
Online Phase-Adaptive Data Layout Selection�

Chengliang Zhang1 and Martin Hirzel2

1 Microsoft in Redmond, WA
(C. Zhang was a student at the U. of Rochester when doing this work.)

chengzh@microsoft.com
2 IBM in Hawthorne, NY

hirzel@us.ibm.com

Abstract. Good data layouts improve cache and TLB performance of
object-oriented software, but unfortunately, selecting an optimal data
layout a priori is NP-hard. This paper introduces layout auditing, a
technique that selects the best among a set of layouts online (while the
program is running). Layout auditing randomly applies different layouts
over time and observes their performance. As it becomes confident about
which layout performs best, it selects that layout with higher probability.
But if a phase shift causes a different layout to perform better, layout
auditing learns the new best layout. We implemented our technique in a
product Java virtual machine, using copying generational garbage collec-
tion to produce different layouts, and tested it on 20 long-running bench-
marks and 4 hardware platforms. Given any combination of benchmark
and platform, layout auditing consistently performs close to the best
layout for that combination, without requiring offline training.

1 Introduction

Cache and TLB misses often cause programs to run slowly. For example, we esti-
mate that pseudojbb05 spends 34% of its time stalled in misses on a 4-processor
AMD machine [17]. Cache and TLB misses often stem from a mismatch between

xa
la
n
ip
si
xq
l

ja
ck

m
trt

fo
p pm

d

co
m
pr
es
s

lu
in
de
x

jy
th
on an

tlr

ps
eu
do
jb
b0
5
ja
va
c
je
ss

ch
ar
t
lu
se
ar
ch

ec
lip
se

m
pe
ga
ud
io

bl
oa
t

db
hs
ql
db

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

Fig. 1. Percent speedup of HI data layout, compared to BF, on an 8-processor AMD
at 4× the minimum heap size. Section 5 explains HI and BF, and Section 6 explains
the methodology. The error bars show 95% confidence intervals from Student’s t-test.
� This research was funded in part by DARPA contract No. NBCH30390004.

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 309–334, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

310 C. Zhang and M. Hirzel

data layout and data access order. For example, Fig. 1 shows that the same
layout can degrade or improve runtime depending on how well it matches the
program’s data accesses, and on how expensive the layout is to apply.

Results like those in Fig. 1 are typical: optimizations that improve perfor-
mance for some programs often risk degrading performance for other programs.
The results depend on tradeoffs between optimization costs and rewards, and on
interactions between complex software and hardware systems. Picking the best
data layout a priori is difficult. Petrank and Rawitz showed that even with per-
fect knowledge of the data access order, finding the optimal data placement, or
approximating it within a constant factor, is NP-hard [32]. Zhang et al. showed
that finding a general affinity-hierarchy layout is also NP-hard [45]. While these
hardness results were shown for fairly regular scientific code, reliance on pointers
and dynamic dispatch exacerbate the problem further for object-oriented code.
Practically, picking a data layout before the program starts would require train-
ing runs and command line arguments, both of which impede user acceptance.

This paper proposes layout auditing, a framework for picking the best data
layout online without requiring any user input. Layout auditing optimizes data
layouts with a try-measure-decide feedback loop: use a data reorganizer to try
one of several data layouts, use a profiler to measure the impact of the data
layout on performance, and use a controller to decide which layout to try next.

The data reorganizer tries a layout for the program’s data. The data reorganizer
can reorder data arrays or indexarrays for scientificprograms [11]; or it can copyob-
jects in a specific order during garbage collection for object-orientedprograms [13];
or it can even remap addresses using special-purpose hardware [46]. Layout audit-
ingworkswithoff-the-shelfdata reorganizers [24], andtheengineerswho implement
them need not be aware that the layouts get picked based on profile information.

The profiler measures the reward of the layout of the program’s current data.
The reward is high iff the program spends little physical time per virtual time.
Virtual time is a data layout-independent measure of program progress, such as
loop iterations, allocated bytes, or instructions. Physical time (seconds) depends
on the data layout. The profiler can either simply obtain physical time from
the CPU clock, or it can derive physical time from other information sources.
The profiler reports not just the reward of a data layout in terms of program
performance, but also the cost of the data reorganizer, profiler, and controller.

The controller decides the layout for the next data reorganization, and also
decides how much, if any, time to spend on profiling. If the controller is confident
about which layout is best, it picks that layout to exploit its good performance
characteristics. If the controller is uncertain, it picks a layout it is curious about,
to explore its reward. The controller uses off-the-shelf reinforcement learning
techniques [41]. It turns the reward and curiosity for each data layout into a
probability, and then picks randomly from its repertoire of layouts using those
probabilities. To adapt to phase shifts, the profiler never allows probabilities to
drop to zero, so that it always performs a minimal amount of exploration.

Selecting oneof several layouts is amulti-armedbandit problem [33].Theanalogy
is that of a slotmachine (one-armedbandit), butwithmore than one arm.Each arm

Online Phase-Adaptive Data Layout Selection 311

is a data layout, and the reward is improved program performance. The controller
repeatedly tries different arms, and hones in on the best ones. Layout auditing sub-
scribes to the philosophy of blind justice. The controller is a fair and impartial judge
who decides based on hard evidence only, and gives each candidate the benefit of
the doubt. In fact, the judge is not only fair, but also merciful: even when a layout
performs badly, it still gets sampled occasionally to check for phase changes.

Layout auditing combines the advantages of two strands of prior work. First,
like online profile-directed locality optimizations, it adapts to platforms, pro-
grams, and phases to achieve better performance than what offline optimization
can achieve. Second, like performance auditing [26], it separates optimization
concerns from controller concerns, it requires no correct model of complex hard-
ware interaction, and it does not get fooled by misleading access patterns where
finding the optimal data layout is NP-hard [32]. Unlike performance auditing,
this paper addresses data layouts, not code optimization, and adapts to phases.
This paper differs from prior profile-directed locality optimizations as well as
from performance auditing in that it uses a uniform controller for not just per-
formance rewards, but also optimization costs.

We evaluated layout auditing for 20 long-running Java programs on 4 hard-
ware platforms. The layouts were produced by copying generational garbage
collection changing the relative placement of heap objects in memory. Given any
combination of benchmark and platform, layout auditing consistently performs
close to the best layout for that combination.

Section 2 presents layout auditing as a framework, and Sections 3 to 5 present
one concrete implementation that is evaluated in Sections 6 and 7. Section 8
sketches alternative implementations of the framework, Section 9 discusses re-
lated work, and Section 10 concludes.

2 Layout Auditing Framework

Fig. 2 illustrates the try-measure-decide feedback loop of layout auditing. The
data reorganizer tries a data layout, the profiler measures its reward, and the
controller decides the next actions of the data reorganizer and the profiler.

Profiling decision

Layout decision

Data

Layout

Rewards

Performance

PerformanceData

reorganizer

Program

Profiler

Controller

Fig. 2. Feedback loop

312 C. Zhang and M. Hirzel

2.1 Program

What: The program performs some calculation on behalf of the user. It is obliv-
ious to the layout auditing feedback loop that surrounds it. The layout of the
program’s data in memory is determined by the data reorganizer, and the pro-
gram’s performance is monitored by the profiler.

How: Section 6 describes a suite of 20 large Java programs from a wide range
of application domains. They run unperturbed on a product language runtime
system with JIT compilation, a popular operating system, and stock hardware.

2.2 Data Reorganizer

What: The data reorganizer executes a layout decision by placing the program’s
data in a specific order in memory. The layout affects program performance;
in addition, the performance of the data reorganizer itself is monitored by the
profiler.

How: Garbage collection is widely used to support robust object-oriented soft-
ware. Section 5 uses copying garbage collection to implement the data reorga-
nizer. This paper is based on high-performance implementations of two well-
known collectors [7,44] that ship with a product language runtime system, and
some experimental collectors [17].

2.3 Profiler

What: The profiler monitors the performance of the program and the data reor-
ganizer. It reports rewards for each data layout to the controller. Rewards mea-
sure physical time per virtual time. Virtual time is a metric of program progress
that is independent of the data layout, such as loop iterations, allocated bytes,
or executed instructions.

