps

Fig. 7. VWAP in SPL

The spreadsheet also provides a variety of visualization possibilities. In the ex-
ample, the user can create a line chart for the price as shown in Fig. 3, and the
chart is live as well.

3 Spreadsheet Calculus

This section formalizes a core calculus to support our programming model. It
first specifies the constructs and semantics of a minimal client spreadsheet—a
collection of cells and formulas—connected to a server providing real-time data
feeds. The constructs let us compute over recent feed histories and build stateful
spreadsheets. The semantics define when and how cell values are computed. We
prove that the resulting executions are well-defined, reactive, and determinis-
tic provided the client spreadsheet is free from immediate cyclic dependencies
(Section 3.1).

Clients compute over potentially infinite data feeds. Our programming model
is intended to favor real-time analytics and prevent users from engaging into
expensive querying of feed histories. A client for example can compute the av-
erage of a data feed over time (since the beginning of time), but it must do so
incrementally as the live data flows through the client. We formally establish
that executions in our model can be computed incrementally over time, using a
bounded amount of computation per update (i.e., incoming data packet) and a
bounded amount of memory to keep track of the execution state—the “past”—of
size proportional to the client itself (Section 3.2).

The end-user can change formulas in the spreadsheet while real-time feeds
are being processed. To support this form of live programming, we extend our
semantics so that cells no longer contain static formulas, but feeds of formulas
that change over time (Section 3.3). Our core calculus is not intended as an
actual programming interface for the end-user. To bridge this gap, we specify a
stream calculus by reduction to our core calculus. It supports richer notions of
data streams—sequences of tuples with named attributes—and formulas (Sec-
tion 3.4). Finally, we specify a query language that provides familiar relational
operators on data streams such as projection and selection (Section 3.5).

Stream Processing with a Spreadsheet 369

3.1 Core Calculus

We start with the definitions, then establish key properties of our core calculus.

Ticks. Let a tick T be a possibly empty, at most countable, strictly increas-
ing series of non-negative real numbers {t0, t1, t2, ··} representing a sequence of
arrival times. We require that T is unbounded if infinite.

We write T � t for the tick T up to time t that is formally the series T ∩ [0, t],
which is always a finite tick. A non-empty finite tick T always admits a maximal
element max(T). Given a finite tick T with at least two elements, we define
the second-to-max element prev(T) as max(T \max(T)). We write (t0, t1) ∈ T
if t0 and t1 are two consecutive arrival times in T , that is, if t1 ∈ T and t0 =
prev(T � t1).

Feeds. Let a feed φ be a map from a tick to values. We write dom(φ) for the tick
of φ. We say that φ ticks at time t iff t ∈ dom(φ). As a convenience, we overload
the notation φ(t) as follows. If t ∈ dom(φ), then φ(t) is the usual function
application. Otherwise, if dom(φ)�t �= ∅, then φ(t) is defined as φ(max(dom(φ)�
t)). Otherwise, φ(t) is undefined and we write φ(t) = ⊥ using ⊥ to denote the
absence of a value. In short, φ(t) is always the most recent value of φ at time t.

Servers. Let a server S be a finite collection of feeds. We define the server tick
N of S as the tick

⋃
φ∈S dom(φ). Because of the required properties of ticks, it

makes sense to think of N as N or a subset of N if it helps the reader. While
ticks are intended to model real-time arrival times, our semantics really think
of arrival times as logical instants. The order matters, but the time difference
between two instants does not.

Clients, cells, and formulas. Let a client C be a finite collection of cells. Each
cell has a unique name c and contains a formula f . We write c ≡ f iff c con-
tains formula f . The syntax of formulas is defined as follows, where f denotes a
formula, c a cell name, φ a server feed, and op a family of operators on values
(such as division /, greater-than >, or Excel’s IF function).

f ::= φ | op(c1, ··, cn) | c0@c1 | latch(c0, c1)

For simplicity, our core calculus does not permit nesting constructs. The
stream calculus of Section 3.4 lifts this restriction.

We do not explicitly model constant formulas as these can be obtained by
means of constant server feeds. Observe that our semantics will distinguish con-
stant feeds with the same value but distinct ticks.

Our core calculus is untyped. We assume all op operators are total functions.
For simplicity, we do not consider “eager” operators capable of producing values
even if not all operands are defined, but such operators could be added easily.

370 M. Vaziri et al.

The calculus has two constructs to manipulate time: @ and latch. The @ con-
struct makes it possible to sample a feed according to a Boolean condition (a feed
with Boolean values): c0@c1 ticks when c1 does and evaluates to true, returning
the current value of c0. The latch construct provides a general mechanism to
delay a feed so that a feed value that is not the most recent can be accessed:
latch(c0, c1) ticks when c1 does returning the value of c0 at the previous tick
of c1. We illustrate the two constructs below as we specify their semantics. In
Section 3.4, we show how PRE can be defined using latch.

Well-formedness. We define the set of immediate dependencies deps(c) of a cell
c as follows.

deps(c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅ if c ≡ φ

{c1, ··, cn} if c ≡ op(c1, ··, cn)
{c0, c1} if c ≡ c0@c1

{c1} if c ≡ latch(c0, c1)

In essence, our semantics are such that if c ≡ latch(c0, c1) then c only depends
on the past of c0, hence c does not immediately depend on c0. Reciprocally, if
c immediately depends on c0 then the semantics of c at time t will potentially
be derived from the semantics of c0 at time t. We therefore need immediate
dependencies to be acyclic. We say that a client is well-formed iff the directed
graph G of immediate dependencies is acyclic, where the vertices of G are the
cell names and there exists an edge (c, c′) in G iff c′ ∈ deps(c). If a client is not
well-formed, we can identify a cycle and notify the user.

