Sheets)

Stream Processing with a Spreadsheet
ECOOP’'14

Mandana Vaziri, Olivier Tardieu, Rodric Rabbah, Philippe Suter, Martin Hirzel
IBM T.J. Watson Research Center

Sheets

1

Introduction

= Continuous data streams
— Domains: telecommunications, finance, health care, transportation, etc...
— High volumes of data
— Domain experts analyze data

Price | Volume

194.77 2740
195.13 2141
195.56 2539
197.96 2639
200.69 3111
200.99 2567
199.07 2356
198.84 2987
199.15 2554

©00 ActiveSheets

1

Introduction Cont.

= Domain experts typically have no programming experience
— Rely on developers to write stream processing applications
— Our objective: Enable domain experts to develop stream applications directly

Price | Volume

194.77 2740
195.13 2141
195.56 2539
197.96 2639
200.69 3111
200.99 2567
199.07 2356
198.84 2987
199.15 2554

©00 ActiveSheets

1

Introduction Cont.

= Qur solution: Principled programming model for non-programmers

— Based on a familiar tool: spreadsheet

— Support for live data, stateful computation
— Formal semantics: spreadsheet calculus
— Strong guarantees: determinism

— Implementation in Microsoft Excel

— Case studies to illustrate expressivity

Untitled] - OpenUftice.a “alc
Fie Edt View |nsert Format Jooks Qata Méndow Help

B CEu R BESRVE XaER ¢ 6 - 8L

i) [y Ve % B J

=
I
I
il
[

i B =
0

- ‘3‘E|8|B‘E ;|a|a‘;|a|ﬁ‘=|;|“‘|m “|“‘|‘"|'|‘—'|” il

Price | Volume

2740
2141
2539
2639
3111

2567
2356
2987
2554

Sheets

Why Spreadsheets?

» Easy-to-use, pervasive interface
— 500 million MS Excel users vs 10 million Java users (sources: mrexcel.com, wikipedia)
— Offer a variety of visualization possibilities
— User can easily compute new data

= Fluidity between code and data
— Unique interface where data and code that produced it can be viewed in the same place

Pie Chart of Countries

8 Untitled] - DpenDifice.org Calc
Fie Edt View Insert Format Tooks Data Window Help

BSEeRZ B TEX LR oo BN

| | == = = = o7 %o
| g (M o ¥ B J U EEEEE BbAHERPY
al “ fp 2 = |
;‘s\tlnlt{fts\ =
| 2|
L=k
L2
Ll
| & |
7
-0
L]
10
600]
] 12
500 3]
g — K
2 400 bkl
% 16
@ 17
Eauu 18
5 MCH|
€ 200 — 119 |
2 =
21
100 +—— - L
I e N
o k shee

M8 012 f Shestd
0-10 11-21 22-32 33-43 44-54 55-65 EB—?E‘?? E?‘ 88 S (L.t 100% s Sum=0 h
n 21 72 = +
Sheets

1

Example: Bargain Calculator for Stocks

» Program to determine bargains for stock quotes.

— Quotes are compared to the volume-weighted average price of stocks
(VWAP), and output if lower.
— Inputs: Trades, Quotes

. Zij'Qj
Pyrwap = >0,

FPywap Volume Weighted Average Price

Pj Price of Trade j

Qj Quantity of Trade 5

Sheets

ActiveSheets: Subscribing to a Stream

7

2
3
4
5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

A B

TIDUE SIcies

sym ts

“IBM" “Mon Sep
“IBMm" "Maon Sep
“IBM" “Mon Sep
“IBM" "Mon Sep
“IBMm" "Mon Sep
“IBM" "Mon Sep
“IBM" “Maon Sep
“IBM" "Mon Sep