How: Section 4 describes the minimalist profiler. It simply looks at the machine
clock to obtain physical time in seconds, and counts bytes allocated as virtual
time. The minimalist profiler uses the most authoritative model of the interac-
tion of data layouts with the hardware: concrete measurements of unperturbed
execution.

2.4 Controller

What: The controller turns rewards of data layouts into decisions for which
layout to try next, and how much profiling to do. The controller is responsible
for optimizing overall performance, even when the program has phase changes.

How: Section 3 describes the softmax controller. It uses a simple reinforcement
learning policy [41] to turn rewards into probabilities. The controller remembers
historical rewards to avoid unstable decisions when there is noise, but it decays
old rewards to adapt to phase changes.

Online Phase-Adaptive Data Layout Selection 313

3 Softmax Controller

The controller turns data layout rewards from the profiler into layout decisions
for the data reorganizer, and profiling decisions for the profiler. It does so by first
turning rewards into probabilities, then deciding randomly based on those prob-
abilities. The two main challenges for the controller are noise and phase changes:
noise is random jitter in program behavior that the controller should ignore, and
phase changes are systematic transitions in program behavior that the controller
should adapt to. The controller in this section solves both challenges for a small
fixed number of layouts while remaining reasonably simple.

3.1 Layout Decision

In reinforcement learning, functions that map rewards to probabilities are known
as policies. The softmax controller is named for the softmax policy [41]:

Pr(�) =
ereward(�)/τ

∑

�′
ereward(�′)/τ

(1)

Equation 1 calculates Pr(�), the probability with which the controller will
decide on layout � for the next data reorganization. Layouts with higher rewards
receive higher probabilities, since ereward(�)/τ is larger. Before exponentiation,
each reward is divided by a temperature τ . A high τ makes probabilities of
different rewards more similar. A low τ emphasizes the reward differences in the
probabilities; at low temperatures, controller decisions “freeze”. The division in
Equation 1 normalizes the probabilities such that they add up to 1.

Depending on the temperature, layout auditing will spend additional time
exploring other layouts besides the best layout. Spending time on exploration
is only justified if the information so far is too unreliable to exploit. To make
this tradeoff, the controller computes the pooled standard error of the rewards
of all layouts, and uses that as a curiosity value. The intuition for using error as
curiosity is that when the error is high, the controller is curious to learn more,
whereas additional data points will satisfy curiosity by shrinking the error. The
controller sets the temperature such that the expected reward of the chosen
layout differs from the reward of the best layout only by a small constant k
times the curiosity. Given a temperature τ , the expected reward of a randomly
chosen layout is

expectedReward(τ) =
∑

�

{
Pr
τ

(�) · reward(�)
}

(2)

The controller tries different values for τ using binary search until the absolute
difference between the maximum reward and the expected reward matches the
desired target value k · curiosity :

k · curiosity =
∣
∣
∣
∣max

�
{reward(�)} − expectedReward(τ)

∣
∣
∣
∣ (3)

314 C. Zhang and M. Hirzel

We chose k = 1% to ensure performance close to the best layout.
Curiosity is the pooled standard error of historical rewards for different lay-

outs. To adapt to changes in program behavior, it should weigh recent results
more heavily than old results that might come from a different phase. The con-
troller achieves this with exponential decay. In other words, the weight of a
reward is decayage , where the base decay can be for example 0.95, and the expo-
nent age is the number of data reorganizations since the reward was measured.
Because the statistical formula for pooled standard error does not directly ac-
commodate weighing values, the controller implements exponential decay with
a trick: it duplicates values with higher weights, then computes the statistics on
a larger population.

To adapt to phase changes and to admit redemption after miscarriages of jus-
tice (if any), the controller shows mercy to layouts that seemed to perform badly
in the past. It achieves this by assigning each layout a probability of at least 5%,
regardless of its reward. The price of mercy is degraded performance compared
with the best layout. The controller blindly assumes that all unexplored layouts,
for which there is no data yet, initially have infinite rewards.

3.2 Profiling Decision

Some profilers incur overhead, and should only be activated when their bene-
fits (information gain) outweigh their costs (overhead). This paper uses a zero-
overhead profiler, so the profiler is always active, without controller decisions.
Nevertheless, this section offers a technique to the interested reader for control-
ling profiling overhead with layout auditing. The decision to profile (p = �) or
not (p = ⊥) is a two-armed bandit problem, which the controller can decide with
reinforcement learning analogously to the multi-armed layout decision.

The reward of profiling, reward(p = �), is the reward of satisfied curiosity,
which Section 3.1 defined as the pooled standard error of layout costs. The reward
of not profiling, reward(p = ⊥), is avoiding two overheads: profiling overhead
incurred during program execution, plus overhead incurred when the profiler
processes raw measurements to compute layout rewards.

The controller computes reward(p = �), and relies on the profiler to report its
own overhead in the form of reward(p = ⊥). The controller then decides whether
or not to profile during the next execution interval using the softmax policy

Pr(p) =
ereward(p)/τ

∑

p′
ereward(p′)/τ

(4)

The temperature τ is the same as in Equation 3.

4 Minimalist Profiler

The profiler monitors the performance of the program and the data reorganizer,
and turns them into rewards for each data layout for the controller. The main

Online Phase-Adaptive Data Layout Selection 315

challenge for any profiler used in online optimization is maximizing truthfulness
while ignoring noise and minimizing overhead and Heisenberg effects. If the
controller should be a blind judge, then the profiler should be a reliable witness.

The measurements of the minimalist profiler are very simple: seconds and
allocated bytes. Both can be obtained truthfully at negligible overhead. This
section discusses how the minimalist profiler turns seconds and bytes into re-
wards for each layout. Internally, the minimalist profiler computes costs, which
are negative rewards, so low costs correspond to high rewards and vice versa. A
cost is a seconds-per-byte ratio, and has the advantage of being additive when
there are different costs from different system components. Formally, the reward
of a data layout � is

reward(�) = −cost(�) (5)

The cost of a layout � is the sum of its execution time cost coste(�) and its
data reorganization cost costr(�):

cost(�) = coste(�) + costr(�) (6)

The quantities in Equation 6 represent averages of ratios of corresponding
historical measurements. To explain what that means, we first introduce some
notation. Let ei be the physical time of the program execution interval that
follows reorganization i; let vi be the virtual time in number of bytes allocated
between reorganizations i and i + 1; and let �i be the layout of reorganization i.
The minimalist profiler calculates

coste(�) = avg
{

ei

vi
| �i = �

}

(7)

In words: to compute the programs’s execution time cost for layout �, average
the set of historical seconds per bytes ratios ei/vi that used layout �. Likewise,
given the physical time ri of data reorganization number i, the formula for data
reorganizer cost is

costr(�) = avg
{

ri

vi−1
| �i = �

}

(8)

The minimalist profiler assumes that reorganizer time ri is proportional to the
allocation volume vi−1 of the preceding execution interval, and that execution
time ei reflects the layout �i of the preceding data reorganization.

Averaging over historical values (Equations 7 and 8) reduces noise. To reduce
noise further, the averages omit outliers. The averages are weighted toward recent
data using an exponential decay curve, to adapt when program behavior changes
over time.

In addition to rewards for layouts, profilers also report their own cost to the
controller in the form of reward(p = ⊥), which is the reward of not profiling.
Since the minimalist profiler incurs no overhead, there is no reward for not
profiling, hence reward(p = ⊥) is always 0.

316 C. Zhang and M. Hirzel

To summarize, the minimalist profiler uses only information that is trivially
available on any platform: seconds and allocated bytes. The disadvantage is
that layout auditing will settle slowly when there is too much noise. Another
drawback is the assumption that program execution time reflects the data layout
of the previous data reorganization only, which plays down the effect of data in a
different memory area that was unaffected by that reorganization, and thus has
a different layout. On the positive side, the minimalist profiler is cheap, portable,
and direct.

5 Data Reorganization with Garbage Collection

The data reorganizer tries a layout for the program’s data. There are many pos-
sible implementations for data reorganizers; this paper chose to use off-the-shelf
garbage collection algorithms [24]. This section reviews background on copying
collectors, and describes some common data layouts.