Semantics. We now specify the semantics of well-formed clients by recursion.
Lemma 1 will establish that this recursion is well-founded.

We define by mutual recursion the tick T (c) of a cell c of a well-formed client
C and the value E(c, t) of c at time t ∈ [0,∞) as follows, starting with T (c).

T (c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dom(φ) if c ≡ φ

{t ∈
⋃n

i=1 T (ci)|∀i ∈ {1, ··, n} : T (ci) � t �= ∅} if c ≡ op(c1, ··, cn)
{t ∈ T (c1)|E(c1, t) = true, T (c0) � t �= ∅} if c ≡ c0@c1

T (c1) if c ≡ latch(c0, c1)

In contrast with typical synchronous programming models [8], our core cal-
culus does not require the operands of an operator op to be synchronous (share
the same tick). Instead, an operator op ticks each time an operand does (once all
operands are defined). Once c0 is defined, c0@c1 ticks when c1 does and evaluates
to true. The tick of latch(c0, c1) is simply the tick of the second argument c1.

Stream Processing with a Spreadsheet 371

We now consider the definition of E(c, t).

E(c, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) if c ≡ φ

op(E(c1, t), ··, E(cn, t)) if c ≡ op(c1, ··, cn) and ∀i : E(ci, t) �= ⊥
E(c0,max(T (c) � t)) if c ≡ c0@c1 and T (c) � t �= ∅
E(c0, prev(T (c1) � t)) if c ≡ latch(c0, c1) and |T (c1) � t| ≥ 2

and T (c0) � prev(T (c1) � t) �= ∅
E(c1, t) if c ≡ latch(c0, c1) and |T (c1) � t| ≥ 2

and T (c0) � prev(T (c1) � t) = ∅
E(c1, t) if c ≡ latch(c0, c1) and |T (c1) � t| = 1

⊥ otherwise

The semantics of operators lifts an operator from values to feeds by simply
invoking the operator on the most recent value of each feed.

The formula c0@c1 samples the value of c0 when it ticks. For instance, if
a ≡ nat and b ≡ isEven(a) and c = a@b where nat is a server feed producing the
natural integers and isEven a unary operator with the obvious semantics, then
c only produces even integers. The arrival time of each integer in c is the same
as the arrival time of the same integer in nat.

The formula latch(c0, c1) provides for each tick of c1 the value of c0 recorded
at the previous tick of c1. But it defaults to the value of c1 instead, if either this
is the first tick of c1 or c0 was not yet defined when c1 last ticked.

The latch construct serves a double purpose: it makes stateful clients possible
and it enables clients to reason about windows of data. For an example of a
stateful computation, suppose zero is the unary constant operator with value 0,
add is the binary addition, and 1 is a sever feed with tick {0} and value 1. The cell
d in client {a ≡ feed, b ≡ zero(a), c ≡ 1, d ≡ add(c, e), e ≡ latch(d, b)} counts the
number of ticks in the server feed feed. Observe that b hence e and d tick exactly
when feed does. Moreover, the initial value of d is 1 and each subsequent value
of d is obtained by incrementing the previous value of d by one. For a window
example, suppose neq is a binary inequality test operator. The cell c in client
{a ≡ feed, b ≡ latch(a, a), c ≡ neq(a, b)} ticks when the server feed feed does and
evaluates to true iff the current value of feed is different from the previous value.
In general, windows into feed histories can be obtained by chaining latches, e.g.,
{a ≡ feed, b ≡ latch(a, a), c ≡ latch(b, b), d ≡ latch(c, c)}. Cell a provides the
current value of feed, b the previous value, c the value before that, etc.

Observe that in the stateful example, the latch is used to form a cycle of cells,
whereas in the window examples, there is no such cycle. In the latter, the two
arguments to latch can be the same. But well-formedness forbids cyclic uses of
latch (via its second argument) as in the ill-formed client {a ≡ latch(a, a)}.

We now prove that the recursive definition of T and E is well-founded for
well-formed clients. In the sequel, we require all clients to be well-formed.

Lemma 1 (Soundness). For a cell c of a well-formed client C and a time t,
the value E(c, t) of c at time t and the tick T (c) � t of c up to time t are defined
via a well-founded recursion.

372 M. Vaziri et al.

Proof. Let depth(c) be the length of the longest path in G with source c. For a
cell c ∈ C and time t ∈ [0,∞) we define σ(c, t) ∈ N×N as (max(N�t), depth(c)).
The lexicographic order ≤ of N × N is well-founded, since C is well-formed.

We can rewrite the definition of T (c) as a definition of T (c) � t so that every
tick instance of the right-hand side is only needed up to time t. In the definition
of E(c0@c1, t), we can expand T (c) � t into its definition. We now establish that
the recursive co-definition of T (c) � t and E(c, t) is well-founded using (σ,≤) to
order the tuples (c, t) ∈ C × [0,∞).