=
w

price ol

194.77
195.13
195.56
197.96
194.96
197.04
198.64
200.99

— Client/Server architecture
» Server publishes streams

 Client (spreadsheet) can subscribe to them

— Visualization of live data

— Ability to pause and continue a live data stream

D

2,740
2,141
2,539
2,458
2,639
2,758
3,256
3111

E

F

G

Sheets

1

VWAP in ActiveSheets

Live

| A | B
input Trades

“IBM" 194.77
"IBM" 195:13
“IBM" 195.56
“IBM" 197.96
"1BM" 194.96
"IBM" 197.04
“1IBM" 198.64
“IBM" 200.99
“IBM" 200.e9
“IBM* 200.99
“1BMm" 198.77
“1BM" 199.20
"IBM"
"IBM" 98.99
“1BMm*" 197.70
“IBM” 198.84
M" 198.16
“1BM" 199.15
"IBM" 198.71
“1IBM" 196.73

44 20s5.00

773 150.00

31,959
=SUM|(C3:C22)

price

i J‘\/‘\—\A’\

16

G | H

533,670
417,773
496,527
494,504
514,499
543,436
654,717
625,280
468,611
209,432
147,885
144,619
167,617
142,875
152,822

98,625

84,020
146,774
131,943
144,793

6,320,423
=SUM(G3:G22)

— Use familiar gestures to compute new data

output

197.77
=G24/C24

1 | 1

ActiveSheets

1

Bargain Calculation in ActiveSheets

A

B

1 linput Trades

2
3

a
5|
6 |
7 |
8
a

11|

14 |
15 |

17
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |

"IBM"
“IBM"
"1IBM"
"IBM"
"IBM"
"IBM"
"IBM"

| I'IBM"

"lBM"
"IBM"

"BM"

"IBM"
"IBM"
"IBM™
"IBM"
"1IBM"
"IBM"
"IBm"
"IBM"
“IBM"

194.77
195.13
195.56
197.96
194.96
197.04
198.64
200.99
200.69
200.99
198.77
199.20
199.07
198.99
197.70
198.84
198.16
199.15
198.71
196.73

C | D

~ input Quotes

2,740
2,141
2,539
2,498
2,639
2,758
3,296
3,111
2,335
1,042
744 | 205.00
726
842
718
773 190.00
496
424
737
664
736
31,959
=SUM(C3:C22)

200.00

195.00

E

196.96

=PROJECT(
Quotes,

F

pr=price)

price

16

G | H

533,670
417,773
496,527
494,504
514,499
543,436
654,717
625,280
468,611
209,432
147,885
144,619
167,617
142,875
152,822

98,625

84,020
146,774
131,943
144,793

6,320,423
=SUM(G3:G22)

— Query language to obtain desired structures

— Data export

— Computation export

Lo L0 1 s] ke
output
197.77
=GE24/C24
YES

=IF(E3<I13,"YES","NO")

ActiveSheets

,ﬂ

Computing with State

| &£ | & | & | & | & | ® | & | # | ¥ | . | &
1 |input Trades input Quotes output
2 price®vol VWAP
3 "IBM" 194.77 2,740 196.96 533,670 197.77
4 "IBM" 19513 2,141 ~PROJECT] 417,773 —G24/c24
5 | “IBM" 19556 2,539 Quotes, 496,527
6 ["IBM" 197.96 2,498 pr=price) 494,504 ‘bargain?
7 "IBM" 19496 2,639 514,499 YES
8 "IBM" 197.04 2,758 543,436 —IF(E3<I3,"YES","NO")
9 "IBM" 19864 3,296 654,717
10 |"IBM" 20099 3,111 625,280 ‘bargain01
11 ["1BM" 200.69 2,335 468,611 1
12 |["IBM" 200.99 1,042 price 209,432 =IF(I7="YES",1,0)
13 "IBM" 198.77 744 20500 147,885
14 "1BM" 199.20 I — 144,619 lbargainCount
15 |"IBM" 199.07 eyl 'A/ﬂ'—\h’\ 167,617 he
16 "IBM" 198.99 s 142,875 =119+111
17 ["IBM" 197.70 773 | 190.00 152,822
18 | "IBM" 198.84 496 i 98,625 [SidBargginCcount
19 "IBM" 198.16 424 84,020 1,821
20 "IBM" 199.15 737 146,774 =PRE(115,13,0)
21 "IBM" 198.71 664 131,943
22 |"IBM" 196.73 736 144,793
23 | sum
24 | 31,959 6,320,423
25 | =SUM(C3:C22) —SUM(G3:G22)
26