5.1 Copying Garbage Collection

Copying garbage collection divides heap memory into two semispaces. Only one
semispace is active for allocation at a time. Garbage collection starts when the
active semispace is full. The collector traverses pointers from program variables
to discover reachable objects, which it copies to the other semispace (from from-
space to to-space). It updates all pointers to refer to the to-space copies, and
discards the from-space originals. When the program resumes, it uses to-space as
the active semispace for allocation. An example for a copying garbage collector
is Fenichel and Yochelson’s algorithm, which traverses objects with a recursive
procedure [13].

Most language runtime systems today use generational garbage collectors,
because they tend to yield the best throughput. Generational collectors segregate
objects by age into generations [27,42]. Younger generations are collected more
often than older generations, which reduces overall collector work, because most
objects become unreachable while they are still young. This paper is based on a

to-space

from-space

young
generation

old
generationsp

ac
e

copying

Fig. 3. Generational copying garbage collection

Online Phase-Adaptive Data Layout Selection 317

generational garbage collector with two generations, a copying young generation
and a mark-sweep old generation. The collector also implements numerous other
techniques, among others, parallelism [16] and tilted semi-spaces [28].

Fig. 3 shows the two kinds of copying: between the semi-spaces of the young
generation, and from the young generation to the old generation. Each garbage
collection can independently choose a copy order. Each set of objects allocated
between the same two collections starts out in allocation order, and may then ex-
perience different layouts as it gets copied within the young generation. When the
objects reach an age threshold, they get copied into the old generation (tenured),
where they come to rest with a final layout.

The repeated data reorganizations when copying objects give layout auditing
the opportunity to find the best layout.

5.2 Data Layouts

This section briefly surveys some common data layouts; for a more comprehen-
sive survey and evaluation, see [17].

Fenichel and Yochelson’s recursive algorithm uses variables on the call stack to
keep track of already copied objects that may contain pointers to not-yet copied
objects [13]. Using a LIFO-stack leads to copying objects in depth-first (DF)
order. Other DF copying collectors are not recursive, but maintain the stack
as an explicit data structure and share it between parallel collector threads [8].
The DF layout is good for locality if the program often accesses a parent object
together with a child object that it points to.

When the collector keeps objects in a FIFO-queue during the reachability
traversal, it copies them in breadth-first (BF) order. Cheney’s BF copying al-
gorithm [7] uses the to-space copies of the objects themselves as an implicit
queue. The BF layout is good for locality if the program often accesses sibling
objects together.

An algorithm designed to achieve both the parent→ child locality of the
depth-first layout and the sibling locality of the breadth-first layout is hier-
archical (HI) garbage collection by Moon and Wilson et al. [30,44]. It works by
copying a subtree to the same block as its root whenever possible.

Most of this paper uses layout auditing (LA) to choose between parallel im-
plementations of the BF and HI layouts [22,38].

Compacting collectors do not reserve an entire semispace for copying, in-
stead they move objects toward one end of just one space. Sliding compaction
aims at preserving the relative order of objects [24, Lisp 2 collector, Section
5.4]; [1,14,25]. When used as the sole copying mechanism, sliding compaction
preserves allocation order (AO), which yields good locality when the program
touches objects in the same order it allocated them, and can also facilitate stride
prefetching [2,23].

Segregating objects by type (TY) may yield better locality if the program
tends to access objects of the same type together. This data layout also has

318 C. Zhang and M. Hirzel

potential benefits in reducing object header sizes, and has been used for reducing
data reorganizer cost [19,36].

6 Methodology

Table 1 shows the benchmark suite, consisting of 20 Java programs: pseudojbb05,
which runs SPECjbb20051 for a fixed number of transactions; the 7 SPECjvm98
programs2; the 11 DaCapo benchmarks version 2006-10 [4]; and ipsixql3. Except
for Fig. 4, all numbers in this paper are averages of nine JVM process invo-
cations. Within each JVM invocation, the layout auditor starts with a clean
slate, learning the best layout online as it goes. As is common practice for these
benchmarks, each run contains several iterations (application invocations within
one JVM process invocation), see Column “Command line arguments”. Timings
measure the entire run of the JVM process, and thus include any overheads in-
curred by layout auditing, such as initially making wrong decisions. Furthermore,
all numbers in this paper are checked for statistical confidence using Student’s
t-test. Wherever the t-test indicates that performance differences are too small
to be relevant at 95% confidence, we report a “0” value instead.

Table 1. Benchmark programs

Name Suite Command line arguments Description PT MB
antlr DaCapo -s large -n 16 parser generator 1 2.0
bloat DaCapo -s large -n 4 bytecode optimizer 1 16.1
chart DaCapo -s large -n 8 pdf graph plotter 1 14.3
compress jvm98 -a -m72 -M72 -s100 Lempel-Ziv compressor 1 7.0
db jvm98 -a -m24 -M24 -s100 in-memory database 1 11.2
eclipse DaCapo -s small -n 4 development environment >1 14.0
fop DaCapo -s large -n 60 XSL-FO to pdf converter 1 9.1
hsqldb DaCapo -s large -n 12 in-memory JDBC database 20 173.8
ipsixql Colorado 80 7 in-memory XML database 1 2.5
jack jvm98 -a -m164 -M164 -s100 parser generator 1 1.3
javac jvm98 -a -m92 -M92 -s100 Java compiler 1 20.5
jess jvm98 -a -m228 -M228 -s100 expert shell system 1 2.1
jython DaCapo -s large -n 4 Python interpreter 1 1.9
luindex DaCapo -s large -n 32 text indexing for search 1 2.2
lusearch DaCapo -s large -n 8 keyword search in text 32 7.1
mpegaudio jvm98 -a -m156 -M156 -s100 audio file decompressor 1 1.0
mtrt jvm98 -a -m232 -M232 -s100 multi-threaded raytracer 2 8.7
pmd DaCapo -s large -n 4 source code analyzer 1 15.7
pseudojbb05 jbb05 SPECjbb-4x200000.props business benchmark 4 123.9
xalan DaCapo -s large -n 16 XSLT processor 1 27.5

1 http://www.spec.org/jbb2005/
2 http://www.spec.org/osg/jvm98/
3 http://www-plan.cs.colorado.edu/henkel/projects/colorado bench/

Online Phase-Adaptive Data Layout Selection 319

Column “PT” in Table 1 shows the number of program threads. The JVM
also has some service threads that run concurrently with the program. Garbage
collection is parallel with itself, but not concurrent with program execution.
Column “MB” gives, in megabytes, the minimum heap size in which the program
runs without throwing an OutOfMemoryError. Most experiments in this paper
provision each program with 4× its minimum heap size; garbage collection kicks
in when the heap size is exhausted.

Table 2. Memory hierarchy parameters per core

L1 Cache L2 Cache TLB
AMD Intel AMD Intel AMD Intel

Associativity 2 8 16 8 4 8
Block size 64 B 64 B 64 B 64 B 4 KB 4 KB

Capacity/blocks 1,024 256 16K 16K 512 64
Capacity/bytes 64K 16K 1,024K 1,024K 2,048K 256K

The experiments in this paper ran on one 2-processor Linux/IA32 machine,
and on three different Linux/AMD machines with 2, 4, and 8 processors. We
used the default run level of Linux (not single-user mode) to demonstrate that
layout auditing can make correct decisions even in the presence of noise. The
Intel machine was a Pentium 4 clocked at 3.2GHz with SMT, so the 2 physical
processors correspond to 4 virtual processors. The AMD machines had Opteron
270 cores clocked at 2GHz, with 2 cores per chip. Table 2 shows the data caches
and TLBs for each core. We implemented layout auditing in J9, which is IBM’s
high-performance product Java virtual machine. The experiments in this paper
are based on an internal development release of J9.

7 Results

This section evaluates data layout auditing using the concrete component in-
stantiations from earlier sections: softmax policy, minimalist profiler, and data
reorganization by copying garbage collection.

7.1 A Control Theoretic Approach to Controller Evaluation

Layout auditing employs an online feedback loop to control a system. Such feed-
back loops have been extensively studied in control theory. Control theory com-
monly talks about SASO properties: Stability, Accuracy, Settling, and Over-
shoot. A good controller is a controller that is stable, accurately makes the right
decisions, settles on that decision quickly, and does not overshoot the range of
acceptable values. In the context of layout auditing, stability means sticking with
a data layout once the controller picks one; accuracy means picking the data lay-
out that yields the best performance; and settling is the time from the start or
from a phase shift until the controller has made a decision. Overshoot does not

320 C. Zhang and M. Hirzel

apply in this context, because all layout decisions are in the range of acceptable
values by definition. This is common for discrete, rather than continuous, control
systems.