In all induction cases except for the definition of E(latch(c0, c1), t), the terms
of the right-hand side are only concerned with time up to t and cells of strictly
lower depth. Moreover, the tick up to t and value at t of the cell c with formula
c ≡ latch(c0, c1) are defined using T (c1) � t and E(c1, t) (same time, strictly
lower depth) and possibly T (c0) � t0 and E(c0, t0) with t0 = prev(T (c1) � t) such
that max(N � t0) < max(N � t). �

Our calculus is therefore deterministic: the tick and values of a cell of a well-
formed client are unambiguously defined at all times. Our calculus is also reactive
in the sense that everything happens in reaction to the ticks of the server feeds.

Lemma 2 (Reactivity). The tick of a cell c of a well-formed client C is a
subset of the server tick N . The value of c at a time t is equal to the value of c
at the most recent arrival time of c if any or undefined if none.

Proof. The tick of c0@c1 is a subset of T (c1). The tick of op(c1, ··, cn) is a subset
of

⋃n
i=1 T (ci). By induction over the depth of the cell. �

3.2 Boundedness

Because of latch, the values of the cell at time t are defined using past values of
cells and feeds. But a careful look at the definitions shows that the dependency
on past values is bounded. Concretely, c ≡ latch(c0, c1) only needs to retain one
value of c0 at a time (in addition to the current value of c). Formally, for all
c ∈ C and t ∈ N we define:

H(c, t) =

{
E(c0,max(T (c1) � t)) if c ≡ latch(c0, c1) and |T (c1) � t| > 0

⊥ otherwise

Lemma 3 (Boundedness). For all (t0, t) ∈ N , the values of H and E at time
t for each c ∈ C can be computed as a function of H and E at time t0 and the
ticks and values of the server feeds at time t.

Proof. We observe that we can rewrite the semantics of the core calculus as
follows.

t ∈ T (c) ⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t ∈ dom(φ) if c ≡ φ

(∃i : t ∈ T (ci)) ∧ (∀i : E(ci, t) �= ⊥) if c ≡ op(c1, ··, cn)
t ∈ T (c1) ∧ E(c1, t) = true ∧ E(c0, t) �= ⊥ if c ≡ c0@c1

t ∈ T (c1) if c ≡ latch(c0, c1)

Stream Processing with a Spreadsheet 373

If t /∈ T (c) then H(c, t) = H(c, t0) and E(c, t) = E(c, t0) by Lemma 2. Other-
wise, H(c, t) = E(c0, t) if c ≡ latch(c0, c1) or ⊥ if not, and

E(c, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) if c ≡ φ

op(E(c1, t), ··, E(cn, t)) if c ≡ op(c1, ··, cn) and ∀i : E(ci, t) �= ⊥
E(c0, t) if c ≡ c0@c1

H(c, t0) if c ≡ latch(c0, c1) and H(c, t0) �= ⊥
E(c1, t) if c ≡ latch(c0, c1) and H(c, t0) = ⊥
⊥ otherwise

By induction using the well-foundedness argument of Lemma 1, the two se-
mantics define the same tick and values for all cells at all times. �

In summary, storing one value for each occurrence of latch enables the in-
cremental computation of these semantics over time. In particular, the memory
required is bounded by the client size. Moreover, the amount of computation per
tick is also bounded by the client size (assuming unit cost for the operators op).

3.3 Live Calculus

We now define the semantics of live clients where we permit formulas to evolve
over time. We suppose that each cell c ∈ C has a feed of formulas ĉ with tick
dom(ĉ) and formula ĉ(t) at time t. While we do not model cell creation or
deletion explicitly, we permit cells to be initially empty. The formula feeds model
external changes to formulas (e.g., user input). We do not consider “higher-order”
spreadsheets where formulas could be computed by the spreadsheet itself.

We define the immediate dependencies of cell c at time t as follows.

deps(c, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅ if ĉ(t) = φ

{c1, ··, cn} if ĉ(t) = op(c1, ··, cn)
{c0, c1} if ĉ(t) = c0@c1

{c1} if ĉ(t) = latch(c0, c1)

We say a client is well-formed iff the graph of immediate cell dependencies is
acyclic at all times. We define the tick of cell c, T (c), by concatenating the ticks
of its successive formulas over time. We first define the tick of a cell c around
time t as follows.

T [t](c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dom(φ) if ĉ(t) = φ

{t ∈
⋃n

i=1 T (ci)|∀i ∈ {1, ··, n} : T (ci) � t �= ∅} if ĉ(t) = op(c1, ··, cn)
{t ∈ T (c1)|E(c1, t) = true, T (c0) � t �= ∅} if ĉ(t) = c0@c1

T (c1) if ĉ(t) = latch(c0, c1)

T (c) = dom(ĉ) ∪

⎛

⎝
⋃

(t0,t1)∈dom(ĉ)

T [t0](c) ∩ [t0, t1)

⎞

⎠ ∪

⎛

⎝
⋃

t=max(dom(ĉ))

T [t](c) ∩ [t,∞)

⎞

⎠

374 M. Vaziri et al.

By convention, a cell also ticks when its formula feed does. The last term in
this union handles the case of a finite formula feed.