—Xx:=x+1 becomes x:= pre(x)+1
— Computing with histories

ActiveSheets

10

1

Programming Model

» Reactive Programming Model
— Live input streams are clocks into the spreadsheet
— Cells are registers that get updated at each tick
— Simple control structure:
while(true){
await(tick);
calculate-spreadsheet();

= Benefits

— Ease-of-use
* No need to think about control (no sequencing, no loops)
« Data manipulated directly

— Guarantees
* Determinism
« Bounded computation and memory usage at each tick

— Live Programming

— Expressive for a range of stream applications.

Sheets

1"

1

Formal Semantics: Spreadsheet Calculus

= Motivation
— When should cells be updated? With what value?
 pre(15,13,0), project(quotes, pr=price)

= Core Calculus

— Tick: strictly increasing series of non-negative numbers, captures logical time
1,2,3,4,5,...
— Feed: map from tick to values (corresponding to a single attribute of a stream)

1—->Red, 2 - Blue, 3— Yellow

— Server: collection of feeds
— Client: collection of cells, consisting of a name and a formula

12

Sheets

1

Core Calculus

» Formulas

—Cy, @ c, ticks when c, does and evaluates to true
» sample feed according to a Boolean condition

f == ¢ |op(ct, -+, Cn) | Co @ c1 | latch(co,C1)

— latch(c,,c4) ticks when ¢, does and returns the value of c, at the previous tick of c,

= Example

A1 |A2: A1+1 |A3: odd(A1) |A1@A3 |latch(A1,A1)

time

13

a &~ OO N -~ O

o 00 A WON -

* Mechanism to access a past value

false
true
false
true
false
true

A W N~ O O

ActiveSheets

1

Well-Formedness

» [mmediate dependencies

"@ ifc=¢

deps(c) = - {c1, ---, Cn} ifc= op(ct, -+, Cn)
{co,c1} ifc= co@ Ci
{c1} if c = latch(co.c1)

= \Well-Formedness

— A client is well-formed iff the directed graph of immediate dependencies is acyclic, where
vertices are cell names, and edges indicate immediate dependencies

» Example: X .= X + 1
— Incorrect: A1: latch(A2,A2)
A2: A1 +1

— Correct: A1: latch(A2,A3)
A2: A1+ 1
A3: server feed

y Sheets

1

Extensions of the Core Calculus

= | ive Calculus
— Feed of formulas for each cell
— A tick of a cell is the concatenation of the ticks of its successive formulas over time
— A latch does not access values that predate the formula that contains the latch

= Stream Calculus
— Enrich core calculus with richer streams and formulas
— Reduction to core calculus

= Query language
— Provides a way to populate a range of cells at once with relational operators
— Reduction to stream calculus

Sheets

15

1]

Related Work

» Spreadsheets as a programming platform
— Haxcel
— Programming sensor networks
— StreamBase Excel adapter
— Cloudscale

» Programming models for streaming
— Lustre
— Streamlt
—Lime
— SPL
— Spark Streaming
— SQL-based languages: CQL, Microsoft StreamInsight

= Formal models
— Synchronous programming languages

16

Sheets

1

Summary and Future Work

= Summary
— Spreadsheet as a programming platform for stream processing
— Easy-to-use interface, familiar to spreadsheet users
— Strong guarantees: determinism, bounded computation and memory usage
— Variety of case studies to illustrate expressivity

= Future Work
— Online spreadsheet client
— Code synthesis for higher performance

¥

17 Images in this presentation from http://www.getfreeimage.com/

Sheets