In addition to the SASO properties, layout auditing strives to achieve another
desirable property: low overhead. Since the minimalist profiler treats the time for
data reorganization as part of the reward of a data layout, there is no separate
overhead for data reorganization. The minimalist profiler just reads the clock and
counts bytes, so it does not incur any overhead on its own. This leaves controller
overhead : time spent doing the statistical calculations in the softmax controller.
On average, each control decision takes on the order of 0.1ms. Compared to
data reorganization times, which are on the order of 10ms to 100ms, controller
overhead is negligible in most cases.

Phase adaptivity is the ability of the controller to change its decision if the
program changes its behavior such that a different data layout becomes the
best data layout. Phase adaptivity is another way to look at settling, accuracy,
and stability. The minimalist profiler and the softmax controller achieve phase
adaptivity by using exponential decay to forget old profile information. The
decay factor determines how well layout auditing can adapt to phase changes.

Overall, layout auditing can make investments, such as profiling overhead,
data reorganization cost, or time spent exploring data layouts it is curious about.
For these investments, it reaps rewards, such as improved program execution
time or improved data reorganization time due to reduced cache and TLB misses.
The success of layout auditing depends on its ability to make the right tradeoff
between the different investments and rewards.

7.2 Accuracy

This section explores the accuracy of the layout auditor presented in this paper.
Accuracy is the ability of the controller to accurately pick the correct data layout.
If it does, then the bottom-line performance of a program when run with layout
auditing should match the performance of that program with its best statically
chosen layout. In terms of Fig. 1, layout auditing should get all the speedups
for programs at the right side of the bar chart, while avoiding all the slowdowns
for programs at the left side of the bar chart. To evaluate accuracy, this section
ran all 20 benchmark programs from Table 1 using the breadth-first (BF) and
hierarchical (HI) data layout, both with and without layout auditing (LA).

Table 3 shows the results. For each of the 4 runtime platforms (2-processor
Intel and 2-, 4-, and 8-processor AMD), there is one column for each of the data
layouts BF and HI and one for layout auditing LA. All the numbers are per-
cent slowdowns compared to the best runtime of the given benchmark/platform
combination. For example, for ipsixql on the 2-processor Intel machine, BF was
best, HI caused a 12% slowdown compared to BF, and LA matched the per-
formance of BF. A “0” in Table 3 means that the results of the 9 runs with
that data layout were indistinguishable from the results of the 9 runs with the
best data layout for that benchmark and platform, using Student’s t-test at
95% confidence. The bottom of Table 3 shows summary rows: “Average” is the

Online Phase-Adaptive Data Layout Selection 321

Table 3. Percent slowdown compared to best, on varying platforms at heap size 4×

Benchmark Intel-2 AMD-2 AMD-4 AMD-8
BF HI LA BF HI LA BF HI LA BF HI LA

antlr 0 1.1 2.1 1.4 0 2.2 0 0 0 0 0 0
bloat 0 0 0 0 0 0 0 0 0 0 0 0
chart 0 0 0 0 0 0 0 0 0 0 0 0
compress 0 1.2 0 0 0 0 0 0 0 0 0 0
db 5.2 0 2.9 6.0 0 1.9 0 0 0 6.5 0 0
eclipse 0 0 0 0 0 0 0 0 0 0 0 0
fop 0 0 0 0 0 0 0 0 0 0 0 0
hsqldb 0 0 0 0 0 0 2.8 0 0 7.2 0 0
ipsixql 0 12.0 0 0 10.7 1.9 0 10.4 0 0 7.9 1.4
jack 0 0 0 0 2.4 0 0 0 0 0 5.5 0
javac 0 1.5 0 0 1.3 0 0 0 0 0 0 0
jess 0 1.4 2.2 0 3.6 3.1 0 0 0 0 0 0
jython 0 0 0 0 0 0 0 0 0 0 0 0
luindex 0 0 0 0 0 0 0 0 0 0 1.0 1.0
lusearch 0 0 0 0 0 0 0 2.7 0 0 0 0
mpegaudio 0 1.8 0 0 0 0 0 0 0 0 0 0
mtrt 0 0 0 0 0 0 0 0 0 0 0 0
pmd 0 0 0 0 0 0 8.4 0 0 0 0 0
pseudojbb05 2.1 0 1.2 1.6 0 0 0 0 0 0 0 0
xalan 0 0 0 0 0 0 0 4.0 0 0 8.4 4.3
Average 0.4 0.9 0.4 0.5 0.9 0.5 0.6 0.9 0.0 0.7 1.1 0.3
not 0 2 6 4 3 4 4 2 3 0 2 4 3
Worst 5.2 12.0 2.9 6.0 10.7 3.1 8.4 10.4 0.0 7.2 8.4 4.3

arithmetic mean of the slowdowns of the layout compared to the best layout
for each benchmark, “# not 0” counts benchmarks for which the layout was not
the best, and “Worst” is the maximum slowdown of the layout compared to the
best.

Table 3 demonstrates that on all four platforms, online layout selection per-
forms almost as well as an oracle that would pick the best layout for each program
offline. Note that Petrank and Rawitz have shown conclusively that building
such an offline oracle would be impractical [32]. Layout auditing usually, but
not always, matches the performance of the best data layout for a program and
platform; sometimes the program finishes executing too quickly for LA to settle
on the best layout and recoup its exploration costs. However, layout auditing
has the most benign worst cases. Statically picking the wrong layout can slow
down execution by up to 12.0%, but dynamically picking with layout auditing
never causes slowdowns exceeding 4.3%.

As noted in prior work [20,38], some benchmarks, such as db and ipsixql,
are unusually sensitive to data layouts. For those programs, layout auditing has
the largest benefits. But it is equally important that for benchmarks that are
mostly insensitive to data layouts, layout auditing does not degrade performance

322 C. Zhang and M. Hirzel

appreciably. Except for antlr and jess, this is usually the case. The reliable ac-
curacy of layout auditing over a large range of programs and platforms gives it
an edge over traditional locality optimizations.

To summarize, layout auditing is accurate. It makes good on its promise of re-
quiring no model of the complex hardware/software interaction: it works equally
well with no user tuning on four platforms.

7.3 Settling, Stability, and Phase Adaptivity

This section investigates how long our implementation of layout auditing takes
to settle, whether it is stable once it reaches a decision, and whether it can adapt
to phase changes. This section answers these questions with a layout auditing
experiment designed to illustrate phase changes, while still being realistic. Let
T be the time in seconds since the start of the run, then the experiment first
executes benchmark db from T = 0 to T = 155, then executes benchmark mtrt
from T = 155 to T = 320, and finally goes back to db from T = 320 to T = 475.
The softmax controller decides between the breadth-first data layout BF and
the hierarchical data layout HI.

Benchmark db is much more data layout sensitive than mtrt. This constitutes
a challenging scenario for settling, stability, and phase adaptivity. The two data
layouts BF and HI have been shown to exhibit among the largest performance
differences between common data layouts [17, Figure 4]. The experiment ran
on the 2-processor AMD machine, and used heap size 44.8MB, which is 4×
the minimum for db and 5.1× the minimum for mtrt. This setup models what
happens when a server machine changes to a different workload that exercises
different code.

Fig. 4 shows the results. There are three columns: Column (a/d/g) is based
on a run where the minimalist profiler and the softmax controller use decay 0.9,
Column (b/e/h) uses decay 0.95, and Column (c/f/i) did not decay historical
values (decay=1.0). The x-axis of all graphs is the same: physical time in seconds.
Row (a/b/c) shows rewards as reported by the minimalist profiler, Row (d/e/f)
shows the controller’s current probability of BF, and Row (g/h/i) shows the
cumulative number of decisions for HI and against BF. Each time the controller
chooses HI for a data reorganization, the choice curve increases by one; each
time the controller chooses BF, the choice curve decreases by one.