We define the value of cell c at time t using the current formula ĉ(t) as in the
core calculus except for the latch construct. Let t0 = max(dom(ĉ) � t) be the
most recent arrival of the formula feed ĉ if defined. If ĉ(t) = latch(c0, c1) then

E(c, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E(c0, prev(T (c) � t)) if T (c) � t > t0 and T (c0) � prev(T (c) � t) �= ∅
E(c1, t) if T (c) � t > t0 and T (c0) � prev(T (c) � t) = ∅
E(c1, t) if T (c) � t = t0

⊥ otherwise

Intuitively, a latch does not access values that predate the formula that con-
tains the latch. This ensures that these semantics are still incrementally com-
putable without the need for an “oracle” to predict future latch occurrences.

3.4 Stream Calculus

Our core calculus from Section 3.1 is not intended as an actual programming
interface for the end-user. This section introduces a stream calculus that enriches
the core calculus with higher-level notions of streams and formulas. A stream is
a sequence of tuples with named attributes. The stream calculus permits nesting
constructs in formulas, handles constant values, and formalizes PRE.

To simplify the presentation, we return to the fixed formulas of the core cal-
culus, but the techniques for live editing in Section 3.3 remain applicable.

Streams. We say that two feeds are synchronous if they have the same tick. We
define a stream s to be a non-empty, finite collection of synchronous feeds. The
feeds in a stream are labeled with attributes. Given a stream s, we write s.a to
denote the feed of s labeled a. We write A(s) for the set of attributes of s.

Semantics. We now define a calculus over streams by reduction to the core
calculus of Section 3.1. The syntax of formulas is as follows, where v stands for
a constant value:

f ::= v | s.a | c | op(f1, ··, fn) | f0@f1 | latch(f0, f1) | PRE(f0, f1, v) | PRE(f, v)

Constructs can be nested. Formulas v and s.a are server feeds φ. Formula
v denotes a feed with value v and tick {0}. Formula PRE(f0, f1, v) is a syn-
tactic shortcut for latch(f0, first(v, f1)) where the first operator maps (x, y) to
x. Therefore, first(v, f1) produces a constant feed of values v with tick T (f1).
Formula PRE(f, v) is a shorthand for PRE(c, c, v) where c is a fresh cell with for-
mula f . The binary form of PRE is the most intuitive one: PRE(f, v) ticks when
f does, evaluates to v initially then to the previous value of f . This form cannot
express cyclic computations such as accumulators. The tick of cell c in client
{c = add(PRE(c, 0), 1)} cannot be defined by recursion.2 The ternary form of

2 Least-fixed-point approaches would not work either as our calculus supports sub-
straction by means of the @ construct.

Stream Processing with a Spreadsheet 375

PRE therefore permits the independent specification of the formula f0 to latch,
the tick f1 of the latch, and the initial value v of the latch. It is less expressive
than the core latch construct—it restricts its second argument to a constant
feed—but easier for the user to reason about.

Let C be a client in the stream calculus. We define the semantics of C by
constructing a client C′ in the core calculus. In particular, we specify that C is
well-formed iff C′ is. The semantics of a cell c in C is specified as the semantics
of the cell c in C′, that is, the cell with the same name in the reduced client.

Intuitively, the reduced client is simply defined by introducing helper cells for
every subformula and replacing subformulas with references to these helper cells.
Concretely, we specify by induction over the structure of formulas, a reduction R
that maps a cell c with formula f in the stream calculus to a fragment of a client
in the core calculus, that is, one or more cells with their respective formulas in
the core calculus. All cells but c itself in each map are fresh, i.e., have a globally
unique name.

The reduced client C′ of C is then simply the union of these fragments for
each cell c in C.

R(c, f) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{c ≡ f} if f ∈ {v, s.a, c0}
{c ≡ op(c1, ··, cn)} ∪

⋃n
i=1 R(ci, fi) if f = op(f1, ··, fn)

{c ≡ c0@c1} ∪ R(c0, f0) ∪R(c1, f1) if f = f0@f1

{c ≡ latch(c0, c1)} ∪ R(c0, f0) ∪R(c1, f1) if f = latch(f0, f1)

{c ≡ c0} ∪ R(c0, latch(f0, first(v, f1))) if f = PRE(f0, f1, v)

{c ≡ c0} ∪ R(c0,PRE(c1, c1, v)) ∪R(c1, f) if f = PRE(f, v)

3.5 Query Language

The stream calculus assumes a programming model where the user modifies one
cell at a time, defining one value feed at a time. In contrast, ActiveSheets’
query language allows the user to enter formulas in a range of cells at once
by defining a stream with multiple attributes and a window over this stream
history, all in a single step. Moreover, this query language provides higher-level
mechanisms to process streams inspired from relational operators—emphasizing
relations and deemphasizing arrival times.

In this section, we specify a basic query language over streams, and show how
it reduces to the stream calculus. It consists of projection and selection operators.
Our implemented query language supports other traditional relational operators
such as sort, pivot, aggregate, and deduplicate. Excel has native features that
support static version of some of these constructs (sort, pivot), and our query
language complements these features with streaming ones.

The query language is tightly integrated with the UI. In particular, the number
of rows in the target range of a query defines the length of the stream history
to preserve. We do not model this coupling here.