Rewards are physical time per virtual time, where lower is better. The reward
graphs (Figures 4(a/b/c)) use a logarithmic y-axis, because data layout rewards
are an order of magnitude higher in db than in mtrt. The phase transitions at
around T = 155 and T = 320 are clearly visible. With a decay value of 0.9,
the minimalist profiler quickly forgets earlier data, and therefore computes a
reward that closely follows each spike in the data. Zooming in closely on the
first phase in Fig. 4(a) reveals that the rewards for HI are higher than the re-
wards for BF, but the difference is lower than the amplitude of the program’s
own performance behavior over time. Fig. 4(c) shows that when the decay is 1.0,

Online Phase-Adaptive Data Layout Selection 323

 0.01

 0.1

 0 50 100 150 200 250 300 350 400 450 500

BF
HI

 0.01

 0.1

 0 50 100 150 200 250 300 350 400 450 500

BF
HI

 0.01

 0.1

 0 50 100 150 200 250 300 350 400 450 500

BF
HI

(a) −Reward, decay=0.9 (b) −Reward, decay=0.95 (c) −Reward, decay=1.0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

(d) Probability, decay=0.9 (e) Probability, decay=0.95 (f) Probability, decay=1.0

-200

-100

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300 350 400 450 500
-500

-400

-300

-200

-100

 0

 100

 200

 300

 0 50 100 150 200 250 300 350 400 450 500
 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400 450 500

(g) Choice, decay=0.9 (h) Choice, decay=0.95 (i) Choice, decay=1.0

Fig. 4. Controller behavior over time for db/mtrt/db run, on AMD-2

the profiler never forgets, and the curve becomes smooth over time. This means
that without decay, the profiler can not adapt to phases: by the last phase, the
rewards of BF and HI are indistinguishable. Figures 4(a/b/c) show that the
controller faces a tough challenge: it has to learn the best layout despite the
fact that the difference between the layouts is dwarfed by the difference between
program phases.

The probability graphs (Figures 4(d/e/f)) illustrate settling. For decay 0.9,
the controller settles on the best data layout for each phase at approximately
T = 20, T = 220, and T = 370, which is 20, 75, and 50 seconds after the phase
transitions. For decay 0.95, the controller settles on the best data layout for each
phase at approximately T = 15, T = 200, and T = 445, which is 15, 45, and 125
seconds after the phase transitions. For decay 1.0, the controller settles on HI
for the first phase, but then takes the entire second phase to discover that HI is
no longer the best, and is then unstable during the last phase. This illustrates
that decay is necessary for phase adaptivity.

The probability graphs (Figures 4(d/e/f)) also illustrate stability. Fig. 4(d)
shows that for decay 0.9, the controller is mostly stable during the first and the
third phase, but has some spikes indicating instability. During the second phase,

324 C. Zhang and M. Hirzel

it is less stable, but Fig. 4(g) shows that it still chooses the correct layout most of
the time. Fig. 4(e) shows that for decay 0.95, the controller is more stable during
the first and second phases than with decay 0.9, but takes so long to settle that
it only becomes stable again at the very end of the third phase. Fig. 4(f) shows
that decay 1.0 leads to the best stability for stationary programs, at the cost of
sacrificing settling after phase changes.

The choice graphs (Figures 4(g/h/i)) follow the probability graphs (Fig-
ures 4(d/e/f)), in the sense that when the probability is 50/50, the choice forms
a horizontal line; when the probability for HI is high, the line rises; and when
the probability for BF is high, the line falls. Figure 4(i) may look unexpected at
first. During the second phase, BF is the best layout, yet the choice curve rises
even more steeply than during the first phase where HI was the best layout. The
reason why it rises is that the controller makes wrong decisions: without decay,
it fails to adapt to the phase change. The explanation why the curve rises more
steeply is that there are more data reorganizations per second. That is caused
by the fact that mtrt has a higher alloc/live ratio than db (see Table 4 in [4]).
That also explains the increased gradients in Figure 4(g/h).

To summarize, this section showed settling times ranging from 15s to 125s for
decay values of 0.9 and 0.95. Lower decay values lead to less stable controller
decisions; when the decay is too small, the controller gets confused by noise in
the program behavior. But in the other extreme, when the decay is too high or
when there is no decay, the controller can not adapt to phase changes. This mo-
tivates why we designed the controller the way we did. With decay, the softmax
controller adapts to phase changes by accurately picking the best data layout
for each phase.

7.4 Cache and TLB Behavior

This section explores whether the performance improvements of layout auditing
come from reducing the program’s data cache and TLB miss rates. The cache
and TLB misses are measured in the same experiments as those for Section 7.2,
by using PAPI [5] and then accumulating the counts for all program threads but
excluding the data reorganizer.

Table 4 shows the results. The columns and rows are the same as in Table 3,
and the numbers show percent miss rate increases compared to the layout with
the best miss rate for a given program and platform. It turns out that layout
auditing does not always achieve the lowest miss rate. We did not expect that
it would: we already saw that layout auditing achieves the best performance,
but program cache and TLB miss rates are only one factor in that. They have
to be weighed against other performance factors, such as data reorganization
time, hardware prefetching effects, instruction level parallelism, bus bandwidth,
etc. Layout auditing does prevent the worst-case miss rates that occur for some
programs; without layout auditing, those miss rate increases can easily amount
to 100% and more. But more importantly, no matter how complex the perfor-
mance effects of a particular hardware, layout auditing consistently and reliably
optimizes the bottom-line performance.

Online Phase-Adaptive Data Layout Selection 325

Table 4. Percent miss rate increase compared to best, at heap size 4×

Benchmark L2:Intel-2 L2:AMD-2 L2:AMD-4 L2:AMD-8
BF HI LA BF HI LA BF HI LA BF HI LA

antlr 0 0 0 5.2 0 1.9 2.5 0 3.0 2.6 0 2.5
bloat 0 0 0 12.9 0 5.8 13.2 0 0 12.7 0 5.4
chart 0 0 0 0 0 0 0 0 0 0 0 0
compress 0 0 0 0 0 0 0 0 0 0 0 0
db 0 20.9 10.3 0 0 0 0 0 0 0 0 0
eclipse 0 0 0 0 0 0 0 0 0 0 0 0
fop 0 0 0 3.7 0 0 3.7 0 0 11.2 0 0
hsqldb 0 0 0 0 0 0 0 2.5 0 0 0 0
ipsixql 0 11.7 0 0 46.5 0 0 61.3 3.3 0 62.3 7.0
jack 0 0 0 0 0 13.5 0 0 0 0 14.2 0
javac 0 0 0 7.3 0 6.3 5.8 0 0 6.0 0 0
jess 0 0 0 0 0 0 0 7.2 5.2 0 9.1 3.7
jython 0 0 0 0 0 0 0 0 0 0 0 0
luindex 0 0 0 4.2 0 2.5 0 2.1 0 0 1.9 2.0
lusearch 0 0 0 0 0 0 0 12.5 0 0 0 0
mpegaudio 0 0 0 0 0 29.2 0 0 0 0 0 0
mtrt 7.0 0 0 0 0 7.9 7.1 0 0 0 0 0
pmd 0 0 0 0 0 0 0 0 0 10.2 0 0
pseudojbb05 0 0 0 9.2 0 4.8 8.7 0 5.5 8.2 0 5.0
xalan 0 0 0 4.1 0 2.3 3.4 0 0 0 0 0
Average 0.4 1.7 0.5 2.5 2.4 3.9 2.3 4.5 0.9 2.5 5.0 1.5
not 0 1 2 1 7 1 9 7 5 4 6 5 7
Worst 7.0 20.9 10.3 12.9 46.5 29.2 13.2 61.3 5.5 12.7 62.3 7.0

Benchmark TLB:Intel-2 TLB:AMD-2 TLB:AMD-4 TLB:AMD-8
BF HI LA BF HI LA BF HI LA BF HI LA

antlr 0 0 0 2.0 0 0 0 0 0 0 0 0
bloat 10.1 0 0 0 0 0 5.7 0 0 0 0 0
chart 0 0 0 0 0 0 0 0 0 18.1 0 9.1
compress 0 0 0 0 0 1.1 0 0 0 0 0 0
db 134.2 0 59.7 163.3 0 46.2 167.3 0 65.3 177.6 0 94.3
eclipse 0 0 0 0 0 0 0 0 0 0 0 0
fop 0 0 0 1.7 0 2.0 4.0 3.9 0 0 0 0
hsqldb 13.5 0 0 12.6 0 0 11.0 0 0 0 0 0
ipsixql 20.5 22.9 0 31.2 0 0 0 0 0 0 11.4 0
jack 0 0 0 0 0 0 0 0 0 0 0 0
javac 15.9 0 13.3 14.9 0 9.4 11.0 0 12.1 9.0 0 0
jess 3.2 0 0 3.1 0 0 0 0 0 0 0 0
jython 10.4 0 0 0 0 0 0 0 0 0 0 0
luindex 9.3 0 0 0 0 0 0 0 0 0 0 0
lusearch 0 0 0 0 0 0 2.6 0 0 9.2 0 0
mpegaudio 0 0 0 0 0 0 0 2.9 2.1 0 0 0
mtrt 31.9 0 14.8 25.0 0 16.6 22.8 0 9.6 15.4 0 0
pmd 0 0 0 10.2 0 9.7 0 0 0 22.9 0 0
pseudojbb05 6.1 0 0 11.7 0 7.5 13.4 0 7.7 11.5 0 7.4
xalan 12.0 0 6.7 7.1 0 6.3 5.7 0 0 9.5 0 0
Average 14.1 1.2 5.0 14.9 0.0 5.2 12.8 0.4 5.1 13.7 0.6 5.5
not 0 11 1 4 11 0 8 9 2 5 8 1 3
Worst 134.2 22.9 59.7 163.3 0.0 46.2 167.3 3.9 65.3 177.6 11.4 94.3

7.5 Data Reorganization Cost and Heap Sizes

Switching between data layouts changes not just program performance, but also
data reorganizer performance. In addition, if the data reorganizer is a garbage
collector, its performance is also affected by the heap size: in a large heap, the
program can allocate more memory before triggering a garbage collection. This

326 C. Zhang and M. Hirzel

Table 5. Percent slowdown compared to best, on AMD-2 at varying heap sizes

Benchmark 2× heap 4× heap 10× heap
BF HI LA BF HI LA BF HI LA

antlr 0 1.0 2.9 1.4 0 2.2 0 0 2.1
bloat 0 0 0 0 0 0 0 0 0
chart 0 0 0 0 0 0 0 0 0
compress 0 0 0.7 0 0 0 0 0 0
db 5.3 0 2.6 6.0 0 1.9 6.4 0 2.5
eclipse 0 0 0 0 0 0 0 0 0
fop 0 0 0 0 0 0 0 0 0
hsqldb 0 0 0 0 0 0 0 0 0
ipsixql 0 10.6 3.9 0 10.7 1.9 0 13.8 6.5
jack 0 2.3 0 0 2.4 0 0 0 0
javac 0 3.3 0 0 1.3 0 0 0 0
jess 0 2.1 4.1 0 3.6 3.1 0 0 0
jython 0 0 0 0 0 0 0 0 0
luindex 0 0 0 0 0 0 0 0 0
lusearch 0 0 0 0 0 0 0 0 0
mpegaudio 0 0 0 0 0 0 0 0 0
mtrt 0 0.7 0 0 0 0 0 0 0
pmd 0 0 0 0 0 0 0 0 0
pseudojbb05 0 0 0 1.6 0 0 0 0 0
xalan 0 1.0 0 0 0 0 0 0.8 0
Average 0.3 1.1 0.7 0.5 0.9 0.5 0.3 0.7 0.6
not 0 1 7 5 3 4 4 1 2 3
Worst 5.3 10.6 4.1 6.0 10.7 3.1 6.4 13.8 6.5

usually means that objects have more time to die, and thus garbage collection
is cheaper, since it has to run less frequently and processes relatively fewer
survivors.

Layout auditing takes data reorganization cost into account, as described in
Section 4. It should therefore always find the right performance tradeoff irre-
spective of heap size and garbage collection cost. The experiments in this section
provision each program with 2×, 4×, or 10× the minimum heap size in which
the program runs without throwing an OutOfMemoryError. The tight heap size
2× (50% utilization) frequently triggers garbage collection; the standard heap
size 4× (25% utilization) is what most of the rest of this paper uses; and the
roomy heap size 10× (10% utilization) infrequently triggers garbage collection.
Table 5 shows the relative overall performance of the different data layouts in
different heap sizes. Table 5 is organized similarly to Table 3, with which it
shares the AMD-2 / 4× heap columns. Remember that “0” values indicate that
whatever performance degregation there may be compared to the best layout is
too small to be deemed statistically relevant. The 10× heap makes benchmarks
less layout sensitive, since that heap size deemphasizes data reorganizer cost,
one of the factors in performance differences. Conversely, the 2× heap makes

Online Phase-Adaptive Data Layout Selection 327

benchmarks more layout sensitive. The slightly worse results in the 10× heap
might be caused by fewer garbage collections offering fewer trials. Even so, in
all three heap sizes, layout auditing picks the best layout most of the time.

7.6 Bandits with More Than Two Arms

The results so far are based on layout auditing chosing between two layouts BF
and HI. These are the only two high-performance layouts implemented in our
infrastructure. So in order to explore chosing between three layouts, we had to
resort to slow experimental garbage collectors. We use the algorithms from [17],
but whereas that paper focuses on program time excluding data reorganization
cost only, here we look at the total cost including data reorganization. We use the
layouts BF s, DF s, and TY s, where the subscript denotes slow implementations.
Note in particular that BFs �= BF.

Table 6, which is formatted similarly to Table 3, shows the results. Despite
running in a loose heap, the slow data reorganizer of TY s causes high overheads
compared to the other two reorganizers. Layout auditing successfully avoids the
risk of degrading performance nearly as much as TY s, and comes close to BF s

and DF s. In fact, for most programs, layout auditing performs close to the best

Table 6. Multi-layout percent slowdown compared to best, at heap size 10×

Benchmark AMD-2 AMD-8
BF s DF s TY s LAs BF s DF s TY s LAs

antlr 4.8 0 24.3 4.4 3.3 0 20.1 2.7
bloat 0 0 18.3 0 0 0 26.4 0
chart 0 0 10.3 0 0 0 79.9 0
compress 0 0 0 0 0 0 1.2 0
db 8.1 0 22.7 3.4 10.1 0 21.8 7.0
eclipse 0 0 18.2 7.2 0 0 24.5 8.8
fop 0 0 10.4 0 0 0 18.5 0
hsqldb 10.2 0 214.0 24.5 17.0 0 253.1 22.5
ipsixql 19.8 0 144.3 7.4 32.9 0 158.6 4.3
jack 0 2.4 14.7 0 0 0 13.4 0
javac 8.4 0 90.3 3.9 11.5 0 92.5 0
jess 0 0 17.6 2.4 0 0 16.4 4.6
jython 0 0 0 0 2.2 0 1.9 0
luindex 0 0 9.1 0 0 0 8.4 1.7
lusearch 0 0 5.9 0 0 0 13.5 7.0
mpegaudio 0 1.5 0 0 1.8 0 0 0
mtrt 0 0 151.6 0 0 0 212.4 0
pmd 0 0 35.3 0 0 0 39.2 5.5
pseudojbb05 2.6 0 74.9 9.3 9.4 0 113.6 18.9
xalan 5.5 0 15.8 6.9 8.5 0 47.6 4.9
Average 3.0 0.2 43.9 3.5 4.8 0.0 58.2 4.4
not 0 7 2 17 9 9 0 19 11
Worst 19.8 2.4 214.0 24.5 32.9 0 253.1 22.5

328 C. Zhang and M. Hirzel

of the three layouts. We do not expect layout auditing to perform well with tens
or hundreds of layouts, because the settling time would grow unreasonably long.

8 Alternative Layout Auditing Components

This section discusses alternative data reorganizers, profilers, and controllers
that fit in the layout auditing framework from Section 2.

8.1 Alternative Data Reorganizers

Layout auditing is designed to accommodate a variety of off-the-shelf data reor-
ganization techniques. Section 5 already mentioned several data layouts (depth-
first, breadth-first, hierarchical, allocation order). Other garbage collectors seg-
regate objects by size, type, or allocating thread. One could even consider a
random data layout; while random layouts are unlikely to perform best, they
are equally unlikely to perform worst, and can thus effectively prevent patholog-
ical interference situations.

While layout auditing works with profile-oblivious data layouts, it can be
applied just as easily to decide whether or not to use profile-directed approaches,
such as Huang et al.’s online object reordering [20] or the locality optimizations
by Chen et al. [6].