376 M. Vaziri et al.

Queries. The syntax of queries is defined as follows where q denotes a query, s
a stream, a an attribute, and f a formula in the stream calculus.

qs ::= s′

| PROJECT(qs, a1 = f1, ··, an = fn)
| SELECT(qs, f)

A query qs defines a new client stream named s. We require that the names of
the streams (client and server) are pairwise distinct. The PROJECT construct
defines a new stream with attributes a1 through an, with formulas f1 through fn,
respectively. In essence, the PROJECT construct allows the user to synchronize a
collection of feeds to produce a stream: the values of f1 through fn are sampled
according to the tick of the first parameter of PROJECT, and assigned to the
attributes of the resulting stream. The SELECT construct defines a new stream
with all the attributes of its first parameter, but with tuples that have been
filtered according to the Boolean formula f .

Semantics. A client (C,Q) in the query language combines a client C in the
stream calculus—a finite collection of cells and formulas—and a finite collection
of queries Q. We denote by W (Y) the set of all the client streams (server
streams, respectively).

The attributes A(s) of s in W are defined as follows:

A(s) =

{
A(s′) if qs = s′ or qs = SELECT(q′s′ , f)
{a1, ··, an} if qs = PROJECT(q′s′ , a1 = f1, ··, an = fn)

We map each attribute a of each client stream s to a fresh cell in C′ denoted cas .
We define by induction on the structure of queries a reduction from a query qs
to a collection of cells C(s) in the stream calculus as follows.

C(s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⋃
a∈A(s){cas ≡ s′.a} if qs = s′ and s′ ∈ Y

⋃
a∈A(s){cas ≡ cas′} if qs = s′ and s′ ∈ W

C(s′) ∪
⋃n

i=1{cai
s ≡ nth(i, f1, ··, fn)@true(ca

′
s′)}

if qs = PROJECT(q′s′ , a1 = f1, ··, an = fn) and a′ ∈ A(s′)
C(s′) ∪

⋃
a∈A(s){cas ≡ cas′@(f@true(cas′))} if qs = SELECT(q′s′ , f)

For the PROJECT construct, we resample each fi using the tick of q′s′ , which
we can obtain by applying the constant unary true operator to one of its at-
tributes a′. But we need to make sure that all fi are defined before we emit a
value for any attribute. We therefore combine all the fi together using operator
nth : (i, a1, ··, an) �→ ai. Like any operator lifted to feeds, it only starts ticking
once all arguments are defined.

For the SELECT construct, we first sample the Boolean condition f according
to the tick of the target stream s′ using the rightmost @ construct, then apply
the resulting filter to the stream s′ using a second @ construct. This ensures
that the output stream is synchronous with the input stream.

The reduced client C′ is obtained as C ∪
⋃

s∈W C(s). We specify that (C,Q)
is well formed iff C′ is.

Stream Processing with a Spreadsheet 377

4 Implementation

ActiveSheets is implemented as a client-server architecture. The client is a thin
layer that implements minimal functionality by design so that it may be easily
repurposed for integration with multiple spreadsheet front-ends. In the current
implementation, the client is integrated with Microsoft Excel. It interacts with
the server via a RESTful interface [12] that provides an API to discover available
streams, subscribe to streams and create feeds, as well as to export data and
computation. Fig. 8 sketches the overall system architecture.

4.1 Client Side

The client consists of two components. The first is the client proxy. It encap-
sulates front-end independent functionality including a session manager and a
real-time data service that continuously updates the cells in the spreadsheet
when ticks advance. The second is the front-end user interface and integration
with the spreadsheet application (e.g., Microsoft Excel). The client UI and some
of its features were described earlier in Section 2.

In our current implementation, the client proxy is written in C# and the
UI front-end consists of a collection of Visual Basic macros. The client proxy
implements the Real-Time Data Server interface (IRtdServer) to communicate
with Excel. It makes it possible for the client proxy to notify Excel that new
data is available and for Excel to asynchronously pull the data from the client
proxy. The client proxy therefore acts as a buffer between the ActiveSheets
server and Excel. The client proxy runs as a dynamic-link library (DLL) plugin
inside Excel.

4.2 Server Side

The server side consists of the server proxy and a stream processing engine. The
former implements the primary functionality while the latter is used to deploy
generated stream processors when the client exports computation to the server.
The server side proxy is comprised of a (1) name manager, (2) query processor,
and (3) spreadsheet compiler.

The name manager maintains a directory of client connections and dispatches
client requests to dedicated handlers. When a query is received that subscribes
a client to a particular stream, the name manager allocates a dedicated handler
to service the request. The handler persists as long as the client connection is
maintained. The current implementation is written in Java and based on Akka,
an actor-based system for highly concurrent and event-driven applications [1]. It
is conceptually a message-driven runtime, where actors execute when messages
are received, producing new messages that are consumed by subsequent actors
or pushed to the client. Actors in ActiveSheets input tuples from existing
streams, parse and reformat the tuples if necessary, and output the resulting
tuples as new messages that are dispatched to registered listeners (e.g., clients).
Data that is exported from the spreadsheet is handled by the name manager.

378 M. Vaziri et al.

Server

Client

Domain
expert

Live input data
… …

Live exported data
… … Stream processing engine

ActiveSheets server proxy

ActiveSheets client proxy

Spreadsheet application

Data and
meta-data

Data and
control

Fig. 8. ActiveSheets System Architectures

The query processor is an actor that applies a given set of transformations
to a sequence of input tuples. The query is received from the client as a string,
parsed on the server, and interpreted accordingly. All of the query operators
described in Section 3.5 are supported. The operators are applied sequentially
in the order implied by the programmer, although we believe the order of appli-
cation is amenable to optimizations since some operators are commutative and
may reduce the amount of computation applied to any given tuple.