As mentioned earlier in this paper, layout auditing is not confined to garbage
collection; a variety of other data reorganizers has been proposed. One technique
is to reorder data arrays or index arrays for scientific programs [11]. Zhang et
al. present and simulate a piece of hardware that can remap data to a different
layout [46]. Another possibility is to change the data layout during allocation,
for example, by using different alignments, or by profile-directed techniques [37].

8.2 Alternative Profilers

In the easiest case, the profiler just measures seconds by looking at the clock. The
advantage is that this causes no overhead, but the disadvantage is that it makes
it hard to isolate the impact of the data layout from the impact of extraneous
effects. To complicate things further, it is often desirable to isolate the impact
of the layout of some memory subspace from the impact of the layout of other
subspaces. This challenge could be addressed with a subspace locality profiler.

For example, if the data reorganizer is a generational garbage collector (like
in Section 5), each collection of the young generation copies some objects within
the young generation, and others from the young to the old generation. Over
time, a situation like in Fig. 5 arises. The left column shows the heap spaces:
an old generation, and a young generation with two semispaces. The middle
column further divides spaces into groups of objects, annotated by the last time
they were copied; e.g., “survivors (T-3)” were tenured 3 collections ago, whereas
the “newest” objects were allocated after the last collection and have yet to
be copied for the first time. Column “layout” shows which copy order, and
hence which data layout, the corresponding objects have. It is easy to keep

Online Phase-Adaptive Data Layout Selection 329

newest

survivors (T-1)

empty

empty

survivors (T-3)

survivors (T-6)

survivors (T-1)

survivors (T-3)

survivors (T-4)

empty

copy
reserve

active
semispace

young
generation

old
generation

0

BF

HI

BF

AO

0

HI

AO

layout treemaptime last copiedheap spaces

sp
ac

e

Fig. 5. Mapping from addresses to layouts

track of the mapping from addresses to memory areas and their data layouts; a
subspace locality profiler could do so with a treemap. What is needed, then, is
a measurement of locality for specific data addresses.

One possibility for this is PEBS (precise event based sampling), where hard-
ware counter overflows generate interrupts, and the interrupt handler can in-
spect parts of the machine state. Adl-Tabatabai et al. used PEBS on Itanium
to identify objects that cause cache misses [2]. Similarly, one could count misses
separately for memory subspaces with different data layouts. Unfortunately, on
IA32 and AMD, the PEBS machine state does not contain the data address, and
each interrupt costs several thousand cycles.

Another possibility for a subspace locality profiler is trace-driven cache simu-
lation. To accommodate layout auditing, the tracing and simulation must occur
online and automatically. Bursty tracing [3,18] can produce a memory access
trace at low overhead. Online cache simulation has been reported by Zhao et
al. [48]. To use online trace-driven simulation for layout auditing, map simu-
lated accesses and misses to data layouts via the treemap from Fig. 5.

A drawback of more sophisticated profilers is that they make more assump-
tions about how the software and hardware interact. Such assumptions can be
misleading: for example, more cache misses do not necessarily imply worse per-
formance if instruction-level parallelism overlays them with useful computation.

8.3 Alternative Controllers

Layout auditing is designed to accommodate a variety of off-the-shelf machine
learning techniques. The authors come from a systems background, and have
to refer the reader to the relevant literature for details [41]. This paper uses a
softmax policy. Other possibilities include sequential analysis and reinforcement
computation.

330 C. Zhang and M. Hirzel

Also, there are alternatives for dealing with phase changes. This paper uses
exponential decay of historical profile information. Another possibility is to re-
member a sliding window of values. There are also more sophisticated stand-
alone phase detectors [31,35].

9 Related Work

Layout auditing uses an online feedback loop that first tries different data lay-
outs, then evaluates their performance, and based on that, changes data layout
decisions later in the same run. This section reviews other online try-measure-
decide feedback loops.

Lau et al. proposed performance auditing [26], which first tries different ways to
optimize a method using a JIT compiler, then evaluates their performance, and
finally decides which one to use. Performance auditing addresses measurement
noise by continuing to collect information until it reaches statistical confidence
for a decision. Our work is also performance auditing, but we apply it to data, not
code, and we extend it to adapt when program behavior changes over time.

We picked copying garbage collection as the mechanism for executing data
layout decisions. Our controller switches between different copying collectors for
the young generation. Soman et al. showed how to switch between a more diverse
set of collectors, including both generational and non-generational, copying and
non-copying algorithms [40]. But whereas we decide to switch to another collector
based on online measurements of application performance, Soman et al. decide
based on heap size thresholds.

Chen et al. try a data layout optimization in a garbage collector, measure
whether it reduces miss rates, and throttle it if it does not [6]. Whereas Chen
et al. use online feedback to throttle an optimization in one collector, we use
online feedback to pick between multiple alternative collectors. Chen et al.’s
throttling mechanism is woven into the collector, and this tightly integrated
design compromises desirable features for both: the collector is not parallel, and
the controller does not use statistical or machine learning techniques to deal
with noise or with changes in program behavior.

Besides changing the data layout, an alternative technique for improving lo-
cality is prefetching. Some papers propose online try-measure-decide feedback
loops for picking the best prefetch distance [34,47].

Zhang et al. use an online try-measure-decide feedback loop for picking the
largest memory footprint that does not yet cause paging [45]. Unlike our work,
they change the heap size, not the data layout, and focus on paging, not on
cache and TLB locality.

A number of papers show how to pick between differently optimized versions
of scientific code at runtime [12,15,43]. Unlike our work, and unlike Lau et al.’s
performance auditing [26], they pay little attention to dealing with noise. Also,
they focus on code, we focus on data.

Other online data layout optimizations do not use a try-measure-decide feed-
back loop [9,10,20,21]. Instead, they use online profile data to predict which

Online Phase-Adaptive Data Layout Selection 331

layout will benefit performance, without checking later whether the prediction
came true. Petrank and Rawitz showed that these predictions can be easily fooled
by misleading data access patterns [32]. This is exacerbated by the fact that the
predictions rely on a model of hardware/software interactions, which change and
become more complex over time.

Reinforcement learning has been used for programming language optimiza-
tions in the past (e.g., [29]), and different machine learning techniques have
been used for selecting garbage collectors [39]. But unlike layout auditing, these
approaches require offline training runs, and their benefits only become available
by providing learned information to a second production run.

10 Conclusions

Layout auditing is an approach for picking the best among a set of data layouts by
trying them and measuring their performance. It handles noise with a continuous
feedback loop, and with a controller based on reinforcement learning. It smoothly
adapts when program behavior changes over time. It controls its own profiling
and exploration overheads by tuning them in the same way it tunes data layout
decisions. This paper demonstrates that layout auditing achieves close to the best
performance for all programs we tried it on, and avoids pathological worst cases
that can happen with any statically chosen layout. Layout auditing successfully
reevaluates its decisions after phase changes during program execution.

The trend towards multicore machines is likely to increase the importance
of locality optimizations in the near future, as more CPUs compete for limited
memory subsystem resources. At the same time, hardware complexity is on the
rise, and the unpredictability of hardware behavior calls for approaches like lay-
out auditing that optimize regardless of the detailed instruction-level behavior.

Acknowledgements. We thank Matthew Arnold, Jeremy Lau, Rodric Rabbah,
Erik Altman, Priya Nagpurkar, and the anonymous reviewers for their feedback.

References

1. Abuaiadh, D., Ossia, Y., Petrank, E., Silbershtein, U.: An efficient parallel heap
compaction algorithm. In: Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA) (2004)

2. Adl-Tabatabai, A.-R., Hudson, R.L., Serrano, M.J., Subramoney, S.: Prefetch in-
jection based on hardware monitoring and object metadata. In: Programming Lan-
guage Design and Implementation (PLDI) (2004)

3. Arnold, M., Ryder, B.G.: A framework for reducing the cost of instrumented code.
In: Programming Language Design and Implementation (PLDI) (2001)

4. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA) (2006)

332 C. Zhang and M. Hirzel

5. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A scalable cross-
platform infrastructure for application performance tuning using hardware coun-
ters. In: IEEE SuperComputing (SC) (2000)

6. Chen, W.K., Bhansali, S., Chilimbi, T., Gao, X., Chuang, W.: Profile-guided proac-
tive garbage collection for locality optimization. In: Programming Language Design
and Implementation (PLDI) (2006)

7. Cheney, C.J.: A nonrecursive list compacting algorithm. Communications of the
ACM (CACM) (1970)

8. Cheng, P., Blelloch, G.E.: A parallel, real-time garbage collector. In: Programming
Language Design and Implementation (PLDI) (2001)

9. Chilimbi, T.M., Larus, J.R.: Using generational garbage collection to implement
cache-conscious data placement. In: International Symposium on Memory Man-
agement (ISMM) (1998)

10. Courts, R.: Improving locality of reference in a garbage-collecting memory man-
agement system. Communications of the ACM (CACM) (1988)

11. Ding, C., Kennedy, K.: Improving cache performance in dynamic applications
through data and computation reorganization at run time. In: Programming Lan-
guage Design and Implementation (PLDI) (1999)

12. Diniz, P., Rinard, M.: Dynamic feedback: An effective technique for adaptive com-
puting. In: Programming Language Design and Implementation (PLDI) (1997)

13. Fenichel, R.R., Yochelson, J.C.: A LISP garbage-collector for virtual-memory com-
puter systems. Communications of the ACM (CACM) (1969)

14. Flood, C.H., Detlefs, D., Shavit, N., Zhang, X.: Parallel garbage collection for
shared memory multiprocessors. In: Java Virtual Machine Research and Technol-
ogy Symposium (JVM) (2001)

15. Fursin, G., Cohen, A., O’Boyle, M., Temam, O.: A practical method for quickly
evaluating program optimizations. In: Conte, T., Navarro, N., Hwu, W.-m.W.,
Valero, M., Ungerer, T. (eds.) HiPEAC 2005. LNCS, vol. 3793. Springer, Heidelberg
(2005)

16. Halstead Jr., R.H.: Multilisp: A language for concurrent symbolic computation.
Transactions on Programming Languages and Systems (TOPLAS) (1985)

17. Hirzel, M.: Data layouts for object-oriented programs. In: Measurement and Mod-
eling of Computer Systems (SIGMETRICS) (2007)

18. Hirzel, M., Chilimbi, T.M.: Bursty tracing: A framework for low-overhead temporal
profiling. In: Feedback-Directed and Dynamic Optimizations (FDDO) (2001)

19. Hirzel, M., Diwan, A., Hertz, M.: Connectivity-based garbage collection. In:
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA)
(2003)

20. Huang, X., Blackburn, S.M., McKinley, K.S., Moss, J.E.B., Wang, Z., Cheng, P.:
The garbage collection advantage: improving program locality. In: Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA) (2004)

21. Ibrahim, A., Cook, W.R.: Automatic prefetching by traversal profiling in object
persistence architectures. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067.
Springer, Heidelberg (2006)

22. Imai, A., Tick, E.: Evaluation of parallel copying garbage collection on a shared-
memory multiprocessor. IEEE Transactions on Parallel and Distributed Systems
(1993)

23. Inagaki, T., Onodera, T., Komatsu, H., Nakatani, T.: Stride prefetching by dynam-
ically inspecting objects. In: Programming Language Design and Implementation
(PLDI) (2003)

Online Phase-Adaptive Data Layout Selection 333

24. Jones, R., Lins, R.: Garbage collection: Algorithms for automatic dynamic memory
management. John Wiley, Chichester (1996)

25. Kermany, H., Petrank, E.: The Compressor: Concurrent, incremental, and paral-
lel compaction. In: Programming Language Design and Implementation (PLDI)
(2006)

26. Lau, J., Arnold, M., Hind, M., Calder, B.: Online performance auditing: Using
hot optimizations without getting burned. In: Programming Language Design and
Implementation (PLDI) (2006)

27. Lieberman, H., Hewitt, C.: A real-time garbage collector based on the lifetimes of
objects. Communications of the ACM (CACM) (1983)

28. McGachey, P., Hosking, A.L.: Reducing generational copy reserve overhead
with fallback compaction. In: International Symposium on Memory Management
(ISMM) (2006)

29. McGovern, A., Moss, J.E.B., Barto, A.G.: Building a basic block instruction sched-
uler with reinforcement learning and rollouts. Machine Learning 49(2-3) (2002)

30. Moon, D.A.: Garbage collection in a large Lisp system. In: LISP and Functional
Programming (LFP) (1984)

31. Nagpurkar, P., Hind, M., Krintz, C., Sweeney, P., Rajan, V.: Online phase detection
algorithms. In: Code Generation and Optimization (CGO) (2006)

32. Petrank, E., Rawitz, D.: The hardness of cache conscious data placement. In: Prin-
ciples of Programming Languages (POPL) (2002)

33. Robbins, H.E.: Some aspects of sequential design of experiments. Bulletin of the
American Mathematical Society (58), 527–535 (1952)

34. Saavedra, R.H., Park, D.: Improving the effectiveness of software prefetching with
adaptive execution. In: Parallel Architectures and Compilation Techniques (PACT)
(1996)

35. Sherwood, T., Perelman, E., Calder, B.: Basic block distribution analysis to find
periodic behavior and simulation points in applications. In: Malyshkin, V.E. (ed.)
PACT 2001. LNCS, vol. 2127. Springer, Heidelberg (2001)

36. Shuf, Y., Gupta, M., Bordawekar, R., Singh, J.P.: Exploiting prolific types for
memory management and optimizations. In: Principles of Programming Languages
(POPL) (2002)

37. Shuf, Y., Gupta, M., Franke, H., Appel, A., Singh, J.P.: Creating and preserving
locality of Java applications at allocation and garbage collection times. In: Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA) (2002)

38. Siegwart, D., Hirzel, M.: Improving locality with parallel hierarchical copying GC.
In: International Symposium on Memory Management (ISMM) (2006)

39. Singer, J., Brown, G., Watson, I., Cavazos, J.: Intelligent selection of application-
specific garbage collectors. In: International Symposium on Memory Management
(ISMM) (2007)

40. Soman, S., Krintz, C., Bacon, D.F.: Dynamic selection of application-specific
garbage collectors. In: International Symposium on Memory Management (ISMM)
(2004)

41. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

42. Ungar, D.: Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. In: Software Engineering Symposium on Practical Software
Development Environments (SESPSDE) (1984)

43. Voss, M.J., Eigenmann, R.: High-level adaptive program optimization with
ADAPT. In: Principles and Practice of Parallel Programming (PPoPP) (2001)

334 C. Zhang and M. Hirzel

44. Wilson, P.R., Lam, M.S., Moher, T.G.: Effective “static-graph” reorganization to
improve locality in a garbage-collected system. In: Conference on Programming
Language Design and Implementation (PLDI) (1991)

45. Zhang, C., Ding, C., Ogihara, M., Zhong, Y., Wu, Y.: A hierarchical model of data
locality. In: Principles of Programming Languages (POPL) (2006)

46. Zhang, L., Fang, Z., Parker, M., Mathew, B.K., Schaelicke, L., Carter, J.B., Hsieh,
W.C., McKee, S.A.: The Impulse memory controller. IEEE Transactions on Com-
puters (2001)

47. Zhang, W., Calder, B., Tullsen, D.M.: A self-repairing prefetcher in an event-driven
dynamic optimization framework. In: Code Generation and Optimization (CGO)
(2006)

48. Zhao, Q., Rabbah, R., Amarasinghe, S., Rudolph, L., Wong, W.-F.: Ubiquitous
memory introspection. In: Code Generation and Optimization (CGO) (2007)

	Online Phase-Adaptive Data Layout Selection
	Introduction
	Layout Auditing Framework
	Program
	Data Reorganizer
	Profiler
	Controller

	Softmax Controller
	Layout Decision
	Profiling Decision

	Minimalist Profiler
	Data Reorganization with Garbage Collection
	Copying Garbage Collection
	Data Layouts

	Methodology
	Results
	A Control Theoretic Approach to Controller Evaluation
	Accuracy
	Settling, Stability, and Phase Adaptivity
	Cache and TLB Behavior
	Data Reorganization Cost and Heap Sizes
	Bandits with More Than Two Arms

	Alternative Layout Auditing Components
	Alternative Data Reorganizers
	Alternative Profilers
	Alternative Controllers

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