The spreadsheet compiler is responsible for handling exported computation. It
parses the spreadsheets and builds a dependence graph between the cells, which
in turn is used to derive a computational circuit for the spreadsheet. Terminal
cells which have no incoming edges or outgoing edges in the dependence graph
are input and output signals, respectively. Internal cells contain formulas that
correspond to gates in the circuit, with input wires flowing from and output
wires flowing to other cells as in the dependence graph. One circuit is created
for each exported spreadsheet, and it is encapsulated within a single actor that
will update the output signals as new ticks arrive. Output signals are visible to
other users as new streams. The computation on the server persists even if the
spreadsheet is no longer running.

5 Case Studies

The goal of this section is to convey a feeling for what kind of streaming compu-
tations are natural to implement in a spreadsheet. The examples are drawn from
a variety of domains (commerce, transportation, infrastructure, and security),
and illustrate how the features of ActiveSheets play out in practice. Fig. 9
shows an Excel spreadsheet for the examples.

Stream Processing with a Spreadsheet 379

Fig. 9. Case studies. Yellow background indicates live streaming data, blue background
indicates constants, and green rectangles show formulas.

380 M. Vaziri et al.

Decision Table. Consider a commerce application where the input is a stream of
persons (with name and age category), and the output is a stream of ticket prices.
The ticket prices are obtained by looking them up in a table indexed by the age
category (child, student, senior, or regular). Such tables are natural to express
in spreadsheets, more so than in traditional text-based languages. The example
in Fig. 9 looks up the ticket price for Bob, who is a student, and must thus pay
10 Euro. Excel offers VLOOKUP(key: ref, tab: rangeRef, valCol: int, range: bool)
for table lookup. One requirement this use case illustrates is that besides single-
cell references, we must also support range-references, which refer to a rectan-
gular region comprising multiple rows and columns. The calculus models range
references via n-ary functions. The VLOOKUP operator itself does not need to
be baked into the calculus, since it is stateless and built into Excel. Variations
on the decision-table case study could use relative lookup instead of absolute
lookup, for instance, when the age is given as an integer instead of a category.

Recency-Weighted Average. Consider a transportation application where the
input is a stream of travel times between two landmarks, and the output is a
stream of travel time estimates between the same landmarks. To estimate travel
time in current traffic, the most recent input samples should count the most
in the estimation. This can be accomplished by weighting the window with a
decay curve. In Fig. 9, the most recent travel time is in cell B20, and the cells
above it use PRE to get earlier readings. Cell D14 specifies the decay factor
with the constant 0.7. In many traditional streaming languages, such as CQL [4]
or SPL [15], windows are high-level and opaque, supporting only a fixed set
of built-in aggregations such as sum, min, max, or average. However, this use-
case requires associative access on window contents. In ActiveSheets, this is
natural to do, since the window contents are laid out in a range of cells, offering
users full viewing and manipulation power. Variations of this use case could take
additional information into account, such as the day of the week.

Forecasting. Consider an infrastructure application where the input is a stream
of temperature readings in a data center, and the output is a stream of predic-
tions for future temperature readings based on the current trend. A spreadsheet
can implement this by calculating a least-square fit over the recent readings, then
extend that curve into the future for forecasts. The example in Fig. 9 extends
the temperature trend by a distance of 5 steps into the future, and predicts that
it will reach a dangerous 92.6◦ Celsius. Such forecasting algorithms are not that
easy to get right, and a spreadsheet can help with debugging, since the devel-
oper can visualize the curve and the prediction interactively. This use case does
not pose any additional requirements on the calculus; it suffices to offer associa-
tive history access as is the case with recency-weighted average. As a variation,
instead of predicting the temperature at a fixed distance in the future, the ap-
plication could predict how long it would take to reach a fixed threshold value
(say, 100◦ Celsius). This could be used for an evacuation count-down.

Stream Processing with a Spreadsheet 381

State Machine. Consider a security application where the input is a stream of
activities at a business location, and the output is a stream of suspicious events
that ought to be checked out by authorities. An example of a suspicious event
would be when a person enters the business location, drops an object and then
leaves the premises without taking back the object. This is easy to specify via a
deterministic finite automaton (DFA). A spreadsheet can implement a DFA via
a transition table indexed by the previous state and the current activity, to yield
the next state and an output. Just like a decision table, a DFA transition table
can be naturally represented by a block of cells in a spreadsheet. As cell I46 in
Fig. 9 illustrates, the lookup in this case is two-dimensional, using VLOOKUP
in combination with MATCH. As far as the calculus is concerned, this use case
combines the requirement for a decision table with the requirement for history
access. But in contrast to windows, which use PRE on input streams only, here,
the old state in cell G52 comes from using PRE on the current state in cell I46,
which is itself computed. Besides this security application, state machines are
also useful in other stream processing domains, such as for detecting M-shape
patterns in streams of stock quotes [14].

6 Related Work

This paper covers topics at the intersection of spreadsheet programming and
stream processing.

Spreadsheets as a programming platform. The idea to use spreadsheets for cod-
ing is not new. In Haxcel, each cell can hold a Haskell definition [16]. Similarly,
Wakeling also proposes a Haskell-based spreadsheet [22]. As in our approach,
this is motivated by wanting to offer an interactive programming experience,
where changes to code have immediate visible effects. Unlike our approach, these
approaches assume that the programmer already knows Haskell, and these ap-
proaches do not attempt to tackle stream processing.

Woo et al. use spreadsheets as a tool for data analysis over sensor net-
works [23]. This work comes closer to streaming, since sensors continuously
produce data. But the work is custom-tailored for the sensor domain, whereas
we address stream processing more generally. Sestoft compiles spreadsheets to
a functional implementation [20]. Like our work, this means exporting compu-
tation from a spreadsheet. Serafima augments spreadsheets to work with trees,
motivated by processing XML data [19]. Neither Sestoft nor Serafima tackle
using spreadsheets for stream processing.

McGarry augments spreadsheets with streaming data import and windows,
but offers no feature to export data or code [17]. The StreamBase platform
offers adapters that import and export data to Excel spreadsheets [21]. Like
our work, this addresses programming with spreadsheets for stream process-
ing. Unlike our work, the StreamBase Excel adapters export no code from the
spreadsheet. Cloudscale uses Excel spreadsheets to configure streaming analyt-
ics [10]. Unlike our work, the user does not describe the analytics directly using
the built-in computation features of Excel.

382 M. Vaziri et al.

Programming models for streaming. Diverse programming models have been
proposed to make it easier to write streaming applications. The programming
languages community has developed several dedicated streaming languages, in-
cluding Lustre for programming real-time controllers [8], StreamIt for pro-
gramming many-cores [13], Lime for programming FPGAs [5], and SPL for
programming distributed clusters [15]. These language-centric approaches en-
able advanced compiler optimizations, but require programmers to learn a new
language.

Instead of requiring programmers to learn a new language, another approach
is to build a library in an existing language. Spark Streaming, which is based on
Scala, is an example for this [25]. However, Scala requires more sophistication,
and has a smaller user base, than spreadsheets.

A popular approach for making programming of streaming applications more
high-level is to offer not a full-fledged language, but simple patterns. Examples
for this include SASE [24], Cayuga [11], and MatchRegex [14]. The patterns
match over sequences of events to detect situations worthy of reporting. But
while these might be easier to learn than a full language, they still come with a
learning curve hindering wide-spread adoption.

The databases community tackles programming models for streaming by ob-
serving that many users are already familiar with SQL. Hence, approaches like
CQL [4] or the language for Microsoft StreamInsight [2] use SQL as a starting
point, and then add extensions such as windowing constructs for streaming. But
for non-programmer end-users, spreadsheets are still more familiar than SQL.

At the far end of the spectrum, Mario requires no programming at all [7].
Instead, the user merely enters tags as they might in a web search engine. The
system then guesses what might be the right stream program based on these tags.
Like spreadsheets, this is immediately usable by end-users. Unlike spreadsheets,
it offers far less control over what streaming application comes out in the end.

The formalization of our core calculus—choice of constructs, semantics, and
properties—has a lot in common with synchronous programming languages [6].
It adopts the synchrony hypothesis : outputs are produced instantly so that inputs
and outputs are formally synchronous. It has ticks but not clocks: arrival times
are not required to be periodic or regular. It is asynchronous in that its constructs
can compose arbitrary feeds irrespective of their relative arrival times. Feeds are
implicitly sampled (i.e., re-clocked) when not in sync. As a consequence, we
have no need for a clock calculus to ensure proper pairing and boundedness.
While the calculus permits cyclic definitions, it guarantees causality. We choose
to ensure causality by preventing timing cycles and making sure every value
cycle includes a delay (a latch). While some synchronous programming languages
such as Esterel favor more sophisticated causality analyses [18], we do not
think these would be sensible extensions to the execution strategy of a typical
spreadsheet. Because filtering is such an essential feature of our system, we
choose to break timing cycles by explicitly clocking latches—separating the input
tick from the input value—rather than introducing a delay in the @ construct,
akin to delaying the reaction to absence in reactive programming models [3].

Stream Processing with a Spreadsheet 383

Our live calculus is not as expressive as higher-order synchronous models [9]
but preserves the guarantees (bounded time and memory usage) of the core
calculus in the presence of dynamically changing formulas.

7 Conclusion

This paper presents ActiveSheets, a system for visualizing and programming
live streams in a spreadsheet. Stream processing has gained importance as many
businesses have continuous data feeds, and analyzing these on-the-fly helps find
opportunities and avoid risks. Using a spreadsheet makes streaming accessible
to the end-user. Furthermore, a spreadsheet offers a very hands-on experience,
since the data is manipulated directly where the user can see it, and interac-
tive code changes have immediate visible effects. We formalize the semantics of
ActiveSheets, and describe an implementation of ActiveSheets that uses
Microsoft Excel as the client front-end. When the user programs a streaming
application using ActiveSheets, he or she can elect to export either data or
computation. Exported data can be further processed by the server, or can be
used to initiate actions, such as alerts or sales. Exported computation can run
directly on the server, and live on even when the client is closed. Since exported
computation runs on the server, it saves the cost of communicating with the
client; furthermore, it can be optimized and compiled to machine code. Over-
all, ActiveSheets enables end-users to author powerful and efficient streaming
applications using familiar spreadsheet features.

Acknowledgements. We thank James Giles, Louis Mandel, and anonymous
reviewers for their feedback and suggestions.

References

1. The Akka project, http://akka.io (retrieved November 2013)

2. Ali, M., Chandramouli, B., Goldstein, J., Schindlauer, R.: The extensibility frame-
work in Microsoft StreamInsight. In: International Conference on Data Engineering
(ICDE), pp. 1242–1253 (2011)

3. Amadio, R.M., Boudol, G., Castellani, I., Boussinot, F.: Reactive concurrent pro-
gramming revisited. CoRR abs/cs/0512058 (2005)

4. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: seman-
tic foundations and query execution. Journal on Very Large Data Bases (VLDB
J.) 15(2), 121–142 (2006)

5. Auerbach, J., Bacon, D.F., Cheng, P., Rabbah, R.: Lime: a Java-compatible and
synthesizable language for heterogeneous architectures. In: Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pp. 89–108 (2010)

6. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., de Simone,
R.: The synchronous languages 12 years later. Proceedings of the IEEE 91(1), 64–83
(2003)

http://akka.io

384 M. Vaziri et al.

7. Bouillet, E., Feblowitz, M., Liu, Z., Ranganathan, A., Riabov, A.: A tag-based
approach for the design and composition of information processing applications.
In: Onward! Track of Object-Oriented Programming, Systems, Languages, and
Applications (Onward!), pp. 585–602 (2008)

8. Caspi, P., Pilaud, D., Halbwachs, N., Raymond, P.: Lustre: a declarative language
for real-time programming. In: Symposium on Principles of Programming Lan-
guages (POPL), pp. 178–188 (1987)

9. Caspi, P., Pouzet, M.: Synchronous Kahn networks. In: International Conference
on Functional Programming (ICFP), pp. 226–238 (1996)

10. Cloudscale big data analytics, http://www.hashdoc.com/document/8626/
big-data-analytics (retrieved November 2013)

11. Demers, A., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.: Cayuga:
A general purpose event monitoring system. In: Conference on Innovative Data
Systems Research (CIDR), pp. 412–422 (2007)

12. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Internet Technol. 2(2), 115–150 (2002)

13. Gordon, M.I., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs. In: Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pp. 151–162 (2006)

14. Hirzel, M.: Partition and compose: Parallel complex event processing. In: Confer-
ence on Distributed Event-Based Systems (DEBS), pp. 191–200 (2012)

15. Hirzel, M., Andrade, H., Gedik, B., Jacques-Silva, G., Khandekar, R., Kumar,
V., Mendell, M., Nasgaard, H., Schneider, S., Soulé, R., Wu, K.L.: IBM Streams
Processing Language: Analyzing big data in motion. IBM Journal of Research &
Development 57(3/4), 7:1–7:11 (2013)

16. Lisper, B., Malström, J.: Haxcel: A spreadsheet interface to Haskell. In: Workshop
on the Implementation of Functional Languages (IFL), pp. 206–222 (2002)

17. McGarry, J.: Processing continuous data streams in electronic spreadsheets. Patent
No. US 6,490,600 B1 (2002)

18. Potop-Butucaru, D., Edwards, S.A., Berry, G.: Compiling Esterel, 1st edn. Springer
Publishing Company, Incorporated (2007)

19. Serafimova, I.: Spreadsheet-based template language prototype for tree data struc-
ture description and interpretation. In: International Conference on Computer Sys-
tems and Technologies (CompSysTech), pp. 148–154 (2012)

20. Sestoft, P.: Implementing function spreadsheets. In: Workshop on End-User Soft-
ware Engineering (WEUSE), pp. 91–94 (2008)

21. StreamBase Microsoft Excel adapter, http://docs.streambase.com/sb66/
index.jsp?topic=/com.streambase.sb.ide.help/data/html/

samplesinfo/Excel sample.html (retrieved November 2013)
22. Wakeling, D.: Spreadsheet functional programming. Journal of Functional Pro-

gramming (JFP) 17(1), 131–143 (2007)
23. Woo, A., Seth, S., Olson, T., Liu, J., Zhao, F.: A spreadsheet approach to program-

ming and managing sensor networks. In: Conference on Information Processing in
Sensor Networks (IPSN), pp. 424–431 (2006)

24. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: International Conference on Management of Data (SIGMOD), pp.
407–418 (2006)

25. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
Fault-tolerant streaming computation at scale. In: Symposium on Operating Sys-
tems Principles (SOSP), pp. 423–438 (2013)

http://www.hashdoc.com/document/8626/big-data-analytics
http://www.hashdoc.com/document/8626/big-data-analytics
http://docs.streambase.com/sb66/index.jsp?topic=/com.streambase.sb.ide.help/data/html/samplesinfo/Excel_sample.html
http://docs.streambase.com/sb66/index.jsp?topic=/com.streambase.sb.ide.help/data/html/samplesinfo/Excel_sample.html
http://docs.streambase.com/sb66/index.jsp?topic=/com.streambase.sb.ide.help/data/html/samplesinfo/Excel_sample.html

	Stream Processing with a Spreadsheet
	1 Introduction
	2 Overview
	3 Spreadsheet Calculus
	3.1 Core Calculus
	3.2 Boundedness
	3.3 Live Calculus
	3.4 Stream Calculus
	3.5 Query Language

	4 Implementation
	4.1 Client Side
	4.2 Server Side

	5 Case Studies
	6 Related Work
	7 Conclusion
	References

